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The mouse double minute 2 (MDM2) gene encodes a negative regulator for p53, and the polymorphism SNP285 in the promoter
region ofMDM2 gene has been implicated in cancer risk, but individual published studies had inconclusive results. Therefore, we
performed this meta-analysis to obtain a more precise estimation between MDM2 SNP285 polymorphism and risk of cancer. A
systematic literature search was performed using the PubMed, Embase, and Chinese Biomedical (CBM) databases. Ultimately, 16
published studies comprising 14,573 cases and 9,115 controls were included. Pooled odds ratios (ORs) and 95% confidence intervals
(CIs) were calculated to assess the strength of associations. Overall,MDM2 SNP285 polymorphismwas significantly associatedwith
a decreased overall cancer risk with the heterozygous model (OR = 0.89, 95% CI = 0.79–0.99), and reduced ORs were observed
with other genetic models (dominant: OR = 0.90, 95% CI = 0.79–1.01 and allele comparison: OR = 0.91, 95% CI = 0.80–1.03) but
not reaching statistical significance. Stratification analysis indicated a decreased risk for ovarian cancer, Caucasians, and studies
with relatively large sample size. Despite some limitations, this meta-analysis indicated that theMDM2 SNP285 polymorphismwas
associated with a decreased cancer risk, which warrants further validation in large and well-designed studies.

1. Introduction

Cancer is a major public health problem and about 14.1 mil-
lion new cancer cases and 8.2 million deaths occurred in 2012
worldwide according to the GLOBOCAN estimates [1]. The
development and progression of cancer is a multistage proc-
ess and alterations of oncogenes, tumor suppressor genes, and
stability genes are responsible for tumorigenesis [2]. Tumor
suppressor gene p53 is one of the most frequently mutated
genes and numerous studies have reported that the p53muta-
tions play an important role in human cancers [3–6].

The mouse double minute 2 (MDM2) gene encodes a
protein which could negatively regulate the activity of p53
tumor suppressor protein by binding to the latter and leading

to its ubiquitination [7, 8]. Elevated MDM2 levels have been
detected in several human cancers even though with wild-
type p53 due to the abnormal expression ofMDM2 gene and/
or protein [9, 10], which suggested as an alternative way for
p53 inactivation in tumorigenesis [11]. Therefore, polymor-
phisms and mutations affecting MDM2 expression may con-
tribute to the susceptibility to various cancers.

Two functional SNPs have been discovered which are
located in the MDM2 intronic promoter (P2): SNP309
(rs2279744 T>G) [12] and SNP285 (rs117039649 G>C) [13]
located 24 base pairs upstream of SNP309. Compared with
the SNP309T allele, the G-variant of SNP309 increases
MDM2 transcription through enhancing the binding of the
transcription factor Sp1 [12]. In contrast, the presence of
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SNP285C allele would reduce the binding strength between
Sp1 and the MDM2 promoter in comparison with the
SNP285G allele [13]. Although the presence of the SNP285C
variants seems to antagonize the effect of SNP309G [13],
there are some contradictory studies aboutMDM2 SNP285 in
different types of cancers [13–22]. One of the possible reasons
may be the relatively small sample size in individual published
studies. Hence, we performed a meta-analysis to provide a
more precise estimation of the relationship between MDM2
SNP285 polymorphism and cancer risk.

2. Materials and Methods

2.1. Search Strategy. We systematically searched all relevant
articles from PubMed, Embase, and Chinese Biomedical
(CBM) databases using the search terms: “MDM2 or mouse
double minute 2”, “variant or polymorphism or variation”,
and “cancer or carcinoma or tumor or neoplasm” (last search
was updated onMay 19, 2016). We also checked all references
of relevant reviews and eligible articles for additional studies.
Only the latest or the largest study would be included in the
current meta-analysis if studies were carried out with the
same or overlapped subjects.

2.2. Inclusion and Exclusion Criteria. Studies included in the
meta-analysis had to meet the following criteria: (a) evaluat-
ing the association between MDM2 SNP285 polymorphism
and cancer risk; (b) case-control design; (c) written in English
or Chinese; (d) providing sufficient data to calculate odds
ratios (ORs) with corresponding 95% confidence intervals
(CIs).

The following exclusion criteria were used: (a) case-only
studies or case reports; (b) conference abstracts, reviews, or
meta-analysis; (c) duplicate publications; and (d) no available
data reported.

2.3. Data Extraction. Two authors (Ping Wang and Meilin
Wang) independently extracted data from all the publications
according to the inclusion and exclusion criteria. Disagree-
ments were resolved through discussion until a consensus
was reached. The following information was extracted from
each study: first author’s surname, year of publication, coun-
try of origin, ethnicity, cancer type, control source, total num-
ber of cases and controls, genotype methods, and numbers of
cases and controls with the GG, GC, and CC genotypes. Eth-
nic backgrounds were categorized as Caucasians, Africans, or
Mixed which contained more than one ethnic group.

2.4. Statistical Analysis. Crude ORs and their corresponding
95% CIs were used to evaluate the strength of associations
between MDM2 polymorphism and cancer risk. The pooled
ORswere estimated forMDM2 SNP285 polymorphismunder
the dominant model (CC+GC versus GG), heterozygous
model (GC versus GG), and allele comparison (C versus G).
Chi-square-based𝑄 test was used to assess the heterogeneity
between studies, and 𝑃 < 0.10 was considered as significant
heterogeneity exists. The fixed-effects model (the Mantel-
Haenszel method) [23] was used when there was no sig-
nificant heterogeneity; otherwise, the random-effects model

(the DerSimonian and Laird method) [24] would be applied.
Potential publication bias was assessed by the funnel plot as
described previously [25]. The asymmetry of the funnel plot
was evaluated using Egger’s linear regression test [26]. Sub-
group analysis was performed by cancer type (if one cancer
type contained only one study, it would be merged into the
“other” group), ethnicity, and sample size (<500 and ≥500).
Sensitivity analysis was used to evaluate the effect of individ-
ual investigations on the overall cancer risk by excluding each
investigation individually and recalculating the ORs and the
95% CIs [27]. All the statistical tests were performed with
Stata (version 12.0; Stata Corporation, College Station, TX).
All 𝑃 values were two-sided, and a 𝑃 < 0.05 was considered
as statistically significant.

3. Results

3.1. Study Characteristics. As shown in Figure 1, a total of
1,282 published records were retrieved by using the search
terms described above, consisting of 542 related studies from
PubMed, 690 from Embase (494 overlapped studies were
deducted), and 50 studies fromCBMdatabase. After rigorous
assessment of abstracts and contents, only 14 publicationsmet
the crude inclusion criteria and were subjected for further
evaluation. Of these 14 publications, four were excluded for
being without detailed data for further evaluation [28–31],
and a total of 10 publications met the inclusion criteria [13–
22]. Of the 10 publications, one publication [18] with two
ethnic groups was separated as two independent studies, two
publications [13, 16] with two cancer types were separated as
two independent studies, and one publication [21] with four
cancer types was also separated as four independent studies.
A total of 10 publications including 16 studies were included
in the final meta-analysis (Table 1).

For those studies [13, 15, 16, 21] that used the same control
group, the control numbers were only calculated once in the
total number of controls, and overlapped controls and cases
were subtracted from the total number. Overall, 16 published
studies of 14,573 cases and 9,115 controls were included in the
final meta-analysis. Of the 16 studies, sample sizes of case
ranged from 119 to 2501, in which four studies focused on
breast cancer, three on lung cancer, two on ovarian cancer,
prostate cancer, and cervical cancer, and others (colon cancer,
hepatocellular carcinoma, and endometrial cancer) with only
one study.Therewere 13 studies onCaucasians, two studies on
mixed ethnicity, and only one study on Africans. Of all the
studies, 14 were population-based, while two were hospital-
based, 7 studies with sample size less than 500 and 9 studies
with sample size greater than 500. Most of the cases were
histologically confirmed and controls were mainly matched
for sex, age, and ethnicity.

3.2. Meta-Analysis Results. The overall results for theMDM2
SNP285 polymorphism and cancer risk are shown in Table 2
andFigure 2.We found that therewas a significant association
between SNP285 polymorphism and overall cancer risk with
the heterozygousmodel (OR= 0.89, 95%CI = 0.79–0.99), and
reducedORs were observed with other geneticmodels (dom-
inant: OR = 0.90, 95% CI = 0.79–1.01 and allele comparison:
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Potentially relevant publications identified from
PubMed, Embase, and CBM

Publications excluded for duplication

Publications chosen for further assessment

Publications excluded after title or abstract

Publications chosen for full text evaluation

4 publications without detailed data were excluded

10 publications including 16 studies were included 
in the meta-analysis

(n = 494)

(n = 788)

(n = 774)

(n = 14)

(n = 1,282)

 review

Figure 1: Flowchart of included studies for the association betweenMDM2 SNP285 polymorphism and cancer susceptibility.

OR = 0.91, 95% CI = 0.80–1.03) but not reaching statis-
tical significance. In subgroup analysis by cancer type, a
significantly decreased risk was found for ovarian cancer
(heterozygous: OR = 0.77, 95% CI = 0.63–0.94; dominant:
OR = 0.76, 95% CI = 0.63–0.93; and allele comparison: OR =
0.77, 95%CI= 0.63–0.93), and amuch lowerORwas observed
for breast cancer than that for lung and prostate cancer under
all three genetic models. Stratification analysis by ethnicity
revealed a statistically significantly decreased cancer risk for
Caucasians with the heterozygous (OR = 0.88, 95% CI =
0.79–0.98) and dominant model (OR = 0.89, 95% CI = 0.79–
1.00), and reduced OR was found but not reaching statistical
significance with the allele comparison (OR = 0.90, 95% CI =
0.79–1.03). In subgroup analysis by sample size, a significantly
decreased risk was found for studies with relatively large
sample size under the heterozygous model (OR = 0.92, 95%
CI = 0.84–1.00), and reduced ORs were observed but not
reaching statistical significance under other genetic models
(dominant: OR = 0.93, 95% CI = 0.85–1.02 and allele compar-
ison: OR = 0.94, 95% CI = 0.85–1.04).

3.3. Heterogeneity and Sensitivity Analysis. Substantial het-
erogeneities were observed for theMDM2 SNP285 polymor-
phism and risk of cancer under the dominant model (𝑃 =
0.043) and allele comparison (𝑃 = 0.014), but not under
the heterozygous model (𝑃 = 0.120). Hence, we used the
random-effects model to generate wider CIs. Finally, leave-
one-out sensitivity analysis indicated that no single study
could alter the pooled ORs obviously (data not shown).

3.4. Publication Bias. The shape of the funnel plot seemed
symmetry for the SNP285 polymorphism (Figure 3) and no
significant publication bias was detected by Egger’s test for
SNP285 polymorphism (dominantmodel: 𝑃 = 0.939; hetero-
zygous model: 𝑃 = 0.997; and allele comparison: 𝑃 = 0.886).

These suggested that publication bias might not have severe
influence on the results of the current meta-analysis on
the association between MDM2 SNP285 polymorphism and
cancer risk.

4. Discussion

The association betweenMDM2 SNP285 polymorphism and
cancer risk has been investigated by several research groups,
but the conclusions were inconsistent. The most possible
reason for the differences between studies is the small sample
size in individual studies, which limits the statistical power
to detect the real effects of polymorphism.We performed the
current meta-analysis to combine the results of all available
studies through a systematic search of relevant literatures,
which may be useful for evaluating the contribution of
SNP285 polymorphism to cancer. In this meta-analysis,
which included 16 published studies of 14,573 cases and 9,115
controls, we found that MDM2 SNP285 polymorphism was
significantly associated with a decreased overall cancer risk in
the heterozygous model. Furthermore, the subgroup analysis
showed that the association was more evident in the studies
of ovarian cancer, Caucasians subjects, and relatively large
sample size.

MDM2 encodes a protein that binds to and facilitates
the degradation of the p53 tumor suppressor protein via the
ubiquitination pathway [32, 33]. The cellular level of MDM2
controls both the p53 and pRb pathways and keeps the bal-
ance between growth arrest, cell death, senescence, and apop-
tosis; disturbances of these processes contribute to malignant
transformation of cell [34]. MDM2 protein levels and func-
tion are precisely controlled at the transcription, translational,
and posttranslation levels. Therefore, SNPs occurring in the
MDM2 gene could potentially dysregulated both transcrip-
tion and translation.
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Study ID

Breast
Paulin et al. (2008)
Knappskog et al. (2011)

Knappskog et al. (2011)

Knappskog et al. (2012)

Knappskog et al. (2012)

Piotrowski et al. (2012)
Gansmo et al. (2015)

Gansmo et al. (2015)

Gansmo et al. (2015)

Gansmo et al. (2015)

Subtotal ( = 65.7%, P = 0.033)

48.2%, P = 0.122)

Overall ( 42.2%, P = 0.043)

0.0%, P = 0.726)
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Figure 2: Forest plot of overall cancer risk associated withMDM2 SNP285 polymorphism by dominant model. For each study, the estimated
OR and its 95% CI are plotted with a box and a horizontal line. ⬦, pooled OR and its 95% CIs.
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Figure 3: Funnel plot analysis to detect publication bias for SNP285
polymorphismby dominantmodel. Each point represents a separate
study for the indicated association.

The MDM2 SNP285G>C is a newly discovered poly-
morphism, and this is the first report on the association of
this polymorphism and cancer risk. It has been suggested
that the MDM2 SNP285C allele might reduce the risk of
female cancers (such as breast, ovarian, and endometrial
cancer), due to the estrogen receptor (ESR) reported to be as a
transcriptional activator with Sp1 [35] and one of the estrogen
receptor binding elements (EREs) in theMDM2 P2 promoter
overlapped with the Sp1 binding site harboring SNP285
[16]. In the present meta-analysis, a significantly decreased
risk was found between MDM2 SNP285 polymorphism and
ovarian cancer, and a much lower OR was found for breast
cancer than that for male cancers (lung and prostate cancer),
which was consistent with previous studies.

There are some limitations in our meta-analysis that
remain to be addressed. Firstly, there is a limited number of
studies that have actually analysedMDM2 SNP285 polymor-
phismwith cancer susceptibility and the total sample size was
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relatively small, which may lead to relatively weak power to
detect the real association. Secondly, only published studies
were included in this meta-analysis. It may be possible that
some related unpublished studies as well as literatures pub-
lished in languages other than English and Chinese were not
included, which might lead to a bias to some extent. Thirdly,
in the subgroup analysis, only one study was carried out in
Africans.This subgroup did not have enough statistical power
for us to investigate the real relationship. Fourthly, genotyp-
ing methods were different in each study, which will affect
the bias. Additionally, our results were based on unadjusted
estimates of ORs without adjustment for individual’s age, sex,
smoking status, drinking status, environmental factors, and
other lifestyles.

In summary, this meta-analysis suggests that MDM2
SNP285 polymorphism was significantly associated with a
decreased overall cancer risk with the heterozygous model.
However, large and well-designed studies are warranted to
validate our finding. Moreover, further studies estimating the
effect of gene-gene and gene-environment interactions may
provide a better, comprehensive understanding of the associ-
ation between MDM2 SNP285 polymorphism and cancer
risk.
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