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Background: Osteosarcoma (OS) is a kind of solid tumor with high

heterogeneity at tumor microenvironment (TME), genome and

transcriptome level. In view of the regulatory effect of metabolism on TME,

this study was based on four metabolic models to explore the intertumoral

heterogeneity of OS at the RNA sequencing (RNA-seq) level and the

intratumoral heterogeneity of OS at the bulk RNA-seq and single cell RNA-

seq (scRNA-seq) level.

Methods: The GSVA package was used for single-sample gene set enrichment

analysis (ssGSEA) analysis to obtain a glycolysis, pentose phosphate pathway

(PPP), fatty acid oxidation (FAO) and glutaminolysis gene sets score.

ConsensusClusterPlus was employed to cluster OS samples downloaded

from the Target database. The scRNA-seq and bulk RNA-seq data of

immune cells from GSE162454 dataset were analyzed to identify the subsets

and types of immune cells in OS. Malignant cells and non-malignant cells were

distinguished by large-scale chromosomal copy number variation. The

correlations of metabolic molecular subtypes and immune cell types with

four metabolic patterns, hypoxia and angiogenesis were determined by

Pearson correlation analysis.

Results: Two metabolism-related molecular subtypes of OS, cluster 1 and

cluster 2, were identified. Cluster 2 was associated with poor prognosis of

OS, active glycolysis, FAO, glutaminolysis, and bad TME. The identified

28608 immune cells were divided into 15 separate clusters covering 6 types

of immune cells. The enrichment scores of 5 kinds of immune cells in cluster-1

and cluster-2 were significantly different. And five kinds of immune cells were

significantly correlated with four metabolic modes, hypoxia and angiogenesis.

Of the 28,608 immune cells, 7617 were malignant cells. The four metabolic

patterns of malignant cells were significantly positively correlated with hypoxia

and negatively correlated with angiogenesis.
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Conclusion: We used RNA-seq to reveal two molecular subtypes of OS with

prognosis, metabolic pattern and TME, and determined the composition and

metabolic heterogeneity of immune cells in OS tumor by bulk RNA-seq and

single-cell RNA-seq.
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microenvironment

Introduction

Osteosarcoma (OS) is an aggressive osteoid-producing tumor

of mesenchymal origin, characterized by a complex and,

frequently, uncertain etiology (Mercatelli et al., 2018). It is

widely believed that the etiology of OS contains epidemiologic

factors, genetic impairments and environmental factors. Presently,

recognized risk factors related to the progress of osteosarcoma

consist of Paget’s disease, hereditary retinoblastoma, other

chromosomal abnormalities, ionizing radiation, and alkylating

agents (Jafari et al., 2020). Chemotherapy, followed by total

surgical resection and then post-operative adjuvant

chemotherapy as well as radiotherapy, is currently the standard

treatment strategy for OS (Xie et al., 2022). Whereas, traditional

surgical resection combined with chemotherapy has many

limitations, such as drug resistance and systemic side effects of

chemotherapeutic drugs, postoperative recurrence, bone defect

and so on (Wu et al., 2022). The overall survival rate of local

OS is more than 70%, while the survival rate of metastatic,

refractory and recurrent osteosarcoma is low (Yang et al.,

2021). Especially metastatic OS, the proportion of patients with

long-term survivors is 20–30% (Leite et al., 2021). It is reported

that for patients with metastatic diseases, especially those with

chemotherapy-resistant/refractory diseases, DNA and RNA

analysis are generally considered to provide information about

further potential therapeutic targets (Smrke et al., 2021). And

because osteosarcoma is one of the most heterogeneous cancer

entities in human beings. This heterogeneity occurs not only at the

macro and micro levels with heterogeneous microenvironmental

components, but also at the genome, transcriptome and epigenetic

levels (Schiavone et al., 2019). Therefore, from these aspects to

understand the heterogeneity amongst osteosarcomas may be key

to improve patient outcomes.

Recent studies have shown that metabolic abnormalities are a

major marker of cancer. Tumor metabolism shows unique

behavior and plays an important role in tumor growth and

metastasis, making it an attractive potential target for new

therapy (Leite et al., 2021). Similar to genetic heterogeneity,

the metabolic phenotype of cancer is highly heterogeneous.

Abnormal metabolic phenotypes of cancer, such as aerobic

glycolysis, pentose phosphate pathway (PPP), increased

glutamine metabolism and fatty acid oxidation (FAO), are

important factors leading to tumor malignancy, metastasis

and drug resistance, which are significantly affected by cancer

subtypes and specific tumor microenvironment (TME) (Park

et al., 2020). Unraveling the complexity of how genetics,

microenvironment and genes interact to produce metabolic

dependence will be a challenge, but may provide a path to

exploit metabolism in a way that could be transformative for

patients (Luengo et al., 2017).

Sequencing technology provides tools for revealing the complex

interactions of tumor metabolism, microenvironment and genes.

Bulk RNA sequencing (bulk RNA-seq) and single-cell RNA

sequencing (scRNA-seq) are the application of mainstream

sequencing technology at present (Li et al., 2021). Bulk RNA-seq

is the most widely used genomic technique for studying the

transcriptional landscape and altered molecular pathways in

human cancers, which only provides the average gene expression

profiles in different cell clusters and cannot capture the

transcriptional heterogeneity prevalent in cell populations (Wang

et al., 2020). Compared with bulk RNA-seq, scRNA-seq provides

high-throughput and high-resolution transcriptome profiling of

individual cells, generating much noisier and more variable data

(Chen et al., 2019). ScRNA-seq can reveal the state and function of

single cells by isolating single cells, capturing their transcripts, and

generating sequencing libraries at the single-cell level (Ding et al.,

2020). In this study, combined with these two sequencing

techniques and RNA-seq, we aimed to classify OS based on

metabolism-related genes and revealed the TME and metabolic

heterogeneity of OS at the single cell level. This will help to

understand the interaction among gene, TME and metabolism,

and is expected to provide ameaningful theoretical basis for targeted

metabolic therapy in patients with OS.

Materials and methods

Clinical data processing of osteosarcoma
samples obtained from public data sets

The transcriptome and public clinical phenotypic data of

osteosarcoma were downloaded from Target database, and a total

of 79 tumor samples were obtained. The expression information

of 24998 genes from 45 tumor samples, 20818 genes from

36 tumor samples and 13515 genes from 28 tumor samples

were downloaded from Gene Expression Omnibus (GEO, http://

www.ncbi.nlm.nih.gov/geo/) database with GSE21257,

GSE3905 and GSE16091 as entry numbers, respectively.
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Download of metabolism-related
pathways and single-sample gene set
enrichment analysis

To investigate the metabolism-related molecular characteristics

and pathways, a total of 76 genes related to the glycolysis, PPP and

FAO and glutaminolysis processes were downloaded from

Molecular Signatures Database (MSigDB, https://www.gsea-

msigdb.org/gsea/index.jsp). There were 36 genes in glycolysis

gene set, 22 genes related to PPP, 11 genes belong to FAO gene

set, and 7 genes belong to glutaminolysis gene set. The

removeBatchEffect function of limma and sva package was

employed to remove the osteosarcoma data in batches, and the

normalizeBetweenArrays functionwas utilized to correct the data set

after the batch was removed. Single sample GSEA (ssGSEA) analysis

was performed using GSVA software package to obtain the scores of

the samples in four gene sets.

ConsensusClusterPlus was conducted to
identify metabolic subtypes

We used the “ConsensusClusterPlus” program to cluster

osteosarcoma samples based on the sample scores of the four

selected metabolic pathways. In this program, “hc” algorithm was

employed to perform unsupervised clustering with “pearman” as the

metric distance, which was performed 500 times with 80% of the total

samples taken each time. The most suitable number of clusters was

determined by cumulative distribution function (CDF) and consensus

matrices.

Evaluation of immune cell infiltration and
important immune scores

The scores of 22 immune cells in osteosarcoma samples were

estimated based on CIBERSORT algorithm. Important TME

scores between different metabolic subtypes, including stomal

score, immune score, ESTIMATE score, Toll-like receptor score,

natural killer (NK) cytotoxicity score, antigen processing and

presentation score, interferon-gamma (IFN-γ) score, cytolytic

(CYT) activity score. Among them, stomal score, immune score

and ESTIMATE score were calculated by the ESTIMATE

algorithm. Toll-like receptor score, NK cytotoxicity score,

antigen processing and presentation score were calculated

using ssGSEA method based on the relevant genes of toll-like

receptor signaling pathway, NK cell mediated cytotoxicity, and

antigen processing and presentation pathway downloaded from

MSigDB of GSEA.

Analysis of differentially expressed genes
of metabolic subtypes

The differentially expressed genes between metabolic

subtypes were analyzed by limma toolkit, and the genes

FIGURE 1
Osteosarcoma samples before eliminating the batch effect (A), the clusters of different databases were clustered more closer than after
removal (B).
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satisfying the requirements of | log2 (Fold Change) | > log2

(1.2) and p < 0.05 were defined as differentially expressed

genes (DEGs) among metabolic subtypes. The intersections of

DEGs between all data sets were taken, and the protein-

protein interaction (PPI) network was analyzed by STRING

(https://cn.string-db.org/), and the internal relationship

between DEGs was visualized using Cytoscape. The

Analyze Network of Cytoscape was used to calculate the

degree in PPI network, and degree was used as the

identification index of key nodes.

FIGURE 2
Identification of different metabolic molecular subtypes in osteosarcoma. (A): The CDF curves of k at 2–10:00, respectively. (B): Delta area
curve of consensus clustering. (C): consensus matrices for k = 2. (D): The Kaplan Meier (KM) curve of cluster 1 and cluster 2 in the Target dataset. (E):
Survival analysis of two metabolic subtypes in merged GSE. (F): Comparisons of clinicopathological features between cluster1 and cluster 2.
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Clustering dimension reduction of scRNA-
seq data

In this study, the sequencing data of 50,174 cells from 6 tumor

tissues from GSE162454 data sets were obtained, and the cell

cluster analysis was carried out by Seurat package. The

PercentageFeatureSet function in the Seurat package was

applied to calculate the percentage of mitochondria and rRNA.

Single cells with more than 35% mitochondria and less than

1000 UMI were removed. We normalized the data using log-

normalization and identified top 2000 highly variable genes using

FindVariableFeatures function. The principal component analysis

(PCA) and t-distributed stochastic neighbor embedding (t-SNE)

methods were used to reduce dimension and identify clustering.

Estimation of cell proportion

The cell proportions were estimated using MuSiC((Wang

et al., 2019)), which used a deconvolution method based on

marker genes of cell types and gene expression matrices of both

scRNA-seq and bulk RNA-seq to estimate the cell proportions of

bulk RNA-seq data. The count-based expression data of both

scRNA-seq and bulk RNA-seq was applied to this analysis.

Functional enrichment analysis

The FindAllMarkers function identified significant marker

genes using the threshold of log2 [Foldchange (FC)] = 0.5 and p <
0.05 adjusted by Minpct = 0.35 and Benjamini-Hochbergch

procedure. And the significant marker genes were loaded onto

the clusterProfiler for Encyclopedia of genes and Genomes

pathway enrichment analysis.

Statistical analysis

All the statistical analyses of this study were performed in R

(version 4.1.0). Wilcoxon rank sum test was exploited to test the

relationship of continuous variables between the two groups.

p-value < 0.05 was defined as statistically significant.

Results

Identification of different metabolic
molecular subtypes in osteosarcoma

Because of clustering and batch effect removal are

interrelated, the ideal batch effect removal method should be

performed together with clustering (Li et al., 2020). Therefore, we

first eliminated the batch effect in the three osteosarcoma data

sets. It could be observed from PCA that the clusters of different

databases were clustered more closer than after removal before

the batch effect was removed (Figure 1). Then consensus

clustering analysis was performed according to the scores of

the four metabolic pathways. The obtained CDF and delta area

curve of consensus clustering showed that the CDF value was the

most stable and achieved adequate selection when k = 2 (Figures

2A–C). And PCA based on four metabolic pathways supported

metabolic heterogeneity among tumors and the reliability of

classifying OS into two metabolic subtypes (Supplementary

Figure S1). Whether in the Target dataset or the merged GSE

dataset, the prognosis of cluster 1 was significantly better than

that of cluster 2 (Figures 2D,E). In addition, several

clinicopathological features between cluster1 and cluster2 were

compared. Different sex ratio, age distribution, survival status

and metastasis ratio were observed in the two subtypes, but the

differences were only observed in survival status, and the

mortality rate in cluster 2 was significantly higher than that in

cluster 1 (Figure 2F).

Potential metabolic patterns of two
subtypes

To explore the metabolic patterns of the two subtypes in the

Target dataset and the merged GSE dataset, the expression of

genes in four selected metabolic pathways in the two subtypes

was analyzed. Among the FAO and PPP related genes, ACAA1,

ACAD8, ACADM, HADH and PGLS, TALDO1 and TKT had

significant differences between the two subtypes. In all selected

glycolytic pathway-and glutaminolysis-associated genes,

ALDOC, GLS, HK3, LDHA and PKLR showed significant

differences in expression between cluster 1 and cluster 2

(Figure 3A). The expression trends of ACAA1, H6PD, PGD,

TKTL1, ALDOC, ENO1, ENO2, GLS, GLS2, HK2, PFKFB3,

PFKFB, PFKL, PFKM, PFKP, PGK1, SLC2A1 and

SLC2A3 and SLC2A5 between the two subtypes in the merged

GSE dataset were significantly different, most of which were up-

regulated in cluster 2 (Figure 3B). The heat map showed that

cluster 2 scored significantly higher in glycolysis, FAO and

glutaminolysis pathways than cluster 1 (Figures 3C,D).

TME characteristics of two metabolic
subtypes

The TME features of the two metabolic subtypes of

osteosarcoma were described by immune cell infiltration,

stromal score, immune score, ESTIMATE score, Toll-like

receptor score, NK cytotoxicity score, antigen processing and

presentation score, IFN- γ score and CYT score. There were

significant differences in the infiltration ratio of CD8 T cells,

naive CD4 T cells, activated memory CD4 T cells, helper
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follicular T cells, M0 macrophages and M1 macrophages and

M2 macrophages between the two subtypes (Figure 4A). And all

the important TME scores evaluated, including stromal score,

immune score, ESTIMATE score, toll-like receptor score, NK

cytotoxicity score, antigen processing and presentation score,

IFN-γ score and CYT score, showed significantly higher levels in

cluster 1 than in cluster 2 (Figures 4B–G). Therefore, the TME of

cluster1 may show high immune activity.

PPI of DEGs between metabolic subtypes

To distinguish the expression characteristics of the two

metabolic subtypes, the differential expression of the two

subtypes in Target and merged GSE datasets was analyzed by

limma. The results showed that there were 960 up-regulated

genes and 1826 down-regulated genes in cluster 2 compared with

cluster1 in Target data set (Figure 5A). In the combined GSE

dataset, the expression of 301 genes in cluster 2 was significantly

higher than that in cluster 1, and the expression of 675 genes in

cluster 2 was significantly lower than that in cluster 1 (Figure 5B).

The intersection of DEGs in two datasets were taken,

192 common DEGs were obtained (Figure 5C). Based on the

score given by STRING, it was considered that there were

interactions between genes with score >0.4. Among the

192 DEGs, a total of 140 genes met this condition, and the

PPI network between them was shown in Figure 5D. According

to degree, we listed 28 genes with the highest status

(Supplementary Table S1). The enrichment analysis of GO

and KEGG pathway showed that these 140 DEGs were

enriched in a wide range of biological processes, involving

autophagy and viral carcinogenicity (Supplementary Figure S2).

Construction and validation of a risk
model based on the key DEGs between
metabolic subtypes

In Figrue 4C, we obtained 192 DEGs between the two

metabolic subtypes, of which 19 were up-regulated and

106 were down-regulated in both datasets. We screened the

genes with the greatest impact on the prognosis of OS from

these genes with consistent expression in the two datasets to

construct a prognostic risk model. First, univariate Cox

regression analysis was performed in the Target dataset using

“survival” package, and 14 genes were eligible for p <0.05
(Supplementary Figure S3A). Then, “glmnet” package

performed Least absolute shrinkage and selection operator

(Lasso) penalty regression analysis for 14 genes. Lambda =

0.0380 was used to select the best variable and obtain 11 genes

(Supplementary Figure S3B). The stepAIC method in “MASS”

package finally selected 8 genes from the 11 genes, including STC2,

FIGURE 3
Potential metabolic patterns of two subtypes. (A): The expression levels of genes in the four selected metabolic pathways between the two
subtypes of the Target dataset. (B): The differential expression analysis of four metabolism-related genes between cluster1 and cluster2 in the
combined GSE dataset. (C): The heat map shows the scores of different clusters of the Target dataset in the four metabolic pathways. (D): Heat map
of score trends of the two subtypes in four metabolic pathways in the combined GSE dataset. For this figure, the asterisks idicated the statistical
p value, *p < 0.05, **p < 0.01, ***p < 0.001, ****p <0.0001.
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MEF2C, PPFIA4, ITGA10, LILRA6, RNF130, RAB3GAP1,

TMEM33. And multivariate Cox regression analysis gave the

Cox cofficients of these 8 genes (Supplementary Figure S3C).

The value of the product of the expression of each of the eight

genes and Cox Cofficient was added to evaluate the risk score ofOS

samples. Time-dependent receiver operating characteristic curve

(ROC) and K-M curve were used to evaluate the prediction

accuracy of the risk score model in the Target dataset and the

dataset integrating three GSE cohorts. In the former data set, the

area under the ROC curve (AUC) value was 0.82, 0.89 and 0.85 at

1 year, 3 years and 5 years, respectively. In addition, a higher risk

score indicated a worse prognosis (Supplementary Figure S3D). In

the latter dataset, the values of AUC in 1–5 years were 0.65, 0.6, 0.6,

0.7, 0.7, 0.69 respectively. Survival trends in the sample were

consistent with those in the Target dataset, with higher risk

scores also showing shorter survival times and lower survival

rates (Supplementary Figure S3E).

ScRNA-seq revealed cellular diversity and
heterogeneity of osteosarcoma

Transcripts of 44,516 cells were obtained by quality

control of 50,174 cells from six tumor tissues in the

FIGURE 4
Immune cell infiltration and TME-related scores of two metabolic subtypes. (A): CIBERSORT determined the relative infiltration levels of
22 immune cells between the two metabolic subtypes in Target. (B): ESTIMATE analyzed stromal score and immune score and ESTIMATE score of
twometabolic subtypes. (C): Toll-like receptor score comparison betweenCluster 1 and cluster 2. (D): NK cytotoxicity score differences between the
twometabolic subtypes in Target. (E): The score of antigen processing and presentation in cluster 1 and cluster 2. (F, G): The difference of IFN- γ
score and CYT score between the two metabolic subtypes. For this figure, the asterisks idicated the statistical p value, *p < 0.05, **p < 0.01,
***p < 0.001, ****p <0.0001.

Frontiers in Genetics frontiersin.org07

Huang et al. 10.3389/fgene.2022.976990

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.976990


GSE162454 dataset (Supplementary Figure S4B–4C).

Correlation analysis showed that there was a significant

positive correlation between sequencing depth and the

number of mRNA, but no significant correlation with

mitochondrial gene sequences (Supplementary Figure S4A).

Preliminary PCA dimensionality reduction identified

35 clusters of 44,516 cells. A further 28608 immune cells

were recognized from 44516 cells using the marker PTPRC

(CD45) (Supplementary Figure S4D). PCA was performed on

28,608 immune cells identified by highly variable genes

(Supplementary Figure S4E). After t-SNE analysis,

28608 immune cells from 6 osteosarcoma samples were

classified into 16 clusters. It is worth noting that cluster

6 does not belong to immune cells (Figures 6A,B). Based

on the annotation of 15 clusters of characteristic genes of

immune cells, 6 types of immune cells were obtained: B cell

(cluster 10, 15), CD 8 T cells (cluster 1, 8, 9, 12), macrophage

(cluster 0, 2, 4, 5, 7), mast cell (cluster 3), mesenchymal

FIGURE 5
PPI of DEGs between metabolic subtypes. (A): The volcano map of differentially expressed genes in cluster-1 and cluster-2 in Target data, red
dots are up-regulated DEGs and blue dots are down-regulated DEGs. (B): Differential expression analysis of two metabolic subtypes in merged GSE
data sets. (C): The Venn diagram shows the intersection of the Targets dataset and three GSE queues. (D): The PPI network of 140 genes, the red
ellipse represents the up-regulated DEGs and purple ellipse and the down-regulated DEGs.
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stromal cell (cluster 13), plasmacytoid dendritic cells (pDC,

cluster 11, 14) (Figure 6C, Supplementary Figure S5). Then the

marker genes of each type of immune cells were identified by

FindMarkers (Figure 6D). It also showed the distribution of

six types of immune cells in each sample, and the proportion

of six kinds of immune cells in different samples was different,

indicating that there was heterogeneity in the distribution of

immune cells among patients (Figure 6E). KEGG enrichment

analysis based on the marker genes of each type of immune

cells showed that immune-related pathways, such as

rheumatoid arthritis, allograft rejection and intestinal

immune network for IgA production, were significantly up-

FIGURE 6
ScRNA-seq reveals cellular diversity and heterogeneity of osteosarcoma (A–C): t-SNE plot of all the single cells, with each color coded for
sample source (A), cluster (B), and immune cell type (C). (D): The bubble diagram showed the average expression of top5 marker genes in 6 kinds of
immune cells. (E): The distribution of 6 types of immune cells in each sample. (F): KEGG enrichment analysis bubblemap for themarker genes of each
type of immune cells.
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regulated in macrophage and pDC. The enriched signal

pathways and their trends in mast cell and mesenchymal

stromal cell were the same. In addition, coronavirus

disease-COVID-19 and ribosome were significantly

activated in CD 8 T cell and B cell. Therefore, six types of

immune cells regulated a wide range of biological functions.

Composition and metabolism of
malignant cells

To further verify the malignant traits of the two metabolic

subtypes obtained by bulk RNA-seq analysis, copycat (Dietz et al.,

2021) was used to calculate the large-scale chromosomal copy

FIGURE 7
Composition and metabolism of malignant cells. (A): The heat map shows the proportion of malignant and non-malignant cells between
clusters 1 and cluster 2. (B): The correlation between hypoxia score/angiogenesis score and four metabolic scores for malignant cells. (C): The
difference between the enrichment scores of six kinds of immune cells in cluster 2 and in cluster 1. (D): Pearson correlation analysis showed the
relation between 5 kinds of immune cells/15 subgroups in cluster 1 and cluster 2 and 4 metabolic patterns, hypoxia and angiogenesis,
respectively. For this figure, the asterisks idicated the statistical p value, *p < 0.05, **p < 0.01, ***p < 0.001, ****p <0.0001.
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number variation (CNV) in each fine cell type based on the scRNA-

seq data of six kinds of immune cells, so as to distinguish malignant

cells from non-malignant cells in each sample. There was an obvious

difference in the proportion of malignant cells and non-malignant

cells between cluster 1 and cluster 2. The proportion of non-

malignant cells in cluster 1 was much higher than that in

malignant cells, while the proportion of non-malignant cells in

Cluster 2 was the opposite (Figure 7A). Next, the composition of

7617 malignant cells were analyzed. Of the 7617 malignant cells,

CD8 T cell accounted for the majority (Supplementary Table S2).

The genes in hallmark hypoxia pathway were selected and ssGSEA

was used to calculate the hypoxia score ofmalignant cells. According

to the same method, the angiogenesis score of malignant cells was

obtained according to the expression of 24 angiogenic genes

(Masiero et al., 2013). Pearson correlation analysis showed that

there was a significant positive correlation between hypoxia score

and the expression of HIF-1α, the main molecular mediator of

hypoxia adaptation in tumor cells, with correlation coefficient R =

0.313 (Supplementary Figure S6). And hypoxia score was also

significantly positively correlated with the four metabolic scores,

while angiogenesis score was significantly negatively correlated with

the four metabolic scores. (Figure 7B). The enrichment scores of all

six immune cells in cluster 2 were higher than those in cluster 1, and

except for mesenchymal stromal cell, the enrichment scores of the

other five immune cells showed significant differences between the

two subtypes (Figure 7C). Finally, comprehensive Pearson

correlation analysis showed the relation between 5 kinds of

immune cells/15 subgroups in cluster 1 and cluster 2 and

4 metabolic patterns, hypoxia and angiogenesis, respectively

(Figure 7D).

Discussion

Cancer metabolism, as with all processes in life, is

comprised of both genetic and environmental components

(Bose et al., 2020). Cancer metabolism has gained substantial

research interest over recent years (Weber, 2016). We are just

beginning to understand the heterogeneity of metabolic

phenotypes. It is likely that metabolic phenotypes may differ

due to several factors: primary or metastatic tumor, tumor

location, tumor microenvironment and mutation (Kubicka

et al., 2021). Multiple metabolic subtypes related to the

prognosis of different cancers have been reported (Liu et al.,

2021a; Liu et al., 2021b; Gao et al., 2021; Lin et al., 2021).

Different from these studies, we not only used metabolism-

related genes to define OS subtypes to characterize inter-tumor

heterogeneity, but also revealed intra-tumor heterogeneity

through bulkRNA-seq and scRNA-seq data analysis, and

explored the relationship between metabolism and tumor

malignancy and TME.

Based on genes associated with four abnormal metabolic

phenotypes of cancer, we revealed two metabolic subtypes that

showed different prognosis. The enrichment scores of glycolysis,

FAO and glutaminolysis pathways in cluster 2 with worse

prognosis were significantly higher than those in cluster 1,

indicating that these metabolisms in cluster 2 were more

active. OSs, grow in the bone microenvironment, a very

specialized, complex, and highly dynamic environment

composed of bone cells (osteoclasts, osteoblasts, osteocytes),

stromal cells (MSCs, fibroblasts), vascular cells (endothelial

cells and pericytes), immune cells (macrophages,

lymphocytes), and a mineralized extracellular matrix (ECM)

(Corre et al., 2020). The core characteristics of establishing

metabolic phenotypes include unfavorable TME (Kubicka

et al., 2021). In this paper, the TME of the identified

metabolic subtypes was detected, and it was found that the

TME of the two metabolic subtypes had significantly different

characteristics. Cluster 2 showed low levels of TME, stromal

score, immune score, ETIMATE score, toll-like receptor, NK

cytotoxicity, antigen processing and presentation and IFN- γ and
CYT scores. These results indirectly support the reliability of the

identified metabolic subtypes and their association with TME.

We constructed a 8-gene siganture based on the DEGs

between the two metabolic subtypes with consistent

expression trend in two datasets, and the effects of some of

these genes on tumor development have been explored and

reported. One study has found that STC2 promotes the

development and progression of OS by enhancing glycolysis

(Yu et al., 2021). The regulatory effect of MEF2C on a variety

of malignancies has been widely studied, including its role in the

regulation of iron death in meningioma (Bao et al., 2021) and its

involvement in brain metastases of human breast cancer (Galego

et al., 2021). High expression of PPFIA4 is associated with poor

prognosis in colon cancer patients and promotes cancer cell

metastasis by enhancing tumor glycolysis (Huang et al., 2021).

TMEM33 expression is increased in cervical cancer and can be

used as an independent prognostic marker (Chen et al., 2022).

The effect of the combination of these genes and the remaining

four genes on osteosarcoma is unknown. In this study, the

survival and ROC curves of 8-gene siganture in the two

datasets showed that the 8-gene siganture had moderate

predictive performance for the prognosis of OS.

Immune cells are the key components of TME. There is intra-

tumor heterogeneity among immune cells in OS(26). We also

analyzed the immune cells of OS at the single cell level and

identified 15 single immune clusters, which were annotated to

B cell, CD 8 T cells, macrophage, mast cell, mesenchymal stromal

cell, plasmacytoid dendritic cells. In OS, the distribution of six

kinds of immune cells was heterogeneous and regulated a wide

range of biological pathways.

Tumors are composed of complex environments of malignant

and non-malignant cell types with different metabolic preferences

(Lasche et al., 2020). Here, we distinguish between malignant and

non-malignant cells in all immune cells by calculating the large-scale

CNV in each cell type. CD8T cell accounted for a high proportion of
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malignant cells. TME, determined by abnormal metabolism of

cancer cells, is characterized by the hypoxia and induction of

angiogenesis (Roma-Rodrigues et al., 2019). In this study, the

scores of glycolysis, PPP, FAO and glutaminolysis of malignant

cells were positively correlated with hypoxia scores and negatively

correlated with angiogenesis score. The results also confirmed the

relationship between the metabolism of malignant cells and TME.

Overall, we defined two molecular subtypes of OS with unique

metabolic patterns and TME based on metabolism-related genes,

and constructed a 8-gene siganture based on the DEGs between the

two metabolic subtypes with consistent expression trend in two

datasets, as well as revealed 16 separate clusters and 6 immune cell

types based on bulkRNA-seq and scRNA-seq. We focus on the

malignant cells of the immune cell group, which were characterized

by hypoxia and exuberant angiogenesis and were closely related to

metabolism. Our work provides important insights into the

malignant and immune cell maps and their effects on metabolic

patterns in OS.
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