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Since the time of modem physiological investigation, two theories have domi- 
nated our conception of the mechanism of renal excretion. Bowman in 1842, 
basing his deductions on the anatomical structure of the renal unit, suggested 
that the glomerulus furnished the water of the urine, and that the solid substances 
were added to it by the activity of the renal cells which line the tubule. The 
exper~nental evidence for this view was furnished by Heidenhain I and his pupils 
in a long series of investigations. 

2 years later, Ludwig 2 advanced his theory that all the urinary constituents 
were derived by filtration through the giomerulus, the ultimate concentration of 
the urine being arrived at by a process of absorption of water by the renal tubule. 
Both processes were held to be purely physical. 

The various modifications which have been offered by the pupils of these 
two schools and by other observers are innumerable. The most recent concept is 
that of Cushny, 3 and is termed by him the modern theory. While neither of the 
original theories can explain the mass of physiological and morphological data 
that has accumulated Since their origin~ the modern theory covers in a much more 
satisfactory manner our present knowledge. 

According to Cushny, the formation of the urine may be explained by two 
processes: first, a purely physical filtration through the glomerulus of all the 
constituents of the plasma except the colloids; and, second, a resorption from this 
filtrate by the vital activity of the epithelium as it passes down the tubule. The 
former process furnishes the urinary constituents, the latter modifies their amounts 
so that they correspond to those of the completed urine. 

I Heidenhain, R., in Hermann, L., Handbuch der Physiologie, Leipsic, 1883, 
v, 279. 

2 Ludwig, C., Lehrbuch der Physiologie des Menschen, Leipsic and Heidel- 
berg, 1861, il, 373. 

s Cushny, A. R., The secretion of the urine, London and New York, 1917. 
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Water is obviously the substance which will be handled in greatest 
amount by both filtration and absorption, and the conception of such 
a double process with this substance furnishes little difficulty. A 
complication arises, however, when the solid constituents are con- 
sidered, as a uniform rate of absorption will not explain the varying 
levels of concentration that the different solids show in the completed 
urine. These are therefore divided into "threshold" and "non- 
threshold" substances. The former appear in the Urine only as they 
exceed a certain value below which they are completely absorbed. 
Sugar and the chlorides are examples. The non-threshold substances, 
on the other hand, are found in the urine in direct proportion to their 
absolute amounts in the plasma, as they are not absorbed. Of these, 
urea and sulfates are the most important. The urine therefore con- 
tains all the urea of the glomerular filtrate and none of the sugar. 

TABLE I. 

Amount of Filtrate and Absorbed Fluid Required to Form 1 Liter of Urine. 
Blood urea 70 rag. per 100 cc.; urine urea 5.5 per cent; urine 1,000 cc. 

Blood .............................................. 

Glomerular filtrate ................................... 

Amount absorbed by tubule ........................... 

Urine°..... ......... , ............................... 

Urea. Water. 

gm. 

0.07 
55.0 
0.0 

55.0 

100 
78,500 
77,5OO 

1,000 

Table I shows the amount of filtrate and absorbed fluid which would 
be required to form 1 liter of urine in an actually observed case of 
high urea excretion. The figures in the table hold only in case the 
entire urea content of the blood is available for filtration. In a recent 
article Cushny 4 claims that as the urea is distributed in about equal 
amount between the plasma and the corpuscles, only that half free in 
the plasma can pass through the glqmerular filter. In this case, to 
obtain the 55 gm. found in the urine, twice as much filtrate would 
be needed as is shown in the table; 157,000 cc. of filtrate would be 
formed, of which 156,000 cc. would be absorbed. 

Such a mechanism, though perhaps indirect, will nevertheless ac- 
count for those alterations which would be required to convert the 

Cushny, A. R., ./'. Physiol., 1919-20, liii, 391. 
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blood plasma to urine without the intervention of a secretory factor. 
The completeness with which the various experimental and clinical 
facts are covered by  this theory is well shown by Cushny? Even  
changes in the mitochondria and the appearance of dyes in the tubule 
cells, which Heidenhain considers morphological evidence of a secre- 
tory process, may be equally well accounted for by the assumption of 
a vital absorption from the lumen of the tubule. This also applies 
to the demonstration of uric acid in the tubule cells, as this substance 
is one of the threshold group, and, according to the modern theory, 
is absorbed from the lumen of the tubule during concentration of 
the urine. 

Urea, however, is a non-threshold substance and, if demonstrated in 
the renal cells, cannot be explained by a process of absorption from the 
lumen. The concentration of urea in the glomerular filtrate must be 
raised to that o f  the urine, and this could be done slowly, or not at 
all, if urea was absorbed along with the water. 

Urea has been demonstrated in the proximal convoluted tubule by  
Leschke 5 and his experiments have been confirmed by the writer. ~ 
The method, which depends on the formation of an insoluble com- 
pound between urea and mercuric nitrate, may be criticized, as the 
resulting reaction is not so distinctive as might be desired. The pro- 
toplasm of all cells reacts more or less, though always less than that 
of cells of the proximal convoluted tubules. Whether this is due to 
the delicacy of the reaction, for Marshall and Davis 7 have shown the 
widespread distribution of urea in all tissues, or to a lack of specifi- 
city, is impossible to say. The quantitative variation in the degree 
of the reaction in the cells of the proximal convoluted tubule depend- 
hag on the concentration of urea in the secreted urine has been taken 
as evidence of its specificity? 

Subsequently a new qualitative reagent for urea has been described by Fosse. s 
This is xanthydrol 

O./CeH4"':CH • OH 
\C~H4/ 

s Leschke, E., Z. klin. Med., 1915, lxxxi, 14. 
s Oliver, J., J. Exp. Med., 1916, xxiii, 301. 
7 Marshall, E. K., Jr., and Davis, D. M., J~ Biol. Chem., 1914, xviii, 53. 
s Fosse, R., Bull. so. pharmacol., 1914, xxi, 74, 502. 
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which forms with urea a characteristic crystalline product 

",,C~.4/ \ C J ~ /  

The crystals are insoluble in acetic acid and differ in this way from the compounds 
which xanthydrol forms with other substances. 

Two attempts have been made to demonstrate urea in the tissues with this 
reagent. Policard ° was unable to find the crystals in any of the injected kidneys, 
though they were present in the lumina of the collecting tubules. He therefore 
concluded that urea does not exist in a free form in the kidney cells, but that it 
is bound in some intimate combination with the protoplasm. Chevallier and 
Chabanier, *° however, describe the typical crystals of the urea compound in the 
ceils of the convoluted tubules, in all the vessels of the kidney, and in the lumina 
of the ducts of Bellini. 

The  importance of these findings with regard to the mechanism of 
urea excretion, as well as the need for the accurate localization of the 
urea in the various parts  of the kidney, is obvious. For  these reasons 
the experiments have been repeated with certain modifications. 

Technique. 

Reagents.--As i t  is impossible to obtain xan thydro l  in the market ,  

i t  was prepared in the following manner.  
100 gin. of salol are heated to boiling in a distil lation flask and the 

first fluid fraction, consisting largely of phenol, of 35 to 40 gm.,  is 
discarded. The  remaining fraction, xanthone,  

o/C~\co 
\ c g ~ /  

comes over and condenses in the form of long needles. These are 
collected and heated with NaOH,  washed free of alkali, and purified b y  
recrystall ization from alcohol, n Th e  xanthone gives a bright  yellow 
color with a light blue fluorescence if t reated with concentrated H2SO4. 

The  next  step consists in the reduct ion of xanthone  to xanthydrol .  

o~/C6H%co + H, ~ o / C ' H ' \ c H  • OH 
\C~H4/ \CsH, / 

9 Policard, A., Compt. rend. Soc. blol., 1915, Ixxviii, 32. 
10 Chevallier, P., and Chabanier, H., Compt. rend. Soc. biol., 1915, hxvifi, 689. 
,1 Vanino, L., Handbuch der pr~iparativen Chemic, Stuttgart, 1914, ii, 512. 
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This is accomplished by boiling in a reflux condenser 10 gm. of xan- 
thone, 40 gin. of NaOH, and 400 cc. of alcohol, adding from time to 
time a pinch of zinc dust so that there is always a small amount 
present. The process is continued for from 6 to 8 hours, and the fluid 
then poured into cold water. The xanthydrol comes down in the form 
of fine crystals which are washed and dissolved in boiling alcohol and 
recrystallized by pouring again into an excess of water, n The xanthy- 
drol gives with concentrated H,SO, a bright yellow color with a light 
green fluorescence. 

The mixture used for the injection of the kidneys was made up 
fresh for each experiment, as follows: 2 gin. of xanthydrol were trit- 
urated with 10 to i5 cc. of methyl alcohol, and 20 cc. of glacial acetic 
acid were added. The turbid fluid was filtered and was then a clear 
light yellow. If added to water, the xanthydrol comes out of solution, 
and the same precipitation occurs to some degree in the tissues. These 
crystals, however, are soluble in alcohol, and their disappearance may 
be easil3r followed as the ~pecimen passes through the alcohols during 
embedding and staining. 

Animals Used.--Rats were used for the experiments as their kidneys 
require less reagent than those of larger animals. In order to get a 
satisfactory concentration of urea in the urine, some animals were 
either fed a mixture of lard and corn meal containing urea, or a dilute 
solution of urea was injected into the peritoneal cavity. Others 
were injected after having lived on a normal diet. The first procedure 
was preferred as more nearly approaching physiological conditions. 
The animal was killed, the thorax quickly opened, and the reagent 
injected by way of the aorta. Tke  injection was continued until the 
kidney was completely fixed. Thin slices were made and placed over 
night in 95 per cent alcohol, the tissue was embedded in. paraffin, and 
sections were stained with hematoxylin. 

EXPER ~ N T A L .  

If a rat whose kidney is excreting urine high in urea concentration 
is injected with the xanthydrol reagent, the organ swells somewhat 
and turns a light opaque yellow. On the cut surface one can see 

,2 Meyer, R., and Saul, E., Ber. chem. Ges., 1893, xxvi, 1276. 
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with a hand  lens that  this discoloration is due to the presence of 
innumerable minute crystals scattered throughout the cortex and 
appearing in the medulla in long thin stripes. 

Microscopic examination of the sections shows the exact location 
of these crystals. They lie in three places: in the blood vessels, in 
the cells of certain tubules, and in the lumina of the tubules (Figs. 1 
to 5). 

The Intravascular Crystals. 

In all parts of .the kidney and in the surrounding tissues (perirenal 
fat), all blood vessels contain typical crystals (Figs. 1, 3, and 5). 
These are in the form of fine, pointed needles, varying in size from 4 
to 50 # in length, lying either singly or arranged in the form of rosettes. 
On account of the arrangement of the vessels, the crystals appear in 
the medulla in long rows between the straight tubules, while in the 
tortuous capillaries of the cortex they are more irregularly scattered. 
They are also seen in the capillaries of the glomerular loop (Fig. 1). 

The number of crystals in the individual cross-sections varies 
greatly; some are empty, others completely filled. This irregular dis- 
tribution is evidently due to the current of the injection fluid which 
carries the crystals with it. 

The Intracellular Crystals. 

Crystals contained in cells are found only in the cortex, where the 
thick epithelium of the proximal convoluted tubule is filled with them 
(Fig. 1). They lie in all parts of the cell, near the membrana propria, 
in the region of the nucleus, or just beneath the brush border (Fig. 2). 
They are smaller than those seen in the blood, and when arranged in 
rosettes are more or less deformed. Their characteristic structure is 
nevertheless evident. 

The number of crystals in the tubule cells gradually decreases so 
that  the terminal spiral portions of the proximal tubule show definitely 
fewer crystals than the cross-sections which lie in the proximity of 
the glomerulus. 

The other divisions of the renal tubule practically never show intra- 
cellular crystals. This contrast is not so evident in the cortex, where 
the great majority of the cross-sections are of the proximal convoluted 
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tubule, but  at the junction of the outer and inner stripes of the outer 
zone of the medulla it is striking. Here the large spiral terminal por- 
tions of the proximal convoluted tubules, situated in the outer stripe, 
end suddenly to form the line of demarcation from the inner stripe, 
which contains the broad ascending limbs of Henle's loop. The former 
contain the crystals in moderate number, while the latter do not show 
them (Fig. 3). 

The Crystals in the Lumen of the Tubule. 

The lumen of the entire renal unit, from the capsular space to the 
large ducts of Bellini, contain the crystals, which resemble in their 
long needle shape those seen in the blood. The increase in number 
and in the size of the rosettes toward the end of the tubule is striking. 

In Bowman's space the crystals are comparatively small and infre- 
quent (Fig. 1). Beginning in the lumen of the proximal convoluted 
tubule, however, there is a definite increase in their number, which 
becomes even greater in the narrow descending limb of Henle's loop 
(Fig. 4). The sections of the small collecting tubules in the cortex 
show an added increase (Figs. 1 and 3), while in the terminal ducts of 
Bellini relatively large rosettes are seen (Fig. 5). 

As in the case of the blood vessels, not every cross-section of a tub- 
ule shows an equal amount  of crystals. In  those regions where the 
urine is comparatively dilute, as in the proximal convoluted tubules, 
many are empty. This may be explained by the fact that  a volume 
of urine produces arelatively much smaller volume of crystalline prod- 
uct, so that  as the urea is condensed in "crystalline form, it leaves the 
surounding areas free. A single rosette of crystals may thus represent 
the urea from a considerable length of tubule. 

Demonstration of Urea Crystals in Other Tissues. 

As a control, the livers of certain of the animals were injected with 
the reagent. Here the hepatic vessels contained the crystals in the 
same amount as those of the kidney; the hepatic cells, however, did 
not show them. 
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DISCUSSION. 

The interpretation of the above findings is greatly aided by our  
accurate knowledge of the distribution of urea in the body. I t  has 
been shown that all the tissues except the fat contain urea in the 
same concentration as that found in the blood, the kidney alone 
exceeding this amount (Marshall and DaviST). 

From this it follows that  the concentration of urea in the cells of 
the proximal convoluted tubules, which show the crystals of urea, 
must be higher than that  of the blood, as in the liver and the other 
tubules of the kidney, where the concentration is equal to that of 
the blood, there is no reaction. 

There is therefore a certain threshold below which the reaction does 
not take place in the protoplasm. The deformity and small size of 
the intracellular crystals is further evidence of this embarrassment to 
the reaction. This threshold lies somewhere above the concentration 
of urea in the blood, and is only reached in the proximal convoluted 
tubule. 

The question now arises as to whether the source of this excess urea 
is the lumen of the tubule (absorption) or the blood (excretion). 

Any theory concerning the mechanism of urea excretion should 
explain the great rise in urea concentration of the urine as contrasted 
with that of the blood. By a process of absorption this can only be 
accomplished if the other constitutents of the urine (water) are ab- 
sorbed and the urea is left behind, and such an assumption is made 
by the modern theory. Urea would not, therefore, be found in a 
higher concentration in the cells of the tubule than in the blood. 

The excretion of urea, on the other hand, will raise the concentra- 
tion in the urine, and the high concentration in the cells would be 
expected. Our demonstration of such a high concentration can there- 
fore only be explained by the assumption of an excretion of urea from 
the blood into the lumen of the tubules. 

That  absorption of water without ~bsorption of urea takes place, 
however, is shown by the increased concentration of urea in the urine 
as the tubule is descended so that large rosettes of crystals are seen 
in the ducts of Bellini but none in the epithelium (Fig. 5). 
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The  mechanism of urea excretion m a y  be summarized as follows: 
Urea passes through the glomerular capsule in the same concentrat ion 
as tha t  found in the plasma. A certain amount  is added to this fil- 
t ra te  by  excretion through the cells of the proximal convoluted tubule, 
and the u l t imate  concentrat ion is reached by  an absorption of water  
in the remainder  of the tubule. 

Such a modification will not  affect the fundaments  of the m o d e m  
theory,  as Cushny states tha t  "it  m a y  be necessary to supplement 
what  I have termed the m o d e m  view with an active secretion in the 
tubules."18 

CONCLUSIONS. 

1. Urea is present  in the cells of the proximal  convoluted tubule in 
a concentrat ion higher than  tha t  of the blood or than  tha t  of the cells 
of any  of the other  k idney tubules. 

2. Such a condition can only be reconciled to an assumption 
of an active secretion (excretion) on the par t  of these cells. 

3. Urea  also passes through the glomerular filter with the other  
crystaUoids of the blood plasma. 

4. The  final concentrat ion of urea is due to the above ment ioned 
secretion by  the proximal convoluted tubule, and to the absorpt ion of 
water  in other  par ts  of the tubule. 

EXPLANATION OF PLATES. 

Drawings made with the aid of a camera lucida. Bausch and Lomb ocular l, 
objective ~. 

PLATE 8. 

FIG. 1. Rat 1. 2 cc. of 5 per cent urea intraperitoneally; killed 1 hour later. 
A glomerulus is shown with several sections of the proximal convoluted tubule 
and one of a collecting tubule. Crystals of urea-xanthydrol are seen in the 
vessels near the glomerulus, in the loops of the capillary tuft, in the space of Bow- 
man's capsule, and in greater number in the cells of the proximal convoluted tu- 
bule. The lumen of the collecting tubule also contains some rosettes of crystals. 

FIG. 2. Rat 1. Higher magnification of one of the proximal convoluted 
tubules. Small rosettes of crystals are seen scattered throughout the epithelial 
cells. There are some crystals in the vessels. Bausch and Lomb ocular 1, objec- 
tive ~ .  

18 Cushny,S p. 52. 
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FIo. 3. Rat  2. Same as Rat  1. The junction of the inner and outer stripes 
of the outer zone of the medulla is shown. Above, the larger terminal ends of the 
proximal convoluted tubules containing crystals in their cells, and in one case a 
rosette of crystals in the lumen. Below, the smaller ascending limbs of Henle's 
loop which contain no crystals. Scattered crystals and rosettes are seen in the 
intertubular capillaries and in the collecting tubule at the left. 

PLATE 9. 

Fxo. 4. Rat  3. Fed a mixture of urea (10 per cent), corn meal, and lard for 
3 days; killed and injected. The tubules represented were situated in the inner 
stripe of the outer zone of the medulla. Four ascending limbs of Henle's loop 
are shown surrounding the loop proper which is formed by the narrow limb of 
the tubule in this case. I ts  lumen contains many crystals. 

The loop shown in this figure is one of the short type described by Peter, 14 in 
which the bend lies close to the end of the proximal convoluted tubule. There 
could have been, therefore, little opportunity for the absorption of water to pro- 
duce the relatively high concentration of urea as indicated by the mass of 
crystals. 

Fio. 5. Rat  4. Rat  on normal diet, no urea given. Margin of the papilla 
of the medulla. Three large ducts of Bellini are shown,'their lumina fi]led with 
huge rosettes of crystals. Scattered rosettes are also seen in the pelvis, and a few 
in the intertubular capillaries. 

1~ Peter, K., Untersuchungen tiber Bau und Entwickelung der Niere, Jena, 
~1909. 
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l~IG. 1. 

FIo.  2. 

FIG, 3. 

(Oliver: Mechmiism of urea excretion.) 
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FIG. 5. 

(Oliver: Mechanism of urea excretion.) 


