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Abstract
Investigating whether metabolites regulate the co-expression of a predefined gene module

is one of the relevant questions posed in the integrative analysis of metabolomic and tran-

scriptomic data. This article concerns the integrative analysis of the two high-dimensional

datasets by means of multivariate models and statistical tests for the dependence between

metabolites and the co-expression of a gene module. The general linear model (GLM) for

correlated data that we propose models the dependence between adjusted gene expres-

sion values through a block-diagonal variance-covariance structure formed by metabolic-

subset specific general variance-covariance blocks. Performance of statistical tests for the

inference of conditional co-expression are evaluated through a simulation study. The pro-

posed methodology is applied to the gene expression data of the previously characterized

lipid-leukocyte module. Our results show that the GLM approach improves on a previous

approach by being less prone to the detection of spurious conditional co-expression.

1 Introduction
Omics technologies have rapidly advanced giving rise to an extensive amount of omics (geno-
mics, proteomics, metabolomics, transcriptomics, glycomics, and lipidomics) data with wide-
spread availability. To obtain a comprehensive understanding of complex diseases, research
is now centring on the integrative analysis of omics data, necessitating more advanced method-
ological frameworks. In this article, we focus on the integrative analysis of metabolomic
and transcriptomic data to investigate the co-expression of a gene module (a set of co-
expressed (correlated) genes belonging to the same biological pathway) conditional on meta-
bolic concentrations.

Conditional co-expression is the observation of dependence of the correlation(s) (or other
measure(s) of association) of gene expression levels on values of a covariate. It is investigated to
gain insight into the regulatory mechanisms resulting in gene co-expression and, in turn, to

PLOSONE | DOI:10.1371/journal.pone.0150257 February 26, 2016 1 / 17

OPEN ACCESS

Citation: Padayachee T, Khamiakova T, Shkedy Z,
Perola M, Salo P, Burzykowski T (2016) The
Detection of Metabolite-Mediated Gene Module Co-
Expression Using Multivariate Linear Models. PLoS
ONE 11(2): e0150257. doi:10.1371/journal.
pone.0150257

Editor: Enrique Hernandez-Lemus, National Institute
of Genomic Medicine, MEXICO

Received: June 11, 2015

Accepted: February 11, 2016

Published: February 26, 2016

Copyright: © 2016 Padayachee et al. This is an
open access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: The data utilized in this
study was obtained from a third party. The data are
subject to protection by the Finnish legislation and
cannot be freely shared. Researchers who meet the
criteria for access to confidential information may
request access from the FINRISK Organization
(finriski@thl.fi). Please contact finriski(at)thl.fi for
more details on how to apply (https://www.thl.fi/fi/
tutkimus-ja-asiantuntijatyo/vaestotutkimukset/finriski-
tutkimus/the-national-finrisk-study).

Funding: This research was funded by the
MIMOmics grant of the European Union’s Seventh

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0150257&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://www.thl.fi/fi/tutkimus-ja-asiantuntijatyo/vaestotutkimukset/finriski-tutkimus/the-national-finrisk-study
https://www.thl.fi/fi/tutkimus-ja-asiantuntijatyo/vaestotutkimukset/finriski-tutkimus/the-national-finrisk-study
https://www.thl.fi/fi/tutkimus-ja-asiantuntijatyo/vaestotutkimukset/finriski-tutkimus/the-national-finrisk-study


gain insight into the mechanisms of complex diseases. In this article, we use the term condi-
tional co-expression, though the term differential co-expression is also often used to describe
the phenomenon of regulated co-expression [1]. Based on their intent, investigations of condi-
tional co-expression fall under two distinct categories. A targeted study focuses on a predefined
set of highly co-expressed genes, termed a gene module, and investigates whether it is condi-
tionally co-expressed. An untargeted/semi-targeted study considers all genes and attempts to
identify conditionally co-expressed gene modules [2]. Several studies investigated the co-
expression of gene pairs or gene modules between two biological conditions such as diseased
and healthy, young and old, male and female, or between two species such as humans and
chimpanzees [2]. For instance, a gene pair that is strongly correlated in healthy samples and
weakly correlated in diseased samples (or vice-versa) exhibits a pattern of conditional co-
expression. Similarly, pairs of genes from a conditionally co-expressed gene module have corre-
lation coefficients (or other measures of association) which differ across certain biological
conditions.

A wide range of methods have been proposed for the detection of conditionally co-
expressed gene pairs and gene sets, particularly across two biological conditions. Kayano
et al. (2014) [1] review the methods for the detection of conditionally co-expressed gene pairs
characterized by cross, i.e., a biological phenomenon in which two genes are positively corre-
lated under one condition and negatively correlated under the other condition. Methods to
detect gene sets with positive correlations under one condition and random gene-pair corre-
lations under the other condition are also reviewed. In the review, the need for more efficient
techniques is highlighted. Differential co-expression network analysis is one of the more
commonly implemented techniques for the detection of conditional co-expression [3, 4].
Fewer methodologies have been proposed for the investigation of co-expression across multi-
ple groups. Gillis and Pavlidis (2009) [5] analyzed co-expression across multiple-ordered
groups (defined by age categories). Chen et al. (2011) [6] proposed a penalized-likelihood
approach for bivariate conditional normal models to identify variables that mediate the co-
expression of a gene pair.

We focus on a targeted conditional co-expression analysis, i.e., the investigation of an a pri-
ori defined gene module with the aim of identifying variables that mediate its co-expression.
Our study is motivated by the conditional co-expression analysis presented in [7]. Inouye et al.
(2010) [7] provide a proof-of-concept paper for the integrative analysis of metabolomic, tran-
scriptomic, and genomic data. In particular, they explore the serum-metabolite mediation of
the recently characterized core Lipid-Leukocyte (LL) gene module’s [8] co-expression. Toward
this aim, they fit a simple linear regression model to Spearman’s correlation coefficients for all
pairs of genes of the core LL module for five subsets of samples formed by using quintiles of
the metabolite concentrations. In this way, the dependence of the correlation (co-expression)
on metabolic concentrations can be detected and quantified.

The method applied by [7], although innovative, is limited in several aspects:

1. It does not allow for the adjustment of the gene expression values for potential confounding
factors. As a consequence, relevant correlations can be missed or spurious correlations can
be detected.

2. The simple linear model framework incorrectly treats the correlation coefficients as inde-
pendent. In addition, the estimation error in the coefficients is ignored.

3. The approach focuses only on linear trends in co-expression by metabolic concentrations.

4. The results may depend on the definition of metabolic subsets.

GLM for Metabolite-Mediated Co-Expression Analysis
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In this paper, we consider a modeling approach that addresses points 1–3 from the aforemen-
tioned list. In particular, we use a general linear model (GLM) for correlated data [9, 10] to
analyze the dependence structure of gene expression measurements for different metabolic
subsets. Statistical tests for the inference of conditional co-expression are proposed. A simula-
tion study is conducted to evaluate the Type I error probability and the sensitivity of the test
statistics to different co-expression dynamics. We apply the model to a subset of the DILGOM
(Dietary, Lifestyle, and Genetic determinants of Obesity and Metabolic syndrome) study data
collected in Helsinki, Finland to study the serum metabolite-induced conditional co-expression
for the core LL module.

The paper is organized as follows. Section 2 introduces the data. Section 3 describes the
statistical methodology and the workflow of the analysis. Results of the simulation study and
the DILGOM analysis appear in Section 4. The discussion and conclusions are presented in
Section 5.

2 Data
We analyze the complete cases of a subset of participants from the Helsinki population-based
cohort recruited in the DILGOM study [8]. The individuals in the subset were assessed for
metabolomic, genome-wide transcriptomic, and genomic variation. Serum metabolite concen-
trations were measured using proton NMR spectroscopy. Gene expression data were obtained
from blood lymphocytes using the Illumina HT-12 expression array (Illumina Inc., San Diego,
CA, USA). We use the phenotypic data on age and gender, the metabolomic data, and the tran-
scriptomic data of the core LL gene module. Of the complete case observations (N = 466), 215
correspond to males and 251 to females, with age ranging from 25 to 74 years.

2.1 Metabolomic data
Metabolomic data were available on 137 serum metabolites inclusive of amino acids, lipids,
and sugars. For illustration we primarily focus on six metabolites: 3-hydroxybutyrate, linoleic
acid, large HDL particles, small HDL particles, small LDL particles, and total cholesterol in
large HDL as in [7]. Histograms of the observed values of these metabolites are shown in Fig 1,
with summary statistics listed in Table 1. Due to the non-normality of the distributions, meta-
bolic concentrations were transformed using the two-parameter Box-Cox transformation [11].
The normalized metabolite distributions were then corrected for age, gender, and their two-
way interaction using metabolite-specific ANOVA models.

2.2 Transcriptomic data
The LL gene module is comprised of 11 highly correlated genes. Seven of these genes—HDC,
FCER1A, GATA2, CPA3, MS4A2, SPRYD5 and SLC45A3—form the core LL gene module [8].
The LL module is of interest as it harbours key immune response mediators and is strongly
associated with serum lipid concentrations [7] linking it to the two main contributors of coro-
nary artery disease (CAD), namely, inflammation [12] and lipids (such as high density lipopro-
tein (HDL) and low density lipoprotein (LDL)).

Genes forming the core LL module are highly correlated (see Fig 2), with Spearman’s corre-
lation coefficients larger than 0.6, and they have heterogeneous variances (see Fig 3).

The gene expression data were normalized using quantile normalization and quality control
was performed as described in [8].

GLM for Metabolite-Mediated Co-Expression Analysis
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3 Statistical Methodology

3.1 Exploratory analysis
To get a general idea of the co-expression dynamics as a function of metabolic concentrations,
we estimate sliding-window correlations. In preparation, for a specific metabolite, the data
are sorted in ascending order of the observed metabolic concentrations and a window size

Fig 1. Histograms of the observed values for 3-hydroxybutyrate, linoleic acid, large HDL particles, small HDL particles, small LDL particles, and
total cholesterol in large HDL.

doi:10.1371/journal.pone.0150257.g001

Table 1. Summary statistics of the observed concentrations for the six metabolites selected for illustration (N = 466).

metabolite mean standard deviation 1st quartile median 3rd quartile

3-hydroxybutyrate 0.1290 0.0970 0.0768 0.0955 0.1363

linoleic acid 3.2141 0.5879 2.8233 3.1735 3.5635

large HDL particles (×10−6) 1.1334 0.4531 0.8076 1.1080 1.4133

small LDL particles (×10−6) 0.1524 0.0373 0.1249 0.1504 0.1745

total cholesterol in large HDL 0.4157 0.2008 0.2696 0.3961 0.5418

small HDL particles (×10−6) 4.6213 0.4505 4.3520 4.6075 4.8668

doi:10.1371/journal.pone.0150257.t001

GLM for Metabolite-Mediated Co-Expression Analysis
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(expressed as a proportion, represented by w, of the total sample size) is selected. The proce-
dure begins by computing Spearman’s correlation coefficients between pairs of genes for the
first w × N individuals, together with the corresponding mean metabolite value. Then, the win-
dow is shifted so that it starts from the second ordered metabolite measurement, and the win-
dow-specific correlation coefficients and mean metabolite value are estimated. The procedure
continues until the window includes the last (ordered) metabolite measurement. The obtained
correlation coefficients are plotted against the mean metabolite values. The smoothness of the
plot depends on the window size: selecting a large window results in a smoother estimate of the
correlation trajectory.

3.2 Simple linear regression of Spearman’s correlation coefficients
The conditional co-expression analysis by [7] is performed per metabolite. For a given metabo-
lite, the data are split into five subsets based on quintiles of the metabolite’s concentration. For
each subset, Spearman’s rank correlation coefficients are computed for all pairs of genes in the
core LL module. A linear regression model is used to relate the estimated correlation coeffi-
cients to the quintiles upon which the metabolic subsets are defined.

Fig 2. Scatter-plot matrix of the core LLmodule gene expression values. Scatter-plots of the expression values for each gene pair appear in the lower
triangular matrix. Points are colour coded by gender: red represents males and blue represents females. Pairwise Spearman’s correlation coefficients are
indicated in the upper triangular matrix. The distribution of gene expression values for each gene is illustrated on the main diagonal.

doi:10.1371/journal.pone.0150257.g002
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Using a formal notation, the following model is fitted:

Ysp ¼ aþ bxs þ εsp; ð1Þ

where s (s = 1, . . ., S) indexes the metabolic subsets (S = 5 for our case study), p (p = 1, . . .,
G(G − 1)/2) indexes the gene pairs with G denoting the number of genes in the gene module
(G = 7 for the core LL gene module), Ysp is the Spearman’s correlation coefficient for the p-th
gene-pair in the s-th metabolic subset, and xs is the value of the s-th quintile of the metabolic
concentration. As in classical linear regression, εsp are residual errors that are assumed to be
independent and normally distributed with mean zero and variance s2

e .
To determine whether there is a relationship between the module co-expression and the

metabolite concentrations, the null hypothesis of a zero slope,H0 : β = 0, is tested against the
alternative hypothesis, HA : β 6¼ 0.

Fig 3. Box-plots of the core LLmodule expression. Heterogeneous mean expression values and variances are observed.

doi:10.1371/journal.pone.0150257.g003

GLM for Metabolite-Mediated Co-Expression Analysis

PLOS ONE | DOI:10.1371/journal.pone.0150257 February 26, 2016 6 / 17



3.3 General linear model (GLM) for gene expression measurements
In accordance with the simple linear-regression approach, this analysis is performed per metab-
olite. For a given metabolite, the data are split into five metabolic-subsets based on quintiles of
the metabolite’s concentration. Gene expression values are modeled using a GLM allowing for a
correlation between an individual’s gene expression values. A general variance-covariance struc-
ture of within-individual gene expression measurements is assumed for each metabolic subset.

In a formal notation, the following model is considered:

ysi ¼ Xsibþ εsi; ð2Þ

where ysi ¼ ðysi1; . . . ; ysiGÞT is the vector of gene expression measurements for the i-th individ-
ual (i = 1, . . ., ns) in the s-th subset, Xsi is a G × R-dimensional matrix of R covariates (an
example of the design matrix Xsi is included in the S1 File), β is an R-dimensional vector of
coefficients corresponding to the R covariates, and εsi is a G-dimensional vector of residual
errors which are normally distributed with zero mean and variance-covariance matrix Σs. In
particular,

Σs ¼

s2
s;1 rs;12ss;1ss;2 � � � rs;1Gss;1ss;G

rs;12ss;1ss;2 s2
s;2 � � � rs;2Gss;2ss;G

..

. ..
. . .

. ..
.

rs;1Gss;1ss;G rs;2Gss;2ss;G � � � s2
s;G

0
BBBBBBBB@

1
CCCCCCCCA
; ð3Þ

where s2
s;g is the variance of the g-th gene for the s-th subset and ρs, g1g2 is the correlation

between genes g1 and g2 for the s-th subset.
The null hypothesis of no metabolite-dependent co-expression can be seen as correspond-

ing to the following variance-covariance structure:

Σð0Þ
s ¼

s2
s;1 r12ss;1ss;2 � � � r1Gss;1ss;G

r12ss;1ss;2 s2
s;2 � � � r2Gss;2ss;G

..

. ..
. . .

. ..
.

r1Gss;1ss;G r2Gss;2ss;G � � � s2
s;G

0
BBBBBBBB@

1
CCCCCCCCA
; ð4Þ

in which the correlation coefficients ρg1g2 do not depend on the metabolic-subset. In correspon-
dence with Σs, the gene variances s

2
s;g are metabolic-subset specific.

The null hypothesis of no metabolite-dependent co-expression can be tested by using the
likelihood-ratio (LR) test comparing the null model specified by Eqs (2) and (4) with the alter-
native model defined by Eqs (2) and (3). Wilks (1938) [13] showed that the asymptotic distri-
bution of the LR test is a w2ðkÞ distribution where k is the difference in the number of parameters

estimated between the alternative model and the null model. However, there is evidence sug-
gesting that the approximation to a chi-squared distribution may be rather poor for small sam-
ple sizes [14][15].

The statistical test proposed by Larntz & Perlman (1985) [16] is a possible alternative to the
LR test for testing the equality of correlation matrices. In the Larntz & Perlman approach, each
of the G(G − 1)/2 hypotheses of equal correlations (i.e., Hg1 g2 : ρ1, g1g2 = ρ2, g1g2 = . . . = ρS, g1g2

GLM for Metabolite-Mediated Co-Expression Analysis
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for all g1 6¼ g2 (g1, g2 = 1, . . ., G)) is tested by using the statistic

Sg1g2 ¼
XS

i¼1

ðns � 3Þz2s;g1g2 �
PS

i¼1ðns � 3Þzs;g1g2
h i2

PS
i¼1ðns � 3Þ

ð5Þ

where zs, g1g2 is the Fisher’s z-transformed correlation between genes g1 and g2 for the s-th sub-
set. To test the equality of the correlation matrices, the composite test statistic T, defined as the
maximum of the G(G − 1)/2 test statistics, is computed:

T ¼ max Sg1g2 for 1 � g1 < g2 � G ð6Þ

Under the null hypothesis, T has an asymptotic χ2 distribution with S − 1 degrees of freedom.
The Sidák inequality is used to control the probability of committing a Type I error. As such,
the null hypothesis of no metabolite-dependent co-expression is rejected if

T > w2
S�1;a0 ð7Þ

where α0 = 1 − (1 − α)2/G(G − 1) is the Sidák-adjusted significance level. The Larntz & Perlman
approach has been reported to have good small-sample properties as it relies on the univariate
normality of the Fisher’s z-transformed correlations [16].

Other possible statistical approaches for testing the equality of correlation matrices include
the statistical tests proposed by Cole (1968) [17] and Jennrich (1970) [18] which are based
on a quadratic form of deviations from the mean and have an asymptotic χ2 distribution with
(S − 1)G(G − 1)/2 degrees of freedom [19].

3.4 Multiple comparisons p-value adjustment
The simple linear regression approach (Section 3.2) and the GLM approach (Section 3.3) both
entail fitting a separate model per metabolite. Hence, a multiple testing adjustment should be
considered to control either the family-wise error rate (FWER) or the false discovery rate
(FDR). FWER-controlling procedures restrict the probability of committing a Type I error (i.e.,
falsely rejecting the null hypothesis for any of the tests conducted). Controlling the FDR is a
less stringent, and hence more powerful, approach that instead controls the proportion of dis-
coveries that are allowed to be false. Given the correlated nature of our hypothesis tests (i.e.,
due to the correlation within the metabolomics data), we chose the Benjamini and Yekutieli
FDR-controlling procedure [20]. It is an extension of Benjamini and Hochberg’s correction for
cases where the independence of hypothesis tests cannot be assumed [20]. Lin et al. (chapter 6)
[21] discuss an assortment of FDR-controlling procedures and their implementation using the
R statistical programming language.

3.5 Workflow
Simulation study. To assess the Type I error probability and the power of the proposed

GLMmethodology for different co-expression dynamics, we simulate data reflecting six varia-
tions in metabolite-co-expression dependence (Fig 4). Specifically, we simulate:

• data characterised by no metabolite-co-expression dependence,

• data based on an approximately linear positive association between co-expression and meta-
bolic concentrations and another dataset based on an approximately linear negative metabo-
lite-co-expression association,

• data based on two variations of non-linear dependencies, and

GLM for Metabolite-Mediated Co-Expression Analysis
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• data exhibiting a weak positive metabolite-co-expression association.

For each of the six co-expression dynamics, we create 1000 datasets of 125, 450, and 800 obser-
vations each. Metabolic concentrations are sampled from a normal distribution with mean
3.2141 and variance 0.3456 (i.e., the distribution of linoleic acid in the DILGOM subset). Gene
expression values are sampled from a multivariate normal distribution with means and vari-
ances corresponding to that of the CPA3, FCER1A, GATA2, HDC, MS4A2, SLC45A3, and
SPRYD5 expression values in the DILGOM data. Gene-pair correlations vary with the metabo-
lite concentration in a manner defined by one of the six metabolite-co-expression associations
listed above. These co-expression dynamics are illustrated in Fig 4. To investigate the Type I
error probability, data (i.e., characterised by no metabolite co-expression dependence) are sim-
ulated for a four, five, and seven gene module. Data for the power investigation are simulated
for a module of four genes. The linear regression model and the GLM-based LR, Larntz & Perl-
man, Jennrich, and Cole tests are applied to the simulated data (see Section 3.3).

DILGOM analysis. Using the DILGOM data, described in Section 2, we study the metabo-
lite co-expression association by means of the GLM for gene expression values (Section 3.3)

Fig 4. The six simulated co-expression dynamics for a four genemodule. The four genes of the simulated module generate six gene-pair correlations.
Each trajectory of dots captures the metabolite-co-expression association for one of the module gene pairs.

doi:10.1371/journal.pone.0150257.g004

GLM for Metabolite-Mediated Co-Expression Analysis
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and the linear-regression approach of Inouye et al. [7] (Section 3.2). The mean structure of the
GLM, defined in Eq (2), included the four-way interaction between gene, (the Box-Cox trans-
formed and age-gender interaction adjusted) metabolite concentration, age, and gender. The p-
values of the metabolite-specific tests were adjusted by using the Benjamini and Yekutieli [20]
FDR-controlling procedure.

Practical implementation. The GLMs were fitted using PROC GLIMMIX of SAS 9.4. The
COVTEST statement of PROC GLIMMIX enables the statistical inference on covariance
parameters. The LR test is implemented by specifying constraints in the COVTEST statement
that, when applied to the variance-covariance structure of the alternate model Eq (3), defines
the null model’s variance-covariance structure Eq (4). The generic SAS code is provided as sup-
porting information (S1 SAS Code). For ease of illustration, the included code is for a module
of three genes. Functions to implement the Larntz & Perlman (1985), Jennrich (1970), and
Cole (1968) tests were coded in the R programming language. The Benjamini and Yekutieli
adjustment was performed using R 3.1.1 and the R-packagemulttest.

4 Results

4.1 Simulation study
We have found that the Larntz & Perlman test statistic outperforms the Jennrich and Cole sta-
tistics with regard to the proper control of the Type I error probability. Thus, in what follows,
we will focus on the linear-regression approach, the GLM-based LR test and the GLM-based
Larntz & Perlman test. The results of the GLM-based Jennrich and Cole statistics are shown in
S1 and S2 Tables.

Table 2 integrates the simulation results for the investigation of the Type I error probability.
The linear-regression approach fails to control the Type I error probability. When the sample
size is small (n = 125), the Type I error probability becomes unacceptably high. On the other
hand, for large sample sizes (relative to the number of estimated correlation coefficients), the
linear regression becomes too conservative. Due to these extreme fluctuations in the Type I
error probability, the linear regression approach cannot be deemed a reliable analysis method,
as it is difficult to know in a practical setting whether the regression-based test will be liberal or
conservative. The GLM-based LR test provides better control of the Type I error probability
than the linear-regression approach, particularly for large sample sizes (i.e., when the asymp-
totic properties of the LR test come into effect). However, the probability is inflated for small
sample sizes. The Larntz & Perlman approach properly controls the Type I error probability,
with a slight tendency to become conservative for large sample sizes. Hence, combining the
Larntz & Perlman test with a suitable multiple-testing procedure should result in a testing
framework that properly controls the FWER or the FDR.

Table 3 shows the results of the power investigation. In view of the problems with the con-
trol of the Type I error probability for the linear-regression test and the GLM-based LR test, we
focus on the sensitivity of the test statistics to detect the co-expression dynamics in the case of a
four-gene module and a sample size of n = 450 observations. This is because for this case the
Type I error probability, shown in Table 2, did not differ significantly from 0.05 for the three
approaches. Table 3 indicates that the power of the GLM-based LR test and the Larntz & Perl-
man test is comparable. The GLM-based tests are clearly more powerful than the linear-regres-
sion-based test in detecting linear trends and are substantially more powerful in the case of
non-linear trends. The only case when the linear-regression-based approach shows some
advantage is a weak positive association.

In view of these results, we choose to use the GLM-based Larntz & Perlman test in the DIL-
GOM analysis.

GLM for Metabolite-Mediated Co-Expression Analysis
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4.2 DILGOM analysis
Fig 5 illustrates the changes in co-expression as a continuous function of the metabolic concen-
trations for the six metabolites: 3-hydroxybutyrate, linoleic acid, large HDL particles, small
HDL particles, small LDL particles, and total cholesterol in large HDL; these are the results of
the sliding-window procedure (Section 3.1). Evidently, the metabolite-co-expression relation-
ship is not always monotonic, for instance, as see in the plots for 3-hydroxybutyrate, linoleic
acid or large HDL particles.

Fig 6 presents the results obtained by using the simple linear regression model for the six
metabolites chosen for illustration. The adjusted p-values for all six metabolites suggest a statis-
tically significant relationship between the correlation coefficients and the metabolite levels.

Table 2. Type I error probabilities for the linear regression and the GLM-based test statistics by module size and sample size.

module size sample size (n) linear regression ? GLM-based LR test ? GLM-based Larntz & Perlman ?

4 125 0.205 [0.179, 0.231] 0.109 [0.089, 0.129] 0.045 [0.032, 0.058]

4 450 0.056 [0.041, 0.071] 0.062 [0.047, 0.077] 0.043 [0.030, 0.056]

4 800 0.020 [0.011, 0.029] 0.053 [0.039, 0.067] 0.035 [0.023, 0.047]

5 125 0.197 [0.172, 0.222] 0.141 [0.119, 0.163] 0.048 [0.034, 0.062]

5 450 0.064 [0.048, 0.080] 0.067 [0.051, 0.083] 0.037 [0.025, 0.049]

5 800 0.022 [0.012, 0.032] 0.066 [0.050, 0.082] 0.048 [0.034, 0.062]

7 125 0.461 [0.430, 0.492] 0.314 [0.285, 0.343] 0.035 [0.023, 0.047]

7 450 0.314 [0.285, 0.343] 0.083* [0.065, 0.100] 0.036* [0.024, 0.048]

7 800 0.212 [0.186, 0.238] 0.070** [0.054, 0.087] 0.029** [0.018, 0.040]

? estimate [95% confidence interval]

* convergence rate of GLM: 0.991

** convergence rate of GLM: 0.993

doi:10.1371/journal.pone.0150257.t002

Table 3. Power of the linear regression and GLM-based test statistics for different co-expression dynamics and sample sizes.

co-expression dynamics sample size (n) linear regression ? GLM-based LR test ? GLM-based Larntz & Perlman ?

linear positive association 125 0.408 [0.377, 0.439] 0.314 [0.285, 0.343] 0.188 [0.163, 0.213]

linear positive association 450 0.635 [0.605, 0.665] 0.826 [0.802, 0.850] 0.797 [0.772, 0.822]

linear positive association 800 0.712 [0.683, 0.741] 0.990 [0.983, 0.997] 0.989 [0.982, 0.996]

linear negative association 125 0.451 [0.420, 0.482] 0.300 [0.271, 0.329] 0.184 [0.159, 0.209]

linear negative association 450 0.621 [0.590, 0.652] 0.838 [0.815, 0.861] 0.819 [0.795, 0.843]

linear negative association 800 0.723 [0.695, 0.751] 0.988 [0.981, 0.995] 0.987 [0.979, 0.995]

non-linear association (parabola) 125 0.219 [0.193, 0.245] 0.293 [0.264, 0.322] 0.243 [0.216, 0.270]

non-linear association (parabola) 450 0.051 [0.037, 0.065] 0.759 [0.732, 0.786] 0.856 [0.834, 0.878]

non-linear association (parabola) 800 0.010 [0.003, 0.017] 0.969 [0.958, 0.980] 0.993 [0.987, 0.999]

non-linear association (wave) 125 0.253 [0.226, 0.280] 0.348 [0.318, 0.378] 0.193 [0.168, 0.218]

non-linear association (wave) 450 0.152 [0.129, 0.175] 0.863 [0.841, 0.885] 0.841 [0.818, 0.864]

non-linear association (wave) 800 0.108 [0.088, 0.128] 0.992 [0.986, 0.998] 0.990 [0.983, 0.997]

weak positive association 125 0.278 [0.250, 0.306] 0.143 [0.121, 0.165] 0.072 [0.055, 0.089]

weak positive association 450 0.257 [0.229, 0.285] 0.182 [0.158, 0.206] 0.183 [0.159, 0.207]

weak positive association 800 0.235 [0.208, 0.262] 0.316 [0.287, 0.345] 0.351 [0.321, 0.381]

Data simulated for a four-gene module.
? estimate [95% confidence interval]

doi:10.1371/journal.pone.0150257.t003
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Assuming a FDR of 5%, there are 80 metabolites (including the six presented in Fig 6) for
which a metabolite-dependent co-expression could be concluded. However, given the results
shown in Table 2, it is plausible that the linear-regression-based test is liberal in this case. Thus,
in turn, we cannot be sure that the FDR is indeed controlled at the 5% level.

Fig 7 shows the metabolic-subset specific correlation between gene-pairs estimated using
the GLM defined by Eqs (2) and (3). Based on the multiplicity-adjusted p-values of the Larntz
& Perlman test, a statistically significant relationship between the co-expression and metabolite
levels cannot be concluded for any of the metabolites. Given that the Larntz & Perlman test
provides a proper control of the Type I error probability, we can expect that, in the analysis,
the FDR is controlled at the 5% level.

The GLM-framework is flexible in that it allows, for instance, the testing of a variety of
hypotheses regarding the variance-covariance structure. To illustrate this aspect of the model,
we use the concentration of apolipoprotein B as a potential mediator of the core LL module co-
expression. The left-hand-side plot of Fig 8 presents the estimated correlation coefficients
obtained using the GLM with the variance-covariance structure defined in Eq (3) with S = 5.
We can see that the coefficients seem to only slightly deviate from a common value across the

Fig 5. Co-expression dynamics by meanmetabolic concentration based on sliding-window correlation estimates (w = 0.2). TheG = 7 genes of the
core LL module result in 21 gene-pair correlations. Each trajectory roughly captures the co-expression dynamics of one of the module’s gene pairs.

doi:10.1371/journal.pone.0150257.g005
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first three subsets (quintiles of the metabolite), while they seem to increase for the last two sub-
sets. Using the Larntz and Perlman statistic, we can formally test whether a common correla-
tion-coefficient could be assumed for the first three subsets. To this aim, we test each
hypothesis of Hg1 g2 : ρ1, g1g2 = ρ2, g1g2 = ρ3, g1g2, for all g1 6¼ g2 (g1, g2 = 1, . . ., G). The result of
the Larntz & Perlman test is not statistically significant (p = 0.9950), suggesting that the simpler
variance-covariance structure might be adopted. The plot in the middle column of Fig 8 pres-
ents the estimated correlation coefficients based on the simplified model. In turn, one could
compare the correlation matrices of the simpler model to test for a difference between meta-
bolic subsets, i.e., to determine whether the GLM with the variance-covariance structure
defined in Eq (4) can be adopted. The right-hand-side plot of Fig 8 presents the estimates of
the correlation coefficients obtained for the GLM defined by Eqs (2) and (4). The result of the
corresponding Larntz & Perlman test is statistically significant (p = 0.0079), suggesting that the
observed increase of the correlation coefficients across the last two subsets cannot be attributed
to a chance variation. The aforementioned results are data-driven and do not take into account

Fig 6. Results of the linear-regression-based investigation of conditional co-expression. Dots represent the estimated Spearman’s correlation
coefficients for the five metabolic subsets (defined by quintiles of the metabolite); the fitted regression line is drawn in red. Benjamini and Yekutieli adjusted p-
values are reported.

doi:10.1371/journal.pone.0150257.g006
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the multiple-testing adjustment, but they do illustrate the potential of the GLM in testing vari-
ous hypotheses that might be of interest.

5 Discussion
The use of the GLM offers a formal, flexible framework to investigate the co-expression-media-
tion of a gene module. The model facilitates the adjustment of gene expression values for any
potential confounding factors. Questions regarding the conditional co-expression can be for-
mulated as hypotheses about the variance-covariance structure of gene expression measure-
ments and formally tested by using the Larntz & Perlman test or the LR test (provided that, for
the latter, an adequate sample size is available). The model can be fitted using existing software
like SAS (PROCMIXED or PROC GLIMMIX) [9, 10].

As compared to the approach proposed by [7], the GLM-based analysis requires the
assumption of normality of the gene expression measurements. One can see it as a drawback.
However, models based on such an assumption (assumed, often, on the logarithmic scale)
have already been considered in the literature [22–24]. Assessing all aspects of multivariate

Fig 7. GLM based gene-pair correlation estimates for the five metabolic subsets. The estimates corresponding to a particular pair of genes are
connected by a line. Benjamini and Yekutieli adjusted Larntz & Perlman test p-values are reported.

doi:10.1371/journal.pone.0150257.g007
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normality is difficult. However, investigating univariate normality, though it will not guarantee
multivariate normality, can detect cases of multivariate non-normality. Quantile-quantile plots
of the GLM residuals were used to assess the univariate normality (see S1–S6 Figs). In this way,
the plausibility of the assumption can be checked. In return, the GLM-based approach removes
the limitations (Eqs 1–3) of the linear-regression-based analysis mentioned in Section 1.

The advantages of using a formal modeling framework were illustrated in the simulation
study and in the analysis of the metabolite-mediated conditional co-expression of the core LL
gene module. Worth noting is the fact that we did not identify any statistically significant
metabolite-co-expression associations. The linear-regression approach results in 80 such asso-
ciations. This large discrepancy is not surprising in light of the simulation study. For a seven-
gene module and a sample size of n = 450 observations, the simulation study indicated that
the linear-regression approach fails to control the Type I error probability (SLR: 0.314 [0.285,
0.343] vs. GLM-based Larntz & Perlman test: 0.036 [0.024, 0.048]). In a linear regression
model, inconsistent standard error estimates may arise as a consequence of ignoring any esti-
mation error inherent in the dependent variable [25]. The regression approach ignores the esti-
mation error in the observed correlation coefficients. In addition, the coefficients estimated for
the same metabolic subset are treated as independent, though they are not. Consequently, the
precision of the estimation of the linear regression coefficients may be overestimated, resulting
in too small raw p-values and an excess of “false positive” findings even after a multiple-testing
correction.

A potential issue in the use of the GLM approach is the number of parameters. Besides the
coefficients used in the mean-structure Eq (2), the most general variance-covariance structure
Eq (3) involves SG variances and SG(G − 1)/2 correlation coefficients, i.e., SG(G + 1)/2 parame-
ters. Depending on the size of the gene module and the number of metabolic subsets, the num-
ber can be very large. For instance, for the core LL gene module with G = 7 genes and S = 5
subsets, the number of variance-covariance parameters is equal to 140. Thus, estimation of the
model requires a considerable sample size. Note, however, that the same remark applies to the
linear-regression approach, as it also requires estimation of the SG(G − 1)/2 correlation coeffi-
cients (105 in the case of the core LL gene module).

Fig 8. Estimated correlation coefficients, obtained using the general linear model with different variance-covariance structures, for the five
metabolic subsets defined for apolipoprotein B. A. GLM with metabolic-subset specific correlation coefficients defined by Eqs (2) and (3); B. GLM with
common correlation coefficients across the first three metabolic-subsets; C. GLM with no metabolic-subset dependent correlation coefficients, i.e., the null
model defined by Eqs (2) and (4).

doi:10.1371/journal.pone.0150257.g008
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Another drawback shared by the linear-regression and GLM approaches is that they require
the splitting of the metabolite measurements into subsets. Naturally, this implies that the
results may depend on the definition of the subsets. A possible solution to this problem would
be to model the correlation coefficients as a function of metabolite values. One could imagine
using a suitable class of functions, capturing the trends seen in Fig 5, to model the correlation
coefficients in the variance-covariance matrix Eq (3). Such a solution would obviate the need
for defining metabolic subsets. This is a topic of current research.
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