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Extracellular Vesicles Derived from
Human Umbilical Cord Mesenchymal
Stromal Cells Protect Cardiac Cells
Against Hypoxia/Reoxygenation Injury by
Inhibiting Endoplasmic Reticulum Stress
via Activation of the PI3K/Akt Pathway

Changyi Zhang1, Hongwu Wang2, Godfrey C.F. Chan3, Yu Zhou4,
Xiulan Lai5, and Ma Lian2,6

Abstract
Endoplasmic reticulum (ER) stress is implicated in the pathogenesis of many diseases, including myocardial ischemia/reper-
fusion injury. We hypothesized that human umbilical cord mesenchymal stromal cells derived extracellular vesicles
(HuMSC-EVs) could protect cardiac cells against hyperactive ER stress induced by hypoxia/reoxygenation (H/R) injury. The
H/R model was generated using the H9c2 cultured cardiac cell line. HuMSC-EVs were extracted using a commercially available
exosome isolation reagent. Levels of apoptosis-related signaling molecules and the degree of ER stress were assessed by
western blot. The role of the PI3K/Akt pathway was investigated using signaling inhibitors. Lactate dehydrogenase leakage and
3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) analysis were used for evaluating the therapeutic effects
of HuMSC-EVs in vitro. The results showed that ER stress and the rate of apoptosis were increased in the context of H/R injury.
Treatment with HuMSC-EVs inhibited ER stress and increased survival in H9c2 cells exposed to H/R. Mechanistically, the
PI3K/Akt pathway was activated by treatment with HuMSC-EVs after H/R. Inhibition of the PI3K/Akt pathway by a specific
inhibitor, LY294002, partially reduced the protective effect of HuMSC-EVs. Our findings suggest that HuMSC-EVs could
alleviate ER stress–induced apoptosis during H/R via activation of the PI3K/Akt pathway.
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Introduction

Acute myocardial infarction is a significant cause of mortal-

ity worldwide. While timely reperfusion, such as primary

percutaneous coronary intervention, has proven to be an

invaluable therapy, subsequent reperfusion induces further

cardiac damage during a process known as myocardial ische-

mia/reperfusion (MI/R) injury1. The mechanisms underlying

I/R injury appear to be multifactorial, including elevated

oxidative stress, intracellular Ca2þ overload, and endoplas-

mic reticulum (ER) stress2. The ER is the main organelle

responsible for the regulation of intracellular homeostasis

(including the translocation and post-transcriptional modifi-

cation of proteins), lipid synthesis, calcium homeostasis,

normal cell function, and survival3,4. Perturbations to any

of these processes can result a large proportion of proteins

that are misfolded and accumulate inside the ER lumen,

resulting in ER stress5. The activation of intracellular signal

transduction pathways by ER stress is defined as the

unfolded protein response (UPR). Activation of the UPR

triggers an adaptive program designed to restore homeostasis

by increasing the folding capacity of the cell, reducing pro-

tein synthesis, and enhancing the clearance of abnormally

folded proteins and damaged organelles6. But excessive ER

stress induces apoptosis7. Previous studies revealed that ER

stress–initiated apoptosis plays a very important role in MI/R

injury8,9. Therefore, ER stress, as a potential target for the

treatment of I/R-induced myocardial injury, has been an area

of extensive research.

Mesenchymal stromal cells (MSCs) are present in a vari-

ety of tissues such as adipose tissue, peripheral blood, bone

marrow, and umbilical cord10. This type of cell has been

shown to protect against I/R injury through several

mechanisms including immunomodulation, as well as anti-

apoptotic and proangiogenic effects11. Among these

sources, human umbilical cord mesenchymal stromal cells

(HuMSCs) are more suitable for replacement therapy

because of fewer ethical issues, low immunogenicity, and

high capacity for self-renewal12.Our group and others pre-

viously reported the potential therapeutic effect of

HuMSCs in the treatment of cardiac injury13,14. Although

transplanted MSCs exhibited low survival in the host, and

only a small percentage of transplanted MSCs were able to

reach the target site, MSCs transplantation has been shown

to work well under certain conditions, primarily owing to

the paracrine capability15,16.

Extracellular vesicles (EVs) are small, membrane-bound

nanovesicles that range in size from 50 to 200 nm and con-

tain nucleic acids, proteins, and bioactive lipids17. Several

lines of evidence suggest that exosomes are active paracrine

elements that play an important role in cell-to-cell commu-

nication18. Exosomes therefore have great potential to pro-

mote tissue repair19,20. Recently, Wang et al.21 reported that

exosomes derived from bone marrow mesenchymal stem

cells protect against renal I/R injury by inhibiting ER stress.

However, the relationships of HuMSC-derived extracellular

vesicles (HuMSC-EVs) to MI/R injury and ER stress–

induced apoptosis are unknown.

In this study, we used an in vitro hypoxia/reoxygenation

(H/R) injury system to investigate whether HuMSC-EVs pro-

tects against MI/R injury through the regulation of ER stress.

Materials and Methods

Cell Culture

HuMSCs were isolated as previously described13. The study

protocol was approved by the Institutional Review Board of

Shantou University Medical College (Shantou, China). A total

of six patients provided HuMSC. All patients provided signed

informed consent. HuMSCs were cultured in Dulbecco’s mod-

ified Eagle’s medium (DMEM)/F12 media containing 10%
exosome-depleted fetal bovine serum (Ca #C38010050, Viva-

Cell Biosciences, Shanghai, China) in an incubator held at

37�C and filled with 5% CO2. The third passage of HuMSCs

was used for exosome extraction. H9c2 cardiac cells were

obtained from the American Type Culture Collection (ATCC,

Rockville, MD, USA), then cultured in DMEM supplemented

with 10% fetal bovine serum, 100 U/ml streptomycin, and

100 U/ml penicillin, in an incubator held at 37�C and filled

with 5% CO2.The PI3K/Akt inhibitor (LY294002) was pur-

chased from Sigma-Aldrich (St. Louis, MO, USA).

Extraction and Identification of HuMSC-EVs

HuMSC-EVs were isolated using ExoQuick-TC (System

Biosciences,Palo Alto, CA, USA), according to the manu-

facturer’s protocol. Purified HuMSC-EVs were identified by

transmission electron microscopy (JEOL JEM 1230; Tokyo,

Japan). Exosomal markers such as CD63 and CD9 were

analyzed by western blot and flow cytometry. Nanoparticle

tracking analysis (NTA) was performed to analyze the exo-

some particles using a Nanoparticle Tracking Analyzer

(ZetaView, PMX, Meerbusch, Germany). The protein con-

centration of the purified exosome fraction was measured

with a bicinchoninic acid (BCA) protein assay kit (Thermo-

Fisher Scientific, Waltham, MA, USA).

Internalization of HuMSC-EVs by H9c2 Cells

HuMSC-EVs were incubated with PKH26 (Ca#MIDI26,

Sigma-Aldrich, Shanghai, China) for 15 min at 37�C in the

dark and washed three times in 1� phosphate buffered saline

with centrifugation at 100,000�g, followed by incubation at

4�C for 2 h. The purified EVs were then added to the culture

medium and incubated with H9c2 cells for 12 h. Cell nuclei

were labeled with 4’,6-diamidino-2-phenylindole

(Ca#C1005, Beyotime Biotechnology, Shanghai, China).

The uptake of HuMSC-EVs by H9c2 cells was analyzed

using Olympus BX51 confocal microscopy (Olympus,

Tokyo, Japan).
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Generation of the H/R Model

To generate oxygen-glucose deprivation (OGD), the initial

culture medium was replaced with buffer [pH 6.2, 137 mM

NaCl, 12 mM KCl, 0.49 mM MgCl2�6H2O, 0.9 mM CaCl2,

4 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid,

and 20 mM Na lactate] to generate OGD22. Then, H9c2 cells

were exposed to pure N2 gas at 37�C for 3 h. H9c2 cells were

then reoxygenated in fresh oxygenated culture medium for 1

h, in an incubator with 5% CO2. Four experimental groups

were designed as follows: normal group, in which H9c2 cells

were cultured under normal conditions; H/R group; H/Rþ
HuMSC-EVs group, in which H9c2 cells were first cultured

with HuMSC-EVs (8 mg/ml) for 12 h, followed by exposure

to H/R; and H/R þ HuMSC-EVs þ LY group, in which the

PI3 K inhibitor LY294002 was added to cells at a concen-

tration of 15 mmol/l for 30 min before H/R.

Cell Viability Assay

H9c2 cell viability was determined by 3-(4,5-Dimethylthia-

zol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) assay.

After exposure to H/R, MTT was added to the culture medium

for incubation for 4 h at 37�C. MTT was then solubilized with

150 ml dimethyl sulfoxide. The optical density (OD) values

were determined at 490 nm by a microplate reader. Relative

cell viability was calculated as a percentage, as follows: via-

bility (%) ¼ (OD of assay � OD of blank)/(OD of control �
OD of blank) � 100%. The experiment was repeated three

times.

Assay of Lactate Dehydrogenase Activity

To determine the extent of cell injury induced by H/R injury,

lactate dehydrogenase (LDH) activity in culture media was

measured using a lactate dehydrogenase activity assay kit

(Uscn Life Science, Wuhan, China), according to the manu-

facturer’s protocol. The experiment was repeated three times.

Western Blot

H9c2 cells or HuMSC-EVs were lysed in RIPA lysis buffer,

followed by whole-protein purification. Protein concentra-

tions were quantified using the BCA method (Beyotime

Institute of Biotechnology, Haimen, China). Total protein

(30 mg) was subjected to 10% sodium dodecyl sulfate poly-

acrylamide gel electrophoresis and transferred electrophor-

etically to polyvinylidene difluoride membranes (EMD

Millipore, Billerica, MA, USA). Membranes were incubated

with the primary antibody of interest for 16 h at 4�C, fol-

lowed by incubation with horseradish peroxidase–conju-

gated goat anti-rabbit immunoglobulin G secondary antibody

(1:2,000, Ca# BE0101, EASYBIO, Beijing, China) for 1 h

at room temperature. Specific protein bands were observed

with an ECL Plus chemiluminescence kit (EMD Millipore)

and quantitatively analyzed with Image Pro Plus 6.0 soft-

ware (Media Cybernetics, Inc., Rockville, MD, USA).

The primary antibodies used in this study were: CD9

(1:2,000, Ca#ab92726, Abcam, Cambridge, MA, USA);

CD63 (1:1,000, Ca#ab134045, Abcam); Bax (1:5,000, Ca

#ab32503, Abcam); bcl2 (1:2,000, Ca#ab196495, Abcam);

cleaved-caspase 3 (1:1,000, Ca#9661, CST, Danvers, MA,

USA); glucose-regulated protein 78 (GRP78; 1:1,000,

Ca#3183, CST); C/EBP homologous protein (CHOP;

1:1,000, Ca#2895, CST); inositol-requiring protein 1a
(IRE1a; 1:1,000, Ca#3294, CST); activating transcription

factor 6 (ATF6; 1:1,000, Ca #ab203119, Abcam); Akt

(1:1,000, Ca#4685, CST); p-Akt (1:1,000, Ca #4060, CST);

PI3 K (1:1,000, Ca#4257, CST); and b-actin (1:5,000,

Ca#0021, EASYBIO). The experiment was repeated three

times.

Statistical Analysis

All statistical analyses were performed using SPSS 16.0 soft-

ware (SPSS Inc., Chicago, USA). Data are expressed as

means + standard deviation. Statistical differences between

groups were assessed with one-way analysis of variance, fol-

lowed by Tukey’s multiple comparison test. A P-value

<0.05 was considered statistically significant.

Results

Characterization of HuMSC-EVs

We characterized the HuMSC-EVs by transmission electron

microscopy, which revealed the presence of spherical vesi-

cles in the HuMSC-EVs isolated (Fig. 1A). The concentra-

tion of exosomes was 5.4 � 109 particles/ml. Particle

diameter ranged from 27 to 139 nm (as measured by the

NTA system; Fig. 1B). We next examined EV markers

CD9 and CD63 by flow cytometry and western blot. As

shown in Fig. 1C, D, the isolated HuMSC-EVs expressed

high levels of CD9 and CD63. These findings suggested that

EVs were successfully isolated from HuMSCs.

We also tested the internalization of HuMSC-EVs by

H9c2 cells. We labeled HuMSC-EVs with PKH-26. After

labeling, the HuMSC-EVs pellet showed a strong red color.

PKH-26-labeled HuMSC-EVs were then incubated with

H9c2 cells. As shown in Fig. 1E, we observed red fluores-

cence in the cytoplasm in nearly all H9c2 cells, indicating

that large amounts of HuMSC-EVs had been taken up by

cultured H9c2 cells.

HuMSC-EVs Alleviates H/R Injury

We assessed the viability of H9c2 cells via MTT assay. As

shown in Fig. 2A, H/R injury significantly reduced cell via-

bility, as expected, HuMSC-EVs improved cell viability in

H9c2 cells subjected to H/R (##P < 0.01 vs control, **P <

0.01 vs H/R). LDH leakage is widespread use as a marker of

cellular damage. According to Fig. 2B, LDH leakage

increased in the H/R group compared with the control group,

but was significantly decreased by HuMSC-EVs treatment
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(##P < 0.01 vs control, **P < 0.01 vs H/R). These findings

revealed that HuMSC-EVs could promote cell survival and

alleviate cell damage in H9c2 cells subjected to H/R injury.

HuMSC-EVs Reduced H/R-Induced ER Stress and
Ameliorated H9c2 Cell Apoptosis

H/R is thought to damage cardiac cells by inducing severe ER

stress and apoptosis23. To confirm the role of HuMSC-EVs in

H/R-induced ER stress, the expression of ER stress markers

(including GRP78, CHOP, IRE1a, and activating transcrip-

tion factor 6) were measured by western blot analysis. As

expected, levels of all markers investigated were significantly

enhanced in the H/R group, indicating increased ER stress

during H/R induction. Interestingly, the expression of these

markers decreased significantly in the HuMSC-EVs group,

compared with the H/R group (Fig. 2C; #P < 0.05, ##P <

0.01 vs control; *P < 0.05, **P < 0.01 vs H/R). To investigate

the direct effect of HuMSC-EVs on apoptosis in cardiac cells,

the expression levels of Bax, Bcl-2, and cleaved-caspase 3

were measured. In the H/R group, Bax and cleaved-caspase

3 were upregulated, while the expression of Bcl-2 was down-

regulated. HuMSC-EVs treatment restored the expression lev-

els of all three proteins to baseline levels in H9c2 cells (Fig.

2H; #P < 0.05, ##P < 0.01 vs control; *P < 0.05, **P < 0.01 vs

H/R). These data show that HuMSC-EVs reduce H/R-induced

ER stress and ameliorate apoptosis in cardiac cells.

HuMSC-EVs Protects Against H/R-Induced ER Stress–
Induced Apoptosis Through Activation of the PI3K/Akt
Pathway in H9c2 Cells

Previous studies have shown that the PI3K/Akt pathway is

activated by the delivery of exosomes24,25.To further inves-

tigate the mechanism by which HuMSC-EVs modulate ER

stress, the expression of PI3 K, Akt, and p-Akt in H9c2 cells

was measured by western blot analysis. As shown in Fig.

3A, pretreatment with HuMSC-EVs markedly upregulated

the expression of PI3 K and p-Akt/Akt, compared with

levels observed in the H/R group. Furthermore, a specific

inhibitor of PI3K/Akt, LY294002, alleviated the inhibitory

effects of HuMSC-EVs on the overexpression of GRP78,

Figure 1. Characterization of HuMSC-EVs. (A) Images obtained by transmission electron microscopy showing the morphology of HuMSC-
EVs (red arrows point to the EVs). (B) NTA of HuMSC-EVs. (C) Flow cytometric analysis of EV markers showing positive staining for CD9
and CD63. (D) Western blot analysis of EV surface markers (CD9 and CD63). (E) Internalization of HuMSC-EVs by H9c2 cells, as detected
by fluorescence microscopy. HuMSC-EVs: human umbilical cord mesenchymal stromal cells derived extracellular vesicles; NTA: nanopar-
ticle tracking analysis.
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CHOP, IRE1a, and ATF6, suggesting that the inhibition of

ER stress by HuMSC-EVs was largely abolished by treat-

ment with LY (Fig. 3D). In addition, the expression of

cleaved-caspase 3 was upregulated by cotreatment with

LY (Fig. 3D, I). The MTT assay and LDH leakage results

suggested that HuMSC-EVs decreased the apoptotic rate in

H/R, while the blockade of PI3K/Akt signaling inhibited

the antiapoptotic effects of HuMSC-EVs in vitro (Fig. 3J,

K; #P < 0.05, ##P < 0.01 H/R vs control; *P < 0.05, **P < 0.01

H/R þ HuMSC-EVs vs/H/R; 4P < 0.05, 44P < 0.01 H/R þ
HuMSC-EVs þ LY vs H/R þ HuMSC-EVs). These results

indicate that HuMSC-EVs protect against ER stress–related

apoptosis at least in part through activation of the PI3K/Akt

pathway in H9c2 cells.

Discussion

In this study, the effects of HuMSC-EVs on the survival of

cardiac cell in response to H/R challenge and the underlying

mechanisms were investigated. We found that HuMSC-EVs

could protect H9c2 cells against ER stress–induced apopto-

sis under the stimulation of H/R. The antiapoptotic effect of

HuMSC-EVs is partly mediated by the activation of

PI3K/Akt signaling through the inhibition of hyperactive

ER stress. Severe ER stress was induced by H/R treatment

and resulted in increased expression of GRP78, CHOP,

IRE1a, and ATF6, which promoted apoptosis in H9c2 cells.

Supplementation with HuMSC-EVs attenuated the detri-

mental effects of H/R in H9c2 cells.

Figure 2. Effects of HuMSC-EVs on cell survival and ER stress in response to H/R insult. (A) HuMSC-EVs promote survival after H/R. (B)
HuMSC-EVs decrease the release of LDH after H/R. (C-J) Analysis of protein expression and optical density for GRP78, CHOP, IRE1a,
ATF6, cleaved-caspase 3, and Bax/bcl2 in H9c2 cells. Values are means + SD. #P < 0.05 vs control; ##P < 0.01 vs control; *P < 0.05 vs H/R; **P
< 0.01 vs H/R. b-Actin served as an internal control. Values are means + SD. #P < 0.05, ##P < 0.01 vs control; *P < 0.05, **P < 0.01 vs H/R (n
¼ 3/group). ATF6: activating transcription factor 6; CHOP: C/EBP homologous protein; ER: endoplasmic reticulum; GRP78: glucose-
regulated protein 78; H/R: hypoxia/reoxygenation; HuMSC-EVs: human umbilical cord mesenchymal stromal cells derived extracellular
vesicles; IRE1a: inositol-requiring protein 1a; LDH: lactate dehydrogenase; SD: standard deviation.
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I/R injury is a major cause of morbidity, disability, and

mortality worldwide26. In recent years, a number of studies

have suggested that ER stress–mediated apoptosis plays an

important role in the development of MI/R injury27,28. It has

been shown that ischemic conditions interrupt ER homeostasis

and activate the UPR29, which upregulates the expression of

Figure 3. H/R induced ER stress through the activation of PI3K/Akt signaling in H9c2 cells. (A–C) Western blot and optical density analysis
for PI3 K, Akt, and p-Akt. LY294002 (LY) is a broad-spectrum inhibitor of PI3K/AKT. (D–I) Analysis of protein expression and optical density
for GRP78, CHOP, IRE1a, ATF6, and cleaved-caspase 3 in H9c2 cells. (J) H9c2 cell viability. (K) LDH release in H9c2 cells. Values are means
+ SD. #P < 0.05, ##P < 0.01 H/R vs control; *P < 0.05, **P < 0.01 H/RþHuMSC-EVs vs H/R; 4P < 0.05, 44P < 0.01 H/RþHuMSC-EVsþ LY
vs H/RþHuMSC-EVs (n¼ 3/group). ATF6: activating transcription factor 6; CHOP: C/EBP homologous protein; ER: endoplasmic reticulum;
GRP78: glucose-regulated protein 78; H/R: hypoxia/reoxygenation; HuMSC-EVs: human umbilical cord mesenchymal stromal cells derived
extracellular vesicles; IRE1a: inositol-requiring protein 1a; LDH: lactate dehydrogenase; SD: standard deviation.
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CHOP, a transcription factor30. The accumulation of CHOP

protein induces the cleavage of caspase-331 and increases the

Bax/Bcl-2 ratio32, resulting in cell apoptosis. In this study, the

expression levels of GRP78, CHOP, IRE1a, and ATF6 were

significantly upregulated in H/R-treated H9c2 cells, compared

with normal control cells. CHOP overexpression was found to

promote the activation of caspase-3 and to increase the Bax/

Bcl-2 ratio, thus increasing the rate of apoptosis. These findings

suggest that ER stress–mediated apoptosis plays an important

role in the development of H/R injury.

EVs secreted by MSCs have been evaluated as a novel

therapeutic modality for cardiovascular disease because they

protect myocardium against I/R injury33. Accumulating evi-

dence has shown that exosomal proteins or RNAs play an

important role in modifying the behavior of recipient cells34.

More importantly, EVs are easy to manipulate and may be

transferred between individuals, or even across species35. In

our study, treatment with HuMSC-EVs ameliorated ER

stress, which protected H9c2 cells against excessive apopto-

sis, suggesting that HuMSC-EVs may effectively inhibit ER

stress–mediated apoptosis.

The PI3K/Akt pathway plays a critical role in aspects

of cellular physiology such as glucose homeostasis, lipid

metabolism, protein synthesis, and cell proliferation and

survival36. Impairing the PI3K/Akt pathway was found to

aggravate ER stress–related apoptosis37. In the present

study, we observed that H/R-induced ER stress inhibited

activation of the PI3K/Akt pathway. The administration of

HuMSC-EVs to H9c2 cells restored PI3K/Akt signaling,

resulting in a decreased rate of apoptosis. However, the pro-

tective effects of HuMSC-EVs were partially eliminated

when cells were cotreated with the PI3K/Akt inhibitor

LY294002. The expression levels of GRP78, CHOP, IRE1a,

ATF6, and cleaved-caspase-3 were all increased when PI3K/

Akt signaling was blocked. It is reasonable to speculate that

HuMSC-EVs ameliorated ER stress–induced apoptosis

through activation of the PI3K/Akt signaling pathway.

Although our results indicate that HuMSC-EVs treatment

attenuated ER stress–reduced apoptosis in H9c2 cells

through activation of the PI3K/Akt pathway, further inves-

tigation is required to fully reveal the mechanisms underly-

ing the effects of HuMSC-EVs on ER stress.

In conclusion, we demonstrated that levels of ER stress

and cell apoptosis are increased during H/R. HuMSC-EVs

may ameliorate ER stress–induced H9c2 cell apoptosis after

H/R stimulation in vitro.
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