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Regulatory T cells (Tregs), which have long been recognized as essential regulators

of both inflammation and autoimmunity, also impede effective antitumor immune

response due to their immunosuppressive properties. Combined radiotherapy and

immunotherapeutic interventions focusing on the removal of Tregs have recently garnered

interest as a promising strategy to reverse immunosuppression. Meanwhile, Tregs

are emerging as a key player in the pathogenesis of radiation-induced lung injury

(RILI), a frequent and potentially life-threatening complication of thoracic radiotherapy.

Recognition of the critical role of Tregs in RILI raises the important question of whether

radiotherapy combined with Treg-targeting immunotherapy offers any beneficial effects

in the protection of normal lung tissue. This present review focuses on the contributions

of Tregs to RILI, with particular emphasis on the suspected differential role of Tregs in

the pneumonitic phase and fibrotic phase of RILI. We also introduce recent progress

on the potential mechanisms by which Tregs modulate RILI and the crosstalk among

Tregs, other infiltrating T cells, fibrocytes, and resident epithelial cells driving disease

pathogenesis. Finally, we discuss whether Tregs also hold promise as a potential target

for immunotherapeutic interventions for RILI.

Keywords: Treg, radiotherapy, lung, pneumonitis, fibrosis

INTRODUCTION

Radiotherapy has a well-established role in the management of thoracic neoplasms (1). However,
the lung is a radiosensitive organ, and radiation-induced lung injury (RILI), consisting of
radiation-induced pneumonitis (RP) and pulmonary fibrosis (RPF), severely limits the efficacy of
radiotherapy and impairs the quality of life of cancer patients, making it a paramount concern
for radiation oncologists (2). A variety of factors may affect the risk of RILI, such as the radiation
technique used, the volume of normal lung irradiated, dose fractionation regimen, and concurrent
chemotherapy (1). From published data to date, the incidence of symptomatic RP is highest for
lung cancer (5–50%), followed by mediastinal lymphatics (5–10%) and breast cancer (1–5%) (3, 4);
the reported incidence of RPF is in the range of 1–51% in patients receiving thoracic radiotherapy
(5–7) and 70–80% in high-dose regions (8).

Regulatory T cells (Tregs), a subset of CD4+ T cells, have long been recognized as essential
regulators of inflammation and autoimmunity (9). Recently, Tregs have emerged as a key player in
the suppression of antitumor immunity (10). The combination of radiotherapy and Treg-targeting
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immunotherapy has garnered interest as a promising strategy to
reverse immunosuppression, albeit it may also carry potential
risks of inducing treatment-related toxicities (11). Meanwhile,
recent studies have expanded our understanding on how Tregs
modulate fibrogenesis. Intriguingly, Tregs have been shown to be
both a friend and a foe of fibrosis; depending on disease stages
and their interplay with other immune cells, Tregs may exert
anti- or pro-fibrotic effects (12–15). Notably, growing evidence
highlights the involvement of Tregs in RPF (16–23), raising
the important question of whether radiotherapy combined with
Treg-targeting immunotherapy offers any beneficial effects in the
protection of normal lung tissue.

In this review, we summarize the current knowledge on the
contributions of Tregs to RILI, with particular emphasis on the
suspected differential roles of Tregs in the pneumonitic phase and
fibrotic phase of RILI. The ultimate goal is to evaluate whether
Tregs hold promise as a potential target for immunotherapeutic
interventions for RILI.

RILI: A DISTURBED BALANCE BETWEEN
INFLAMMATION AND TISSUE REPAIR

RILI can be generally divided into two distinct, yet tightly
connected phases. One is an acute pneumonitic phase, termed
RP, which manifests with dyspnea, non-productive cough, and
fever within the first 6 months of radiotherapy (1). The second
is RPF, a late, irreversible phase (>1 year following therapy)
characterized by fibroblast activation, extracellular matrix (ECM)
accumulation, and aberrant tissue remodeling (1). Patients
with RPF may present with symptoms including dyspnea and
respiratory insufficiency (24).

Radiation-induced damage to the resident cells (e.g.,
epithelial and endothelial cells) triggers a cascade of molecular
events, including reactive oxygen species production and DNA
damage, which results in an early immune response aimed at
initiating tissue repair (20). The subsequent release of damage-
associated molecular patterns (DAMPs) induces secretion of
pro-inflammatory mediators such as interleukin (IL)−1 and
tumor necrosis factor-α (TNF-α) through the activation of
the nuclear factor kappa-B (NF-κB) signaling pathway (25),
allowing activation of resident immune cells and recruitment of
inflammatory cells (26), which, in turn, amplifies the ongoing
inflammatory response (2, 26). Notably, accumulating evidence
has pointed to the involvement of lymphocytes in radiation-
induced early lung inflammation (17, 22, 27). For example,
Cappuccini et al. described elevated levels of Th17-associated
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cytokines (e.g., IL-17 and IL-23) in the bronchoalveolar lavage
fluid of irradiated mice at 21 days post thorax irradiation with
15Gy (22), suggesting the contribution of pro-inflammatory
Th17 responses to the development of RILI. Current treatment
options for RP primarily focus on the control of excessive
inflammatory responses with glucocorticoids, potent anti-
inflammatory agents that are known to inhibit the expression of
pro-inflammatory cytokines and abrogate the activity of NF- κB
(28, 29).

In some cases, RP resolves after treatment with
corticosteroids; in other cases, it evolves into an uncontrolled,
fibrotic process, namely RPF. In contrast to the normal wound
healing process, which involves a series of finely orchestrated
biological events, RPF enters a “never-ending spiral,” in which
tissue hypoxia, epithelial-mesenchymal transition (EMT),
and fibroblast activation ultimately lead to the destruction of
the normal lung architecture (2, 18, 30, 31). Transforming
growth factor-β (TGF-β) has been recognized as a key signaling
molecule in the fibrotic process (26), which stimulates fibroblast
proliferation, EMT, and ECM production (26, 32). Furthermore,
recent research has deepened our understanding of how
lymphocytes - and, in particular, Tregs - are involved in the
fibrotic process (16–23, 33). We speculate that a disturbed
balance between inflammation and tissue regeneration is a
central issue in RPF and that the interaction among Tregs, other
infiltrating T cells, epithelial cells, and fibrocytes is instrumental
in shifting the local environment toward one favoring fibrosis.

TREGS AND IMMUNOREGULATORY
CYTOKINES

Two major subgroups of Tregs have been defined as follows,
based on their differential developmental origins: (I) natural
Tregs arising in the thymus (34) (II) inducible Tregs which
can be induced from naïve CD4+ T cells by antigen exposure
and cytokines such as TGF-β in the periphery (34–36). Mouse
thymus-derived natural Tregs are characterized by their high
expression of CD25 and constitutive expression of transcription
factor forkhead box P3 (FoxP3) (37). In contrast to mouse
Foxp3+ Tregs, human Foxp3+ T cells are more heterogeneous
in function (38). For example, human naïve CD4+ T cells can
transiently express Foxp3 after in vitroT-cell receptor stimulation
without possessing suppressive functions (39–42). Therefore,
Foxp3 per semay not represent a sufficient marker for functional
Tregs, particularly in humans. In addition, Foxp3 is expressed at
low levels or transiently after activation in some subsets of human
Tregs (43, 44). Thus, identification of human Tregs is even more
complex. At present, additional markers, such as CD127 and
CD45RA, are also used to delineate Tregs in humans (45, 46).

Tregs in mice have been shown to exert suppression by
cell-cell contact and humoral mechanisms with involvement
of a variety of molecules, including surface molecules (e.g.,
cytotoxic T lymphocyte antigen-4 (CTLA-4), CD39, and CD73),
immunoregulatory cytokines (e.g., TGF-β, IL-10, and IL-35),
and secreted molecules (e.g., granzyme) (47). Several potential
mechanisms of suppression by human Tregs have also been
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proposed, based on in vitro suppression assays, including
cell-contact dependent mechanisms (e.g., Fas/FasL-mediated
apoptosis of CD8+ responder cells and lysis of target cells
through a perforin/granzyme-dependent pathway) and humoral
factor-mediated mechanisms (e.g., secretion of inhibitory
cytokines such as IL-10) (48–51). Notably, the mechanisms of
human Treg-mediated suppression are similar, but not identical
to, mechanisms of regulation by mouse Tregs. For example, IL-
35 has been reported to be constitutively expressed by mouse
Tregs and contribute to the suppressive activity of Tregs (52),
whereas humans Tregs do not constitutively express IL-35 (53).
In relations to the lungs, in vivomouse studies have demonstrated
IL-10 mediated Treg effects in allergic conditions (54, 55). In
acute lung injury (ALI), Tregs were found to promote the
resolution of inflammation through modulation of the alveolar
inflammatory milieu in a mouse model of ALI (56). Furthermore,
inhibition of TGF-βwith neutralizing antibodies abrogated Treg-
mediated resolution of inflammation in ALI (56), indicating a
potential contribution of TGF-β-dependent mechanisms in the
suppressive effects of Tregs. Additionally, recent observations
demonstrate that mouse CD4+Foxp3+ Tregs in the lungs can
also express the IL-33 receptor suppression of tumorigenicity 2
(ST2) (57, 58). IL-33 is an alarmin cytokine that can be released
from damaged epithelial cells to alert the immune system after
tissue injury (59). Intriguingly, after exposure to IL-33, mouse
Tregs were found to increase the expression levels of GATA-
3 as well as ST2 and secrete Th2 cytokines (57). Moreover, it
has been reported that mouse ST2+ Tregs secrete high levels of
amphiregulin, IL-10, and TGF-β in vitro in the presence of IL-
33 (58, 60). Thus, IL-33-responsive Tregs may have a role in
tissue repair and fibrotic responses in the lungs, which needs to
be confirmed in further studies.

TREGS IN RADIATION-INDUCED
PNEUMONITIS

As stated above, Tregs have been implicated in the resolution
of inflammation in ALI and allergic conditions, and one
can speculate that Tregs may also be beneficial during the
pneumonitic phase of RILI in that they dampen excessive pro-
inflammatory responses, thereby ameliorating inflammation-
associated tissue damage.

Supporting this hypothesis,Wirsdorfer et al. found that thorax
irradiation caused a transient accumulation of Tregs in irradiated
lungs at 21 days after irradiation. Moreover, the accumulation
of Tregs was associated with increased surface expression of
immunoregulatory molecules (e.g., CTLA-4, CD73) on CD4+

T cells (17). It is tempting to speculate that Tregs play a
protective role in the pneumonitic phase via their suppressive
action on pro-inflammatory T cells, such as Th17 cells (22,
61, 62). Another murine study from Liu et al. demonstrated a
transient increase in the number of Tregs expressing CTLA-4
in hilar lymph nodes and the spleen at 7 days after the silica
exposure (12). Further, depletion of Tregs by intraperitoneal
injection of anti-CD25 mAb 1 day before the silica exposure and
every 7 days thereafter led to enhanced early lung inflammation

with significantly increased infiltration of neutrophils at 7 days
after the silica exposure (12), which lends further credence
to the protective role of Tregs in the early inflammatory
response to lung injury. Moreover, a recent clinical study
reported that an imbalance of the Th17/Treg ratio toward
Th17 cells was a predictor of RP in patients receiving thoracic
radiotherapy (63).

There are several potential explanations for the accumulation
of Tregs in irradiated lungs during the pneumonitic phase.
First, the increased Treg fraction may be partially attributed
to enhanced radioresistance and survival of Tregs compared
with other lymphocyte subpopulations (10). Second, given
the crucial role of TGF-β in the development of Tregs
(34, 36), radiation-induced changes in the cytokine milieu
(e.g., increased levels of TGF-β) may favor Treg accumulation
in the lung tissue. However, it is noteworthy that radiation
induces TGF-β production in a dose-dependent, time-
dependent, and tissue-specific manner (64), and the precise
role of TGF-β in the accumulation of Tregs in the lung
tissue requires further exploration. Additionally, in irradiated
macrophages, radiation-induced DNA damage results in potent
induction of pro-inflammatory cytokines and chemokines
(65). Tregs express a repertoire of inflammatory chemokines
receptors (e.g., CCR2, CCR4, and CCR5) (66), suggesting
that inflammatory chemokines may mediates the recruitment
of Tregs at inflammatory sites through binding to their
receptors on Tregs. For example, CCL2 has been shown to
have a crucial role in the recruitment of Tregs to an inflamed
site (67–69).

Current evidence indicates that Tregs can, via diverse
mechanisms, dampen the inflammatory response after tissue
injury and promote efficient repair of damaged tissue, which has
been elegantly reviewed by Li et al. (70). Further studies are
warranted to uncover the precise mechanisms whereby Tregs
modulate inflammation in RILI.

TREGS IN RADIATION-INDUCED
PULMONARY FIBROSIS

Current evidence indicates that Tregs exert a pro-fibrotic role in
RPF (18, 21). Wirsdörfer et al. demonstrated in a mouse model
that CD4+ FoxP3+ Tregs accumulated in irradiated lungs during
the pneumonitic and fibrotic phase. Moreover, Tregs generally
expressed CD73 (16). Of further interest are the findings by
Xiong et al. demonstrating that long-term (6 months) depletion
of Tregs by intraperitoneal injection of anti-CD25 mAb 2 h
after thorax irradiation and every 7 days therefore effectively
attenuated RPF in mice (18, 21). Notably, in these studies, the
ablation of Tregs covered both the early phase and the late
chronic phase. Therefore, it is plausible to speculate that Tregs
may predominantly play a pro-fibrotic role in RILI. Tregs have
been shown to contribute to RPF through several mechanisms,
including promotion of fibrocyte accumulation, promotion of
EMT, modulation of Th1/Th2 balance, and suppression of Th17
responses (shown in Figure 1) (18, 21).
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FIGURE 1 | A schematic of mechanisms by which Regulatory T cells (Tregs) modulate radiation-induced pulmonary fibrosis (RPF). Tregs promote the accumulation of

fibrocytes in irradiated lungs and β-catenin-mediated epithelial-mesenchymal transition (EMT) in epithelial cells. In addition, Tregs shift the Th1/Th2 cytokine balance

toward Th2 dominance, thereby providing a cytokine milieu that favors fibrosis. Tregs may also modulate RPF through suppression of Th17 responses. The crosstalk

among Tregs, other infiltrating T cells, epithelial cells, and fibrocytes contributes to the activation of myofibroblasts and collagen deposition, ultimately leading to the

destruction of the normal lung architecture. “→ ”: transform or promote; “⊥”: inhibit; “- - -”: may play a role.

Promotion of Fibrocyte Accumulation
Fibrocytes are bone marrow-derived mesenchymal stem cells
that can differentiate into myofibroblasts (71). The accumulation
and differentiation of fibrocytes are key processes with massive
implications for the pathogenesis of fibroproliferative diseases
(72). Regarding RPF, Xiong et al. reported an increased number
of fibrocytes in the lung tissue of mice during both early
and chronic phase of RILI (21). Interestingly, Treg depletion
reduced fibrocyte accumulation and attenuated lung fibrosis
(21), indicating that Tregs may contribute to RPF by promoting
fibrocyte accumulation in irradiated lungs.

Although the underlying mechanisms have not yet been
clarified, Tregs may interact with fibrocytes through secretion
of TGF-β, which is known to promote the proliferation,
differentiation, and collagen production of fibrocytes (71, 73, 74).
Additionally, the differentiation of Gr1+ monocytes into

fibrocytes has been demonstrated to be largely under the control
of CD4+ T cells (75). As a critical subset of CD4+ T cells,
Tregs may also have a role in the development of fibrocytes.
The interplay between Tregs and fibrocytes in RILI warrants
further investigations.

Promotion of Emt in Epithelial Cells
EMT is a process involving the transdifferentiation of epithelial
cells with a progressive loss of apicobasal polarity and cell-
cell contacts, as well as an acquisition of a mesenchymal
phenotype (32). Growing evidence has demonstrated a key role
of EMT in the pathogenesis of RPF (18, 76). Intriguingly, Treg
depletion suppressed EMT and substantially attenuated
pulmonary fibrosis in irradiated mice (18), revealing a
detrimental role for Tregs in RPF through the promotion
of EMT.
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Furthermore, a study by Boveda-Ruiz et al. has shed light on
the interaction between Tregs and epithelial cells, demonstrating
that the co-culture of lung epithelial cells with Tregs resulted in
increased protein and mRNA expression of TGF-β1 in epithelial
cells (13). Thus, stimulation of TGF-β secretion from epithelial
cells is a possible mechanism whereby Tregs accelerate RPF.
Xiong et al. co-cultured irradiated lung epithelial cells with Tregs
and found that Tregs promoted the EMT process and β-catenin
expression in epithelial cells (18). Moreover, the EMT-promoting
effect of Tregs was partially impaired by β-catenin silencing in
vitro (18), suggesting that β-catenin-mediated EMT is a potential
mechanism whereby Tregs modulate RPF.

Modulation of Th1/Th2 Balance
Another possible mechanism whereby Tregs accelerate RPF is by
shifting the Th1/Th2 cytokine balance toward Th2 dominance.
Th2 signature cytokines such as IL-4 have been recognized as
potent pro-fibrotic mediators due to their capacity to promote
fibroblast activation and collagen production. In contrast to Th2
cytokines, Th1 signature cytokines such as interferon-γ (IFN-
γ) exert suppressive effects on fibroblasts and reduce excessive
collagen production (77). Therefore, Th2-dominant cytokine
milieu may play a critical role in driving fibrosis.

In a mouse model of RPF, Treg depletion skewed the balance
toward Th1 dominance with a cytokine profile of increased IFN-
γ and IL-12 and decreased IL-4 and IL-5 (21). This observation
is reminiscent of a study by Liu et al., demonstrating that
Treg depletion in a mouse model of silica-induced lung fibrosis
resulted in increased levels of Th1 cytokines and decreased
Th2 cytokines (7). One possible mechanism whereby Tregs
modulate the Th1/Th2 balance is via promoting the induction of
alternatively activated (M2) macrophages (78), which are known
to participate in the promotion of Th2 responses and tissue
remodeling (79). Additionally, it has been demonstrated that
Tregs can undergo molecular differentiation by modifying their
expression of Th lineage-specific transcription factors such as T-
box expressed in T cells (T-bet) and interferon regulatory factor-4
(IRF-4), thereby enabling them to specifically control Th1 or Th2
responses (80, 81). Thus, in RPF, Tregs may undergo molecular
specialization in response to the local milieu that enables them to
suppress Th1 responses, which ultimately drives a shift toward a
Th2-dominant cytokine milieu.

Suppression of Th17 Responses
To date, the contribution of Th17 cells to fibrotic disorders
remains obscure. Animal studies revealed that antibody-
mediated neutralization of IL-17A, a hallmark cytokine for Th17
cells, attenuated fibrosis in several damage-associated pulmonary
diseases (82, 83). Moreover, in murine models of bleomycin-
induced lung injury, IL-17 receptor A- or IL-17A-deficient mice
displayed substantially reduced pulmonary fibrosis in contrast to
wild-type mice (83, 84). By contrast, Lo Re et al. demonstrated
that IL-17A was dispensable for the fibrotic response and
that silica-induced pulmonary fibrosis was not attenuated upon
treatment with anti-IL-17A antibody or in IL-17R- deficient
mice (85).

Evidence suggests that the imbalance of Th17/Treg is a
possible mechanism whereby Tregs modulate RPF. According to
a preclinical study by Xiong et al. Treg depletion attenuated lung
fibrosis, which was accompanied by a significant increase in the
number of Th17 cells from month 3 to 6 after irradiation (21),
suggesting that Tregs may accelerate RPF through suppression
of Th17 responses and that Th17 cells may exert an anti-fibrotic
function in RPF. By contrast, Paun et al. demonstrated that the
IL-17A-deficient mice were protected from RPF, indicating a
pathogenic role of Th17 cells in RPF (86).

Tregs have been shown to restrain Th17 responses in a signal
transducers and activators of transcription 3 (Stat3)-dependent
manner (87). Meanwhile, other studies have reported that Tregs
can promote Th17 differentiation and augment IL-17A induction
(88–90). These conflicting findings reflect the complexity of the
interplay between Tregs and Th17 cells. The interaction between
Tregs and Th17 cells in RPF requires further exploration.

THERAPEUTIC IMPLICATIONS AND
FUTURE DIRECTIONS

Notably, the interaction of Tregs with other immune cells
(e.g., macrophages) and damaged resident cells (e.g., endothelial
cells) may also impact the development of RILI. Tregs can
profoundly regulate macrophage phenotype and function (79).
For example, co-culture of human monocytes with Tregs steers
monocyte differentiation toward M2 macrophages (78), which
are known to participate in the resolution of inflammation and
tissue remodeling (79). Additionally, macrophages co-cultured
with Tregs produce increased levels of TGF-β and decreased
levels of TNF-α in response to lipopolysaccharide (56). Thus, we
speculate that the interaction between Tregs and macrophages
may be involved in tissue repair and pulmonary fibrosis induced
by radiation, which warrants further investigation. Additionally,
the interaction between Tregs and endothelial cells (ECs) has
attracted special attention due to its potential involvement in
the regulation of inflammation (91–93). Human umbilical vein
endothelial cells co-cultured with Tregs show a diminished
capacity to respond to lipopolysaccharide in terms of adhesion
molecule expression and pro-inflammatory cytokine production
(e.g., monocyte chemoattractant protein-1 and IL-6), suggesting
a protective role of Tregs during inflammation (93). In turn, ECs
can also affect Treg function, as suggested by Bedke et al., who
showed that activated murine lung ECs stimulated the release
of IL-10 and TGF-β from Tregs and triggered upregulation of
programmed death-1 (PD-1) by Tregs (91). Further investigation
on the role of EC–Treg interaction in RILI may provide new
insights into the pathogenesis of RILI.

Recognition of the critical role of Tregs in RPF has
prompted interest in targeting Tregs to prevent or treat RPF.
The observation that Treg depletion attenuated RPF is of
particular interest in the era of cancer immunotherapy, as
Treg depletion has been shown to have potential for reversing
immunosuppression when combined with radiotherapy (11).
Nevertheless, targeting Tregs for the treatment of RPF is
still limited to preclinical models, and its translation into
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clinical application remains challenging. One key challenge is
to determine the optimal timing for removal of Tregs, given
that Tregs may have a requisite role in protecting normal tissue
against excessive inflammation-induced damage during the early
stage of RILI.

Recently, the finding that CD73 potentiated RPF has
prompted interest in targeting CD73 to limit radiation-induced
lung toxicity (16). Up to now, although CD73+CD4+Foxp3+

Tregs have been shown to accumulate in irradiated lungs
during the pneumonitic and fibrotic phase (16), the role of
CD73+CD4+Foxp3+ Tregs in radiation-induced pneumopathy
is poorly defined. We speculate that CD73-targeted therapies
may limit potential pro-fibrotic actions of Tregs in pulmonary
fibrosis induced by radiation. Moreover, given the crucial role
of CD73 expression on Tregs in the suppression of antitumor
immunity (94, 95), it is intriguing to speculate that CD73-
targeted therapy may provide therapeutic benefits by promoting
antitumor immunity and reducing late radiation toxicity.
Additionally, emerging evidence highlights a novel contribution
of the IL-33/ST2 pathway to fibrotic disorders (59). Regarding
pulmonary fibrosis, Li et al. reported that bleomycin-induced
lung fibrosis was attenuated in ST2-deficient mice or upon
treatment with anti–IL-33 antibody (96). Moreover, exogenous
administration of mature recombinant IL-33 exacerbated
bleomycin-induced fibrosis in mice (96), indicating a critical
role of IL-33 in the fibrotic response to lung injury. To
date, the mechanisms, especially involving Tregs, whereby
IL-33 contributes to pulmonary fibrotic disorders remain
underexplored, although some studies have demonstrated
strong immunosuppressive properties and Th2-like character
of IL-33 activated Tregs in vitro (57, 58, 60). A recent study
in mice has revealed a protective role for IL-33 in ALI,
demonstrating that IL-33-mediated control of inflammation
involves the stimulation of IL-13 secretion by ST2+ Tregs, which
reduces the infiltration of inflammatory monocytes and local
inflammatory cytokines, such as IL-6 and granulocyte-colony
stimulating factor (G-CSF) (97). It is possible to envision
that the sustained increase in epithelial-derived IL-33 and
chronic activation of ST2+ Tregs triggered by irradiation may
eventually shift the local environment toward one favoring

fibrosis. Further investigation on the role of IL-33 activated
Tregs in radiation-induced pneumopathy is warranted and
may provide insight into the therapeutic potential of IL-33/ST2
in RILI.

CONCLUDING REMARKS

Accumulating evidence has demonstrated a profound, yet
complex role of Tregs in RILI. During the pneumonitic
phase, Tregs may play a role in counterbalancing exaggerated
pro-inflammatory responses and preventing the worsening of
radiation-induced injury. On the other hand, emerging data
point to the crucial involvement of Tregs in RPF. The role of
Tregs in RPF is likely to be multi-factorial – related to promotion
of fibrocyte accumulation, promotion of EMT, and modulation
of Th1/Th2 balance.

Although growing interest has been focused on the role
of Tregs in RILI and that Treg depletion has been shown
to attenuate RILI in mice, from a therapeutic viewpoint, this
field is still in its infancy. Further studies that probe into
unanswered questions, such as the interaction of Tregs with other
cells in RILI, represent the next steps forward in developing
effective therapeutic strategies. Given the critical role of Tregs in
both tumor-induced immune suppression and radiation-induced
fibrotic response, we envision that Tregs represent a promising
target for future treatment options. A deeper understanding of
the mechanisms whereby Tregs modulate RILI will offer new
avenues for the efficient management of RILI.
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