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Simple Summary: The genus Lycoris (Amaryllidaceae) comprises about 20 species with high orna-
mental and medicinal value. However, germplasm identification is still difficult due to frequent
interspecific hybridization and intraspecific morphological variation within this genus. Plastid
genome sequencing has been proven to be a useful tool to identify closely related species and is
widely used in the field of plant evolution and phylogeny. In the present study, we provided four
chloroplast genomes of Lycoris and retrieved seven published species in the genus for comparative
genomics and phylogenetic analyses. All these chloroplast genomes possess the typical quadripartite
structure with conserved genome arrangement and gene content, yet their lengths varied due to
expansion/contraction of the IR/SC boundaries. Phylogenetic relationships within Lycoris were
resolved with high resolution using complete cp genome sequences. These results could not only offer
a genome-scale platform for identification and utilization of Lycoris but also provide a phylogenomic
framework for future studies in this genus.

Abstract: The genus Lycoris (Amaryllidaceae) consists of about 20 species, which is endemic to
East Asia. Although the Lycoris species is of great horticultural and medical importance, challenges
in accurate species identification persist due to frequent natural hybridization and large-scale in-
traspecific variation. In this study, we sequenced chloroplast genomes of four Lycoris species and
retrieved seven published chloroplast (cp) genome sequences in this genus for comparative ge-
nomic and phylogenetic analyses. The cp genomes of these four newly sequenced species were
found to be 158,405–158,498 bp with the same GC content of 37.8%. The structure of the genomes
exhibited the typical quadripartite structure with conserved gene order and content. A total of
113 genes (20 duplicated) were identified, including 79 protein-coding genes (PCGs), 30 tRNAs, and
4 rRNAs. Phylogenetic analysis showed that the 11 species were clustered into three main groups,
and L. sprengeri locate at the base of Lycoriss. The L. radiata was suggested to be the female donor of
the L. incarnata, L. shaanxiensis, and L. squamigera. The L. straminea and L. houdyshelii may be derived
from L. anhuiensis, L. chinensis, or L. longituba. These results could not only offer a genome-scale
platform for identification and utilization of Lycoris but also provide a phylogenomic framework for
future studies in this genus.
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1. Introduction

The genus Lycoris Herb. is a group of perennial bulbous plants with high ornamental
and medicinal values that belongs to the family Amaryllidaceae [1,2]. More than 110
Amaryllidaceae alkaloids were identified in Lycoris, which have the function of antitumor,
antibacterial, cytotoxic, and cholinesterase inhibition activities [3]. Species of Lycoris are
widely cultivated as ornamental plants for their large and beautiful flowers [4].

The genus contains about 20 species, mainly distributed in China (15 species recorded)
and Japan, and a few in Myanmar and North Korea. It has been demonstrated that frequent
interspecific hybridization and intraspecific morphological variation commonly happen in
Lycoris [5], resulting in the difficulty to make a clear standard for germplasm identification
at the morphological level. Moreover, new Lycoris species are being reported, such as,
L. hunanensis which was published as a new species from Yuanling County in China, which
showed some difference from L. straminea [6]. Lycoris × hubeiensis K. Liu was identified as
a natural hybrid of putative parents L. radiata and L. aurea [7]. In the Tsinling Mountains in
China, L. tsinlingensis was found and published as a new species, but it is largely similar
to L. chinensis [8]. In fact, there are different opinions on whether these subtle differences
could be used as a criterion for determining a new species, so a feasible evaluation standard
was suggested to clarify whether it is a new species or a variant. It requires some specific
sequences for germplasm identification and a clear interspecific relationship in Lycoris.

To explore the interspecific relationships and clarify the hypothesis of hybrid origin in
Lycoris, molecular markers of RAPD (random amplified polymorphic DNA) [9], nuclear ITS
(internal transcribed spacer) sequences [10], inter-simple sequence repeat (ISSR) [11], and
SCoT (start codon targeted) [12] have been used. RAPD analysis was consistent with the
classification based on chromosome karyotype, which divided 13 Lycoris species into two
groups. Nuclear ITS sequences of 15 Lycoris species suggested the three infrageneric clades
and the hybrid origin of L. straminea, L. caldwellii, and L. albiflora. However, the extensive
sequence variation has existed in many plant genomes, the complex and unpredictable evo-
lutionary behavior of ITS sequence reduced the utility for phylogenetic analysis [13]. Thus,
more methods were developed, inter-simple sequence repeat (ISSR) analyses of 20 species
and varieties indicated a high level of genetic variation among species in Lycoris, and four
major groups clustered by UPGMA analysis presented a consistence with morphological
and karyotype observations. SCoT markers of 14 Lycoris species were tested and clustered
into four groups, in which L. squamigera, L. incarnata, and all hybrids with the characteristic
of multi-colored flowers were gathered together, suggesting the possibility of the hybrid
origin of these two species. Although several strategies were developed for the analysis
of interspecific relationships in the genus Lycoris, each method offered limited resolution
within closely related species, resulting in that they did not get unanimous conclusion.
More effective molecular markers are needed to be developed for germplasm identification,
conservation, utilization, and breeding of the Lycoris species.

Plastid genes are regularly utilized in biotechnology or phylogeny, but with the limita-
tion of DNA sequencing costs, investigators always chose a dense taxon sampling, which
had a small number of informative loci for molecular phylogenetic analysis in Lycoris. For
example, the cpDNA trnL-F sequence of 15 Lycoris species was selected to construct a
phylogeny tree, which contained three infrageneric clades and was basically consistent
with the classification of morphology except for L. longituba, L. aurea, and L. straminea.
Phylogenetic reconstruction was obtained using plastid markers (trnS-trnfM and trnC-ycf6),
which clustered Lycoris spp. into three clades and differed from that derived using ITS
sequences [14]. Considering the rapid radiations and conservative genome evolution,
limited sequence variation could be detected, particularly at low taxonomic levels. More
sequence information and species were often desirable to increase phylogenetic resolution.
Actually, complete chloroplast genome sequences were more highly discriminating and
efficient as plant DNA barcodes. The development of next-generation DNA sequencing has
brought the benefits of large numbers of genome data collection and allowed the rapid ob-
taining of complete organellar genomes. Whole plastome sequencing has been an efficient
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option to increase the phylogenetic resolution for the phylogenetic analyses, especially
at lower taxonomic levels [15,16]. In angiosperms, the cp genome is highly conserved in
terms of structure, content, and order of genes [17]. They usually have a circular structure,
where two large, inverted repeat (IR) regions were separated by a large single-copy (LSC)
region and a small single-copy (SSC) region [18]. The cp genome sequences contain many
noncoding and variation regions, which has provided an essential molecular source for
interspecific phylogenetic and phylogeographic studies [19]. It has been successfully used
in many families and genus, for example, Dracunculus (Araceae), Cardiocrinum and Amana
(Liliaceae) [20,21], Artemisia (Asteraceae) [22], and Withania somnifera (Solanaceae) [23].

Since the first Lycoris complete cp genome of L. squamigera was published in 2018 [24],
there are six Lycoris species that have been published, and a phylogenetic tree based on the
complete cp genome sequences was constructed [25]. There is no doubt that more complete
chloroplast genome sequences will provide more information and insights for phylogenetic
relationship reconstruction. In this study, we sequenced complete cp genomes of four
Lycoris species. Based on previous studies, we systematically analyzed the similarities
and differences of global structural patterns, variations of genes, simple sequence repeats
(SSRs), and inverted repeats. Then the phylogenetic relationship was constructed based on
the complete chloroplast genome sequences of 11 species Lycoris. The comparative analysis
has demonstrated the effectiveness and applicability of chloroplast genome sequences for
Lycoris phylogeny and remarked on the potential applications for species identification,
development of DNA barcoding, and future phylogenetic studies of the genus and family.

2. Materials and Methods
2.1. Plant Sample Collection, DNA Extraction and Sequencing

The bulbs of L. incarnata, L. shaanxiensis, L. straminea, and L. houdyshelii were planted
in Nanjing Botanical Garden, Mem. Sun Yat-sen (E118_83, N32_06), Nanjing, China.
The specimen of L. incarnata (No. SYS00024942) was stored at the herbarium of Sun
Yat-Sen University, the specimen of L. straminea (No. 00110652) and L. houdyshelii (No.
00110525) were stored at the herbarium of the Institute of Botany, Chinese Academy
of Sciences. The L. shaanxiensis was collected from Shanxi Province and identified in
2018, but there was no specimen record in the herbarium in China. Fresh leaves were
collected, quick freezed in liquid nitrogen, then stored at −80 ◦C until use. Genomic DNA
was extracted using the Plant Genomic DNA Kit (Huayueyang, Beijing, China). DNA
integrity was examined by electrophoresis in 1% (w/v) agarose gel, and concentration
was measured using a NanoDrop spectrophotometer 2000 (Thermo Scientific; Waltham,
MA, USA), then accurate quantifications were completed by Qubit 2.0. High-quality DNA
libraries were constructed and sequenced at Novogene Bioinformatics Technology Co., Ltd.
(https://www.novogene.com/, accessed on March 2011 Tianjin, China). The strategy of
Nova-PE150 was selected for high-throughput sequencing, with an insert size of 350 bp.

2.2. Complete Cp Genome Assembly, Annotation and Structure Analysis

The complete cp genomes were assembled using the organelle assembler NOVOPlasty
(Version 3.3) [26] with the parameters of genome range (148,500–168,500) and k-mer (39).
The complete cp genome sequence of L. radiata (GenBank accession no. MN158120) was set
as a reference [27]. Assembled genome sequences were manually corrected by BLASTn
comparison and circularized. GC content was calculated by Geneious software (version
R11, http://www.geneious.com accessed on 3 October 2017). Correct cp genome sequences
were input on web server CPGAVAS2 (http://www.herbalgenomics.org/cpgavas2, ac-
cessed on 14 October 2020.) for the cp genome annotation and visualization with the
default parameters. Microsatellite sequences were identified with MISA [28], which set
the unit_size/min_repeats as 1/10, 2/6, 3/5, 4/5, 5/5, and 6/5. The maximum length of a
sequence between two SSRs was set as 100. MEGA [29] was performed for calculating the
relative synonymous codon usage (RSCU) values. Seven previously reported Lycoris chloro-
plast genome sequences, i.e., L. squamigera (MH118290), L. radiata (MN158120), L. sprengeri

https://www.novogene.com/
http://www.geneious.com
http://www.herbalgenomics.org/cpgavas2
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(MN158986), L. longituba (MN096601), L. chinensis (MT700549), L. anhuiensis (MT700550,
and L. aurea (NC_046752), were downloaded from the National Center of Biotechnology
Information (NCBI) database. The obtained cp genome sequences in the present study were
deposited in the NCBI, with the GenBank accession numbers of MW477439 (L. incarnata),
MW477440 (L. shaanxiensis), MW477441 (L. straminea), and MW477442 (L. houdyshelii).

2.3. Interspecific Comparison of Chloroplast Genomes

To explore the divergence regions in Lycoris, the program IRscope (https://irscope.
shinyapps.io/irapp/, accessed on 20 June 2021) was used to visualize the divergence on
the boundaries of the junction sites of the 11 chloroplast genome sequences in Lycoris [30].
The mVISTA program (http://genome.lbl.gov/vista/index.shtml, accessed on 23 June
2021) [31] was used to align and compare the complete cp genomes of Lycoris with the
default parameters. Each annotation of the Lycoris species was selected as a reference, and
Shuffle-LAGAN mode was visualized in an mVISTA plot.

2.4. Phylogenetic Analyses

A total of 11 complete cp genome sequences of Lycoris were used for phylogenetic
analysis, including seven reported species and four new species in this study, Narcissus poet-
icus (MH706763) was selected as outgroup taxa. The reported sequences were downloaded
from the NCBI database. Both the complete plastid sequences and 79 common PCGs
(output by Geneious) were used for the ML tree construction. The nucleotide sequences
were aligned using the MAFFT plugin [32,33] in Geneious with default settings. All gaps
are treated as missing data. The complete alignment was used to reconstruct a maximum
likelihood tree using PHYML [34] with 1000 bootstrap replicates. The GTR+G+I model
suggested by jModelTest 2.1.4 [35] was used for each dataset.

3. Results and Discussion
3.1. General Features of the Cp Genomes of Lycoris

In the present study, we obtained four cp genomes of Lycoris by next-generation
sequencing and de novo assembly, which were L. incarnata, L. shaanxiensis, L. straminea,
and L. houdyshelii. A total of 7.2, 6.7, 5.5, and 4.8 million reads were obtained, and the
average organelle coverage reached 7291×, 6761×, 5531× and 4581×, respectively (Table 1).
The complete chloroplast genomes typically range from 120 to 170 kilobase pairs (kb)
in length [17]. In Lycoris, the length of most species was around 158 kb [25]. In the
present study, the full length of four species was 158,405, 158,498, 158,490, and 158,490 bp,
respectively, with the same GC content of 37.8% (Table 1). The visualized circular map
showed the typical angiosperm cp genome structure in Lycoris, which consists of one
large single-copy (86,464–86,593 bp) and one small single-copy (18,352–18,499 bp) region,
separated by a pair of inverted repeat (IR) (26,730–26,765) regions (Table 1 and Figure 1).

Table 1. Summary information of four chloroplast genomes of the Lycoris species.

Genome Features L. incarnata L. shaanxiensis L. straminea L. houdyshelii

Average organelle coverage 7291× 6761× 5531× 4581×
Genome size (bp) 158,405 158,498 158,490 158,490

LSC size (bp) 86,593 86,469 86,473 86,464
SSC size (bp) 18,352 18,499 18,487 18,496
IR size (bp) 26,730 26,765 26,765 26,765

GC content (%) 37.8 37.8 37.8 37.8
No. of genes 113 113 113 113
No. of PCGs 79 79 79 79

No. of tRNAs 30 30 30 30
No. of rRNAs 4 4 4 4

Duplicated genes 20 20 20 20

https://irscope.shinyapps.io/irapp/
https://irscope.shinyapps.io/irapp/
http://genome.lbl.gov/vista/index.shtml
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Figure 1. The plastome features of the Lycoris species. The map contains four rings, from the center going outward, the
first circle means the forward and reverse repeats connected with red and green arcs, respectively. The second circle shows
the tandem repeats marked with short bars. The third circle shows the microsatellites. The fourth circle shows the gene
structure on the plastome. The genes were colored based on the functional categories, which were shown in the center of
the map.

Compared with reported Lycoris species [25], the complete cp genomes size ranged
from 158,335 (L. radiata) to 158,687 bp (L. sprengeri). Here, the genome size of these three
species is between the longest and shortest; the length of LSC and SSC regions made
a greater contribution to the full size. On the contrary, the IR regions were relatively
conservative. In Lycoris cp genomes, a total of 113 genes were annotated, including 79
protein-coding genes (PCGs), 30 tRNAs, and 4 rRNAs (Table 1 and Figure 1). Compared
with our previous reports, we found that the number of genes was highly conservative in
Lycoris cp genomes. They were divided into four categories; contained genes for photosyn-
thesis, self-replication, other genes, and function unknown (Table 2). There were 20 genes



Biology 2021, 10, 715 6 of 14

that were duplicated more than once. Four rRNAs were duplicated, which is consistent
with other Lycoris species [25] and most plants, such as Allium [36] and Amomum [37].

Table 2. Gene composition of four Lycoris chloroplast genomes.

Category of Genes Group of Genes Name of Genes

Genes for photosynthesis

Subunits of photosystem I psaB, psaA, psaI, psaJ, psaC, ycf4

Subunits of photosystem II psbA, psbK, psbI, psbM, psbD, psbC, psbZ, psbJ, psbL,
psbF, psbE, psbB, psbT, psbN, psbH, ycf3

Subunits of NADH-dehydrogenase ndhJ, ndhK, ndhC, ndhB a (×2), ndhF, ndhD,
ndhE,ndhG, ndhI, ndhA a, ndhH

Subunits of cytochrome b/f complex petN, petA, petL, petG, petB a, petD a

Subunits of ATP synthase atpA, atpF a, atpH, atpI, atpE, atpB
Subunit of rubisco rbcL

Self-replication

Large subunit of ribosome rpl33, rpl20, rpl36, rpl14, rpl16 a, rpl22, rpl2 a (×2),
rpl23 (×2), rpl32

DNA dependent RNA polymerase rpoC2, rpoC1 a, rpoB, rpoA

Small subunit of ribosome rps16 a, rps2, rps14, rps4, rps18, rps12 b (×2), rps11,
rps8, rps3, rps19 (×2), rps7 (×2), rps15

Ribosomal RNAs rrn16 (×2), rrn23 (×2), rrn4.5 (×2), rrn5 (×2)

Transfer RNAs

trnK-UUU a, trnQ-UUG, trnS-GCU, trnG-GCC a,
trnR-UCU,trnC-GCA, trnD-GUC, trnY-GUA,
trnE-UUC, trnT-GGU,trnS-UGA, trnG-GCC,

trnfM-CAU, trnS-GGA, trnT-UGU,trnL-UAA a,
trnF-GAA, trnV-UAC a, trnM-CAU,

trnW-CCA,trnP-UGG, trnH-GUG (×2), trnI-CAU
(×2), trnL-CAA (×2),trnV-GAC (×2), trnI-GAU a

(×2), trnA-UGC a (×2), trnR-ACG (×2)trnN-GUU
(×2), trnL-UAG

Other genes

Subunit of Acetyl-CoA-carboxylase accD
c-type cytochrome synthesis gene ccsA

Envelop membrane protein cemA
Protease clpP

Translational initiation factor infA
Maturase matK

Component of TIC complex ycf1 (x2)

Unknown Conserved open reading frames ycf2 (x2)
a means the genes containing a single intron; b indicates the genes containing two introns; (×2) indicates the genes duplicated in the
IR regions.

Group II (G2) introns are self-splicing RNAs and mobile elements, which could
provide rich characters for comparative analysis and phylogeny construction at both
infrageneric and intrafamilial levels [38–40]. For example, the matK open reading frame
(ORF) has been used as a marker for plant evolutionary studies. Tnterestingly, trnK-UUU
contains a group II intron (trnKI1), which encodes the matK ORF, which attracts interest
because it represents an unusual form of a group II intron [41]. In four Lycoris species,
there were 18 splitting genes in L. incarnata and 17 in the other three species. There is one
more ndhF located in IR and SSC regions in L. incarnata, which happened in L. radiata and
L. sprengeri [25]. Most of the splitting genes contain one intron and two exons, except for
ycf3 and clpP; they contained two introns and three exons (Table S1).

3.2. CpSSRs and Repeat Structures

Chloroplast simple sequence repeats (cpSSRs) are microsatellites, showing typically
mononucleotide tandem repeats. They commonly showed intraspecific variation in repeat
numbers when they were located in the noncoding regions of the chloroplast genome [42].
Some works have proved the potential applications of variations in the noncoding regions
of the chloroplast genome for phylogenetic analysis at the level of genus and species [43,44].
In the cp genomes of L. incarnata, L. shaanxiensis, L. straminea, and L. houdyshelii, there
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were 51, 44, 45, and 45 SSRs, respectively. The same as other reported Lycoris species [25],
type of mononucleotide (A/T) was the most variable, which was 48, 42, 44, and 44 in
four species (Figure 2 and Table S2). One mononucleotide (C/G) was detected in only
L. incarnata and L. houdyshelii. One dinucleotide (AT/AT) was commonly detected in
Lycoris species except for the L. incarnata, which contains two SSRs of AT/AT. A previous
study also showed one dinucleotide (AT/AT) in seven Lycoris species [25], suggesting the
conservation of dinucleotide SSRs among species. Trinucleotide (AAT/ATT) was only
detected in L. incarnata and L. shaanxiensis. The trinucleotide (ATT) was only detected in
L. incarnata and L. shaanxiensis, which was existed in other four species (Figure 2), L. aurea,
L. radiata, L. sprengeri, and L. squamigera [25], accounting for half of the reported Lycoris
species. No tetranucleotide repetition was detected in all reported Lycoris species.

Figure 2. Statistics of simple sequence repeats of cp genomes of four Lycoris species. (A) Numbers of
different repeat types; (B) Numbers of identified each SSRs motifs.

3.3. Statistics of Codon Usage

Codon usage analysis is beneficial for studies of evolution and new gene mining,
which varies among different species [45]. Here, the complete cp genome sequences of
four Lycoris were analyzed to investigate the amino acid frequency, the number of codon
usage, the bias of codon usage, and relative synonymous codon usage (RSCU) (Table S3).
Although the total number of codons was ranging from 48,207 to 49,641 in four species,
showing a tiny change, the types of codons and amino acids were the same. A total of
64 codons were deduced, which were encoding 21 amino acids. Met and Trp were encoded
by one codon usage, while others were encoding by multiple synonymous codons, ranging
from two to six (Figure 3). The three highest frequency (AGA, GCT, and TTA) and four
lowest frequency (AGC, GGC, GAC, and CTG) codons were observed in four species. It
was defined as preferred codon usage when the RSCU value was >1.00 and vice versa.
Except for methionine and tryptophan, there were 32 preferred and 30 non-preferred codon
usages in L. incarnata, L. shaanxiensis, and L. houdyshelii, which was the same with the
reported five Lycoris species, suggesting the main pattern of this codon usage in Lycoris [25].
In L. straminea, 31 preferred and 31 non-preferred codon usages were identified, which is
different from any reported Lycoris species. The result will help us to understand the related
patterns in Lycoris species and improve the research on codon usage in plant biology.
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Figure 3. Codon content and codon usage of 20 amino acids and stop codons in protein-coding genes
of the four Lycoris cp genomes. Each histogram from left to right was L. incarnata, L. shaanxiensis,
L. straminea, and L. houdyshelii, respectively.

3.4. Inverted Repeats Contraction, Expansion, and Interspecific Comparison

The typical circular structure of the chloroplast genome consists of regions of IR, LSC,
and SSC, which makes four boundaries (IRb/LSC, IRb/SSC, IRa/SSC, and IRa/LSC). The
contraction or expansion of the IR regions commonly leads to the length variation of the
chloroplast genomes among different plant species [20,46,47]. In the present study, we
compared the IR/SC borders and the adjacent genes among the eleven Lycoris species,
including the previously reported seven species [25,48,49] and four newly sequenced
species. It showed the well-conserved genomic structure, but it also exhibited divergence
at the IR/SC boundary regions among eleven Lycoris chloroplast genomes (Figure 4). In
the most monocot plastid genome structure, IR regions expand into rps19 [47]; there was
no obvious expansion at the IRb/LSC boundary in Lycoris, except for the L. radiata and
L. incarnata, their IRb regions expanded by 37 bp toward the rps19 gene. In all Lycoris species,
the IRa/SSC border extended into the ycf1 genes with 925–982 bp. In addition, the ndhF
gene overlapped with the IRa/SSC border by 50 bp in seven species, including L. chinensis,
L. anhuiensis, L. longituba, L. squamigera, L. shaanxiensis, L. straminea, and L. houdyshelii
(Figure 4).

To rapidly identify the conserved sequences in long alignments, global interspecific
comparisons were performed using software mVISTA [31,50]. A total of 11 Lycoris cp
genome sequences (same as IR analysis) were selected for comparative analysis. Most
of the sequence variations were found in the LSC and SSC regions, which being largely
consistent with our previous studies [25], in which the IR regions showed the high se-
quence conservation of the 11 species (Figure 5). A lot of evidence indicated that ndhF has
great power in discrimination at the low taxonomic level [51]. In Lycoris, ycf1 and ndhF
presented the most divergence in all species, suggesting the potential molecular markers
for phylogenetic analysis and species identification. Although the length and boundary
distribution characteristics of ndhF suggested that the L. radiata was a putative female
parent of L. incarnata, the comparative analysis suggested the closer relationship of seven
related species that have similar IR boundaries features (Figures 4 and 5).
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Figure 4. Comparison of border pattern of large single-copy regions (LSC), small single-copy regions
(SSC), and an inverted repeat (IR) among 11 Lycoris chloroplast genomes.
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Figure 5. Sequence identity plot using mVISTA based on the complete cp sequences of 11 Lycoris
species with L. sprengeri as a reference. A 70% cut-off identity was used for the plots, and the Y-scale
represents the percent identity from 50% to 100%.

3.5. Phylogenetic Analysis

To explore the interspecific relationship and phylogeny reconstruction, a total of
11 Lycoris species with complete chloroplast genome sequences were selected for the
construction of the maximum likelihood (ML) tree and Narcissus poeticus was chosen as
the outgroup taxa. Both the complete plastid genome sequences and 79 common protein-
coding genes were used for phylogenetic analysis, and the phylogenetic trees based on
these two datasets showed the same topology (Figure 6).

Here, 11 Lycoris species were clustered into three main groups, and L. sprengeri is basal
for the other species in Lycoris; however, previous cpDNA sequences analysis showed that
the L. radiata had a basal position within Lycoris [10]. It involves the discussion of the origin
of hybrid species of Lycoris. Some studies have suggested that the four species of L. incarnata,
L. shaanxiensis, L. straminea, and L. houdyshelii were hybrid origin species [52], plastid DNA
sequences and SCoT analysis showed that natural hybrids L. incarnata and L. squamigera
were located in same clade [12,14]. Here, two species, L. incarnata and L. shaanxiensis,
with similar morphological characteristics, are not clustered together. L. incarnata was
clustered with L. radiata, suggesting that the L. radiata may be the female donor of the
L. incarnata. L. shaanxiensis showed the closest relationship to L. squamigera, which was
also considered as a hybrid origin species [14], suggesting the same ancestor of these
two species, and L. radiata may be their donor according to the phylogenetic analysis by
complete cp genome sequences. L. straminea and L. houdyshelii showed the most similar
morphological and ecological characteristics except for the flower color. L. straminea was a
species with multiple ecological properties, which always exhibits a color change from light
yellow to medium yellow degrees, but the flower of L. houdyshelii is white. If only based on
morphological features, L. houdyshelii could be considered as a variant; however, evidence
has shown that they have a totally different chromosome number and karyotype [12,53].
RAPD analysis also indicated that they were clustered into two groups [9]. Evaluation of
different methods, including morphology, karyotypes, plastid sequences, and molecular
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marker, produced both overlap and conflict on the interspecific relationship and phylogeny
because of the variant resolutions and parameters.

Figure 6. Phylogenetic analysis of the 11 Lycoris species by maximum likelihood (ML) analyses,
Narcissus poeticus was the outgroup taxa. (A) The topology was constructed by the complete cp
genome sequences. (B) The tree was constructed using 85 common protein-coding genes.

Actually, the complete plastid sequence has been proved as an ideal method for
phylogenetic relationship reconstruction. In the genus of Lycoris, some specific plastid
gene sequences [14,54] and rDNA internal transcribed spacer (ITS) sequences [55,56] and
have been developed before more complete cp genome sequences were available. More
complete cp genome sequences provided adequate information and foundation for the
clarification of inter-specific relationships and phylogenetic analysis. In the present study,
we provided four cp genome sequences of Lycoris; they not only had similar morphological
features but were also considered as the natural hybrid species. The phylogenic analysis
supported the same group between L. straminea and L. houdyshelii, but L. houdyshelii showed
a closer relationship with L. anhuiensis, L. chinensis, and L. longituba than L. straminea, the
closest relationship of these five species also suggesting that L. straminea and L. houdyshelii
may be derived from one of the three species.
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4. Conclusions

In this study, we provided the complete cp genome sequences of L. incarnata, L. shaanx-
iensis, L. straminea, and L. houdyshelii and performed the interspecific comparison and
phylogenetic analysis using whole cp genome sequences of 11 Lycoris species. The results
not only showed the sequence conservation of genome size, gene number, and order
but also distinguish the difference between IR-SC boundary regions. The interspecific
comparison analysis supported the branch of phylogenetic analysis, where the species
on the same sub-branch had the same border patterns, suggesting the high resolution
and reliability of phylogenetic reconstruction by the complete cp genome sequences in
Lycoris. Phylogeny analysis suggested that the L. radiata may be the female donor of the
L. incarnata, L. shaanxiensis, and L. squamigera. L. straminea and L. houdyshelii may be derived
from L. anhuiensis, L. chinensis, or L. longituba. The results will help to make the intraspecific
relationship and evolution clear and benefit the identification, protection, and utilization of
Lycoris germplasm resources.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/biology10080715/s1, Table S1: Splitting genes with introns and exons in the four Lycoris
chloroplast genomes, Table S2: Chloroplast simple sequence repeats (cpSSRs) of four Lycoris species,
Table S3: Relative synonymous codon usage (RSCU) in the four Lycoris chloroplast genomes.
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