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Machine-learning-assisted insight into spin
ice Dy2Ti2O7
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Complex behavior poses challenges in extracting models from experiment. An example is

spin liquid formation in frustrated magnets like Dy2Ti2O7. Understanding has been hindered

by issues including disorder, glass formation, and interpretation of scattering data. Here, we

use an automated capability to extract model Hamiltonians from data, and to identify dif-

ferent magnetic regimes. This involves training an autoencoder to learn a compressed

representation of three-dimensional diffuse scattering, over a wide range of spin Hamilto-

nians. The autoencoder finds optimal matches according to scattering and heat capacity data

and provides confidence intervals. Validation tests indicate that our optimal Hamiltonian

accurately predicts temperature and field dependence of both magnetic structure and

magnetization, as well as glass formation and irreversibility in Dy2Ti2O7. The autoencoder can

also categorize different magnetic behaviors and eliminate background noise and artifacts in

raw data. Our methodology is readily applicable to other materials and types of scattering

problems.
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Extracting the correct interactions from experimental data is
essential for modeling. For magnetic insulators, the model is
described by the spin Hamiltonian equation, dictated by

symmetry, single-ion properties, and electron overlap between
ions. The problem of extracting a spin Hamiltonian from neutron
scattering data (inverse scattering problem) is often ill-posed and
compounded by the need to use theory to interpret scattering
data. Further, the available experimental data may not be enough
to accurately determine the model parameters because of limited
access to experimental data, a large noise magnitude at each
scattering wavevector, or systematic errors associated with, e.g.,
background subtraction. Selecting the optimal Hamiltonian to
model the experimental data is often a formidable task, especially
when many parameters must be simultaneously determined.
Tools for doing so are needed to uncover the physics that is
emerging from large classes of complex magnetic materials1,2.

Dy2Ti2O7 is a highly frustrated magnet showing complex beha-
vior including spin liquid formation3–8. The magnetism originates
from Dy3+ ions which behave as classical Ising spins on a pyro-
chlore lattice of corner-linked tetrahedra, as in Fig. 1a. Figure 1b
shows the four essential magnetic interactions including a ferro-
magnetic coupling that results from the combination of exchange
with a large dipolar interaction. This FM coupling makes Dy2Ti2O7

a canonical spin-ice material, i.e., the spins on each tetra-
hedron obey the ice rules that only allow for two-in two-out
configurations9,10. This divergenc-free condition leads to a spin
liquid with macroscopic degeneracy that features north and south
charged magnetic monopoles interacting via a 1/r potential at ele-
vated temperatures3. A full low temperature characterization
demands the study of a vast number of spins subject to short and
long-range interactions. Spin dynamics occurs through millisecond
quantum tunneling processes11 and the measured characteristic
equilibration time τ increases drastically upon lowering the tem-
perature, leading to irreversible behavior below 600mK12–15. This
slowdown has resulted in major difficulties16,17 in measuring and
interpreting experiments such as heat capacity at low temperatures.

Here we introduce an autoencoder-based approach that can
potentially address important modeling challenges, such as a
proper background and noise subtraction, more reliable inference
of model Hamiltonians, improved transferability to other physical
systems, and efficiency. We apply our method to neutron scat-
tering measurements of Dy2Ti2O7 in order to infer the optimal
parameters for a dipolar spin ice model description.

Results
Neutron scattering measurements and simulations. Here we
use diffuse neutron scattering from time-of-flight techniques (see

Methods: Experimental details) on the CORELLI instrument at
the Spallation Neutron Source, Oak Ridge National Laboratory to
measure the magnetic state of Dy2Ti2O7. Three-dimensional (3D)
volumes of diffuse scattering were measured in the 100 –960 mK
temperature range. In view of the low temperature equilibration
challenge, we undertake our analysis on data sets at 680 mK,
which is low enough for correlations to be well developed but
sufficiently high to reach equilibrium over a short time scale.
Figure 2a shows the background-subtracted data at 680 mK. This
is proportional to the modulus squared of the spin components in
the wavevector space. However, an additional aspect of neutron
scattering is that it samples only the spin components perpen-
dicular to the wavevector transfer Q.

We employ a dipolar spin-ice Hamiltonian that includes
exchange terms up to third-nearest neighbors:

H ¼ J1
P
i;jh i1

Si � Sj þ J2
P
i;jh i2

Si � Sj þ J3
P
i;jh i3

Si � Sj

þ J30
P
i;jh i30

Si � Sj þ Dr31
P
i;j

Si�Sj
rijj j3 �

3 Si�rijð Þ Sj�rijð Þ
rijj j5

� � ð1Þ

where Si can be viewed as an Ising spin of the ith ion, Fig. 1b. The
model includes first, second, and two different third nearest
neighbor interaction strengths, J1, J2, J3, and J3′, respectively.
There is also a dipolar interaction with strength D, which couples
the ith and the jth spins, according to their displacement vector
rij. Prior work has determined D= 1.3224 K and J1= 3.41 K to
high accuracy17–21. In the present modeling effort, we seek to
determine the three unknown parameters J2, J3, and J3′ without
any use of prior knowledge. Given a model Hamiltonian H, we
use Metropolis Monte Carlo to generate a simulated structure
factor, Ssim(Q), to be compared with the experimental data Sexp

(Q) (Methods: Simulation details).

Optimizing Hamiltonian for diffuse scattering data. In a direct
approach, one might try to minimize the squared distance,

χ2S Qð Þ ¼
1
N

X
Q

mðQÞ Sexp Qð Þ � Ssim Qð Þ� �2 ð2Þ

between the raw experiment and simulation data. We introduce a
factor m Qð Þ 2 f0; 1g masking selected Q-points where experi-
mental artifacts can be identified (see Supplementary Fig. 4). The
number of non-masked Q-points is N ¼ P

Q mðQÞ � 1:2 ´ 105.
We initially investigated optimization methods, such as the par-
ticle swarm method22, to overcome local barriers and find the
global minimum of χ2S Qð Þ. However, despite nominal success in
optimization, we quickly ran into reliability issues stemming from
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Fig. 1 Crystal structure and the effective magnetic model. a Atomic structure of Dy2Ti2O7 comprised of tetrahedra of magnetic Dy ions (blue) and
nonmagnetic octahedra of oxygen ions (red) surrounding Ti ions (cyan). b The magnetic moments located on Dy ions are constrained by crystal field
interactions to point in or out of the tetrahedra. They form a corner sharing pyrochlore lattice. The pathways of nearest neighbor (1), next-nearest-neighbor
(2) and two inequivalent next-next-nearest neighbor (3 and 3′) interactions are shown as thick colored lines.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-14660-y

2 NATURE COMMUNICATIONS |          (2020) 11:892 | https://doi.org/10.1038/s41467-020-14660-y | www.nature.com/naturecommunications

www.nature.com/naturecommunications


errors in the experimental and simulation data. As we will discuss
below, χ2S Qð Þ is both noisy and effectively flat around its minimum,
such that many distinct model Hamiltonians could achieve simi-
larly small values of the χ2S Qð Þ error measure. Thus, even if we

could find the global minimum of χ2S Qð Þ, it might still be far from
the physically correct model for Dy2Ti2O7.

To address the ill-posed nature of this inverse scattering problem,
we present two strategies: (1) We employ machine learning
techniques to replace χ2S Qð Þ. with our error measure χ2SL that is
more robust to errors in the experimental and simulation data, and
puts more weight on “characteristic features” of the structure factor.
(2) Rather than reporting just the single “best” model, we sample
from the entire set of Hamiltonian models for which the error
measure is below some tolerance threshold. In this way, our method
will report not just a model, but also a model uncertainty.

We use an autoencoder23 to formulate χ2SL , our choice of error
measure. Autoencoders were originally developed in the context
of computer vision, where they are known to be effective at image
compression and denoising tasks. Here we apply them to
interpret structure factor data, and to disambiguate among many
possible solutions of the inverse scattering problem. Our
autoencoder is a neural network that takes an S(Q) as input
(either simulated or experimental), encodes it into a compressed
latent space representation SL, and then decodes to an output
SAE(Q) that captures the essence of the input S(Q), while
removing irrelevant noise and artifacts.

The autoencoder’s latent space SL ¼ ðS1; S2; ¼ SDÞ provides a
low-dimensional characterization of the S(Q) data. The dimension
D of the latent space should strike a balance between overfitting and
underfitting. Keeping D relatively small limits the autoencoder’s
ability to fit irrelevant noise in the training data. On the other hand,
D should be large enough to allow the autoencoder flexibility to
capture physically relevant characteristics in S(Q). We selected D=
30 based on the D-dependance of ΔS(Q) (error over the validation
dataset). (see Supplementary Fig. 7)

Note that the physical S(Q) data will contain many more
scalar components than the 30 available in the latent space. Thus,
by design, the autoencoder’s output SAE(Q) can only be an
approximation to its input S(Q). After proper training, one hopes
that the autoencoder will be able to extract the relevant
characteristics of a given S(Q), while discarding irrelevant
information such as noise and experimental artifacts. The
autoencoder determines what information is relevant according
to its ability to encode and faithfully decode the training data
(Methods: Training details).

We employ the simplest possible autoencoder architecture: a
fully-connected neural network with a single hidden layer. The
hidden space activations (i.e., the latent space representation) are
defined as SL ¼ f ðPQ WL;QmðQÞSðQÞ þ bLÞ, where S(Q) is the
input to the autoencoder, and the matrix WL,Q and vector bL are to
be determined from the machine learning training process. Given
simulated structure factor data as input, we interpolate to the
experimental Q-points as necessary. The output of the autoencoder
is defined as SAEðQÞ ¼ f ðP30

L¼1 W
0
Q;LSL þ b0QÞ, where the new

matrix W 0
Q;L and vector b0Q are also trainable. We employ the

logistic activation function f xð Þ ¼ 1=ð1þ e�xÞ at both layers. This
choice guarantees that the output SAE(Q) is non-negative.

Figure 2 illustrates how the trained autoencoder processes the
Dy2Ti2O7 scattering data. Figure 2a shows the raw experimental
data Sexp(Q) while Fig. 2b shows how the autoencoder filters the
experimental data to produce SexpAE Qð Þ. The autoencoder preserves
important qualitative features of the data, while being very
effective at removing experimental artifacts. Figure 2c shows the
simulated data Ssimopt Qð Þ for the optimal Hamiltonian model Hopt,
without any autoencoder filtering. We will describe later our
procedure to determine Hopt. Note that the best model, Ssimopt Qð Þ, is
in remarkably good agreement with SexpAE Qð Þ. This agreement is
consistent with the fact that the autoencoder was trained
specifically to reproduce simulated data.

Figure 3 provides another way to understand how the
autoencoder is processing the S(Q) data. In Fig. 3a we show a
cross section of Sexp(Q) in the high symmetry plane h;�h; 0½ ��ð
k; k;�2k½ �Þ. Figure 3b shows the corresponding simulated data
Ssimopt Qð Þ for the optimal model Hamiltonian. Now we perturb Hopt

to a new model Hperturb, which keeps all parameters from Hopt

except modifies J2 from 0.16 K to −0.18 K. Despite the relatively
significant change ΔJ2 ffi 0:1J1, there is very little change to
the structure factor. Indeed, Fig. 3c shows that ΔSsim ¼ Ssimopt Qð Þ �
Ssimperturb Qð Þ is an order of magnitude smaller than the peaks in

Ssimopt Qð Þ, and relatively noisy. This illustrates the inherent
difficulty of our inverse scattering problem: many J2 values seem
to produce similarly good Hamiltonians.

The autoencoder latent space can be effective in extracting and
amplifying important S(Q) features that might otherwise be
hidden. To show this, we consider the latent space representations
SL and S0L for Ssimopt Qð Þ and Ssimperturb Qð Þ, respectively. We ask: How
much does SL need to be modified toward S0L in order to capture
the important characteristics of Ssimperturb Qð Þ, i.e., the perturbations
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Fig. 2 Comparison of the experimental and simulated data. a The scattering function Sexp(Q) for the Dy2Ti2O7 crystal at 680mK. b The same
experimental data after being filtered by the autoencoder, SexpAE ðQÞ. c Simulated scattering data from the optimal model spin Hamiltonian, Ssimopt ðQÞ. In going
from (a) to (b), the autoencoder has filtered out experimental artifacts such as the red peaks, the missing data at the dark patches, etc. Using both
scattering and heat capacity data, we determine the optimal spin Hamiltonian couplings to be J2= 0.00(6) K, J3= 0.014 (16) K and J30 = 0.096(12) K with
J1= 3.41 K and D= 1.3224 K having been fixed in prior work17.
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to the structure factor? To answer this question, we replace 1, 6,
and 12 latent space components of SL with the corresponding ones
in S0L. The components selected are those with the largest
deviations, jSL � S0Lj. Figure 3d–f show the change in autoencoder
output, after substitution of the latent space components. Panel f
captures some physically important characteristics of ΔSsim while
discarding irrelevant noise. Latent space components beyond 12
carry little information about ΔSsim.

Now we show how the autoencoder can assist in solving the
inverse scattering problem, i.e., in finding the optimal model
Hamiltonian Hopt given the experimental data Sexp(Q). To
illustrate the important ideas, we first focus on determining J2,
assuming the other parameters of Hopt are already known.

Figure 4a shows χ2SðQÞ as a function of J2, illustrating the difficulty
in making direct comparisons between experimental and simulated
scattering data, Eq. (2). In principle the minimum of χ2SðQÞ would
give J2, but in practice one must contend with relatively large
uncertainties in the data. The visible scatter in Fig. 4a is mostly a
consequence of limited statistics of the simulated data. Other
sources of error, such as systematic experimental error, will also
exist and are more difficult to quantify.

A natural modification is to replace χ2SðQÞ with the squared
distance of autoencoder-filtered structure factors,

χ2SAE Qð Þ ¼
1
N

X
Q

mðQÞ SexpAE Qð Þ � SsimAE Qð Þ� �2
: ð3Þ

This measure should be more robust to artifacts in both the
experimental and simulation data. Indeed, as shown in Fig. 4b, it
does slightly better in identifying an optimal J2. The behavior of
χ2SAE Qð Þ as a function of the Hamiltonian parameters is similar to

the one obtained from the latent space representation of the S(Q)
data using a linear autoencoder, which is equivalent to the
principal component analysis (PCA).

Here we propose an alternative error measure. The
30-dimensional latent space representation SL should, in some
sense, capture the most relevant information in S(Q). This
suggests that to compare Sexp(Q) to Ssim(Q) we should actually
look at the squared distance of their latent space vectors

χ2SL ¼
1
NL

XD
L¼1

SexpL � SsimL
� �2

: ð4Þ

Figure 4c shows that this error measure produces the clearest
minimum, and thus the most precise identification of J2. We will
use χ2SL as our optimization cost function in what follows.

The inverse scattering problem for Dy2Ti2O7 requires finding
not just one, but three unknown Hamiltonian parameters: J2, J3,
and J30 . We employ a variant of the Efficient Global Optimization
algorithm to find the Hamiltonian Hopt that minimizes χ2SL

24. In
this approach, one iteratively constructs a dataset of carefully
sampled Hamiltonians H. For each Hamiltonian H, we calculate a
simulated structure factor Ssim(Q) and corresponding deviation
χ2SL from the experimental data. With all such data, one builds a

Gaussian process regression model χ̂2SLðHÞ that predicts χ2SL for

Hamiltonians H not yet sampled. The low-cost model χ̂2SLðHÞ can
be rapidly scanned over the space of Hamiltonians. Also, χ̂2SLðHÞ
acts as a denoiser, effectively “averaging out” uncorrelated
stochastic errors in the χ2SL data. As more data is collected, the

improved models χ̂2SLðHÞ will progressively become more faithful
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account for the perturbation on J2 (see main text for details).
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to χ2SL . Optimization, as described in methods (Methods:
Optimization) gives the optimal parameters as J2= 0.34(6) K,
J3=−0.134(18) K and J30 = 0.102(32) K. The red curve of Fig. 4c
shows a cross section of the final χ̂2SLðHÞ model. The minimum at
J2= 0 is readily apparent. The dashed line in Fig. 4a indicates our
empirically selected error tolerance threshold C2

SðQÞ. The dashed

line in Fig. 4c shows C2
SL
, the corresponding tolerance threshold

for the latent space error. We calculated C2
SL
from C2

SðQÞ under the
assumption of a fixed amount of uncertainty in the scattering data
[Methods: Uncertainty quantification]. Figure 4d shows the
three-dimensional regions of uncertainty corresponding to
χ2SðQÞ <C2

SðQÞ (cyan) and χ2SL < C2
SL

(blue).

Multi-modal optimization. With more experimental constraints,
we can further reduce uncertainty in Hopt. For this purpose, we
define a new error measure χ2multi ¼ χ2SL ´ χ

2
cv
, where χ2Cv

¼
cexpv � csimv
� �2

denotes the squared error between experimental4

and simulated heat capacities, cv ¼ 1
T2 U2 � Uh i2� �

. Minimizing
this multi-objective error function slightly modifies the model
parameters: J2= 0.00(6) K, J3=−0.014(16) K and J30 = 0.102(16)
K, pictured as a green cross in Fig. 4d. But perhaps more
importantly, the uncertainties in these parameters have decreased
significantly. This is illustrated by the very compact dark-blue
region in Fig. 4d, for which χ2multi <C2

multi, where C2
multi is again

calculated as a function of C2
SðQÞ.

The agreement between Sexp(Q) and Ssimopt ðQÞ is quite good, as
previously observed in Figs. 2 and 3. Further comparisons are
shown in Supplementary Fig. 2. To truly validate the model,
however, we should compare to experimental data that has not
been used during the model optimization process. For this
purpose, we use the magnetic field dependence of different
physical properties shown in Fig. 5. The optimal spin model
reproduces the measured field dependence of the magnetiza-
tion25, the zero-field cooled (ZFC) and field cooled (FC) magnetic
susceptibility12, and the diffuse scattering at multiple temperature
and applied field conditions, confirming that we have indeed
found a model Hamiltonian adequate to describe the magnetic
properties of Dy2Ti2O7 including the onset of irreversibility and
glassiness.

Discussion
Our present study has primarily focused on robust inference of
the optimal model Hamiltonian. There are two important aspects
of our methodology that we wish to emphasize. First, our use of
an autoencoder, trained on large quantities of simulation data,
provides a distance measure χ2SL that allows robust comparisons to
experimental scattering data. Second, our use of Gaussian process
regression models χ̂2SL as a low-cost predictor for χ

2
SL
improves the

quality of our optimized Hamiltonians. Gaussian process
regression averages out uncorrelated stochastic error in χ2SL , and
helps in making uncertainty estimates. The latter is crucial for
guiding the design of future experiments or simulations. Whereas
traditional analysis of diffraction and inelastic neutron scattering
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is time consuming and error prone, our methodology is fully
automated, and helps overcome difficulties of visualizing 3D or
4D data.

Finally, we remark that the autoencoder latent space provides
an interesting characterization of structure factor data in its own
right. Supplementary Fig. 5 in the supplement illustrates how the
30-dimensional latent space variables map to S(Q). Supplemen-
tary Fig. 6 illustrates the activations of each latent space variable
at varying points in the space of J3 � J30 parameters.

Future studies might explore more direct application of auto-
encoders to the problems of background subtraction and of
denoising experimental data. Here, we investigate another inter-
esting application of the autoencoder: It can delineate different
magnetic regimes. To demonstrate this, we will explore the space
of J3 and J30 parameters, while keeping J2= 0 K fixed. Our goal is
to build a map of regimes with different dominant spatial mag-
netic correlations within this two-dimensional Hamiltonian
space. We caution that the transitions between regimes will
typically not be sharp phase transitions, so our modeling will not
produce a phase diagram in the strict sense.

Figure 6a shows the result of our clustering analysis on the
simulated data (Methods: Clustering). The optimal spin Hamil-
tonian for Dy2Ti2O7 is marked as Hopt near the center of this
map. The corresponding Ssim(Q) data, sliced in the high sym-
metry plane, had previously been shown in Fig. 3b. Figure 6b–i
show the Ssim(Q) data for alternative Hamiltonians, as marked on
the map. It is clear from these results that the spin Hamiltonian of
Dy2Ti2O7 is close to the confluence of multiple regimes. This fact
reveals an additional source of complexity that explains the dif-
ficulties that were encountered in previous characterizations of
this material. This analysis suggests a roadmap for further

experimental studies. For example, the application of relatively
small external fields and pressures or dopings should be enough
to push Dy2Ti2O7 into new magnetic regimes. For instance, the
proximity to the ferromagnetic phase (blue regime in Fig. 6a)
indicates that the saturation field is small, as confirmed by
magnetization, Fig. 5a.

In summary, a fundamental bottleneck in experimental con-
densed matter physics is model optimization and assessment of
confidence levels. We have developed a machine learning-based
approach that addresses both challenges in an automated way.
Applied to Dy2Ti2O7 our method produces a model that accounts
for the diffuse scattering data as well as the lack of magnetic
ordering at low temperature. Our approach readily extends to the
analysis of dynamical correlations, parametric data sets in e.g.
field and temperature, and other scattering data.

Methods
Experimental details. To measure the diffuse scattering of Dy2Ti2O7 an iso-
topically enriched single crystal sample of Dy2Ti2O7 was grown using an optical
floating-zone method in a 5 atm oxygen atmosphere. Starting material Dy2O3

(94.4% Dy-162) and TiO2 powder were first mixed in proper ratios and then
annealed in air at 1400 °C for 40 h before growth in the image furnace as previously
described26. Then the sample was further annealed in oxygen at 1400 °C for 20 h
after the floating-zone growth. The lack of a nuclear spin moment in Dy-162 means
that nuclear spin relaxation channels for the spins are cut off which is important in
order to study the quench behavior in the material. In addition, the incoherent
scattering from natural dysprosium is high (54.4 barns) whereas for Dy-162 it is
zero and the absorption cross section is decreased from 994 barns (2200 ms−1

neutrons) for natural dysprosium to 194 barns for isotope 162. A best growth was
achieved with a pulling speed of 3 mm/hour. One piece of crystal with the mass ≈
200 mg was aligned in the (111) plane for the neutron investigation at the single
crystal diffuse scattering spectrometer CORELLI at the Spallation Neutron Source,
Oak Ridge National Laboratory. The crystal was prepared as a sphere to minimize
absorption corrections and demagnetization corrections.
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CORELLI is a time-of-fight instrument where the elastic contribution is
separated by a pseudo-statistical chopper27. The crystal was rotated through 180
degrees with the step of 5 degree horizontally with the vertical angular coverage of
±8 degree (limited by the magnet vertical opening) for survey on the elastic and
diffuse peaks in reciprocal space. The dilution refrigerator insert and cryomagnet
were used to enable the measurements down 100mK and fields up to 1.4 T. The
data were reduced using Mantid28 and Python script available at Corelli.
Background runs at 1.4 Tesla were made to remove all diffuse signal and the extra
scattering at Bragg peak positions due to the polarized spin contribution was
accounted for by using the zero field intensities. (see Supplementary Fig. 01) Figs. 2a
and 3a shows a 3D plot and a slice of the high symmetry plane of the background-
subtracted diffuse scattering measurement at 680mK and 0 T respectively.

Simulations details. Given a model Hamiltonian H, we use Metropolis Monte
Carlo to generate a simulated structure factor, Ssim(Q), to be compared with the
experimental data Sexp(Q). We use simulated annealing to properly estimate Ssim

(Q)29. Beginning at an initial temperature of 50 K, we iterate through 11 expo-
nentially spaced intermediate temperatures, until finally reaching the target tem-
perature of 680 mK. At each intermediate temperature, 5 × 106 Monte-Carlo
sweeps were performed. At every sweep, each spin is updated once on average,
according to the Metropolis acceptance criterion30. We perform our simulations

using 4 × 4 × 4 cubic supercells, giving a total of 1024 spins in the pyrochlore
lattice. The magnetic form factor of Dy3+ and the neutron scattering polarization
factor that enter in the calculation of the spin structure factor, S(Q), are accounted
before comparison to the background corrected experimental data. To correctly
account for the long-range dipolar interactions, we used Ewald summation31,
implemented with the fast Fourier transform.

Training details. To train the autoencoder, we require a dataset sufficiently broad
to cover all potentially important characteristic features of the Dy2Ti2O7 scattering
data. For this purpose, we employ 1000 model Hamiltonians of the form Eq. (1).
Each model has individually randomized coupling strengths J2, J3, and J3′, sampled
uniformly from the range −0.6 K and 0.6 K. For each model, we use simulated
annealing to generate equilibrated three-dimensional Ssim(Q) data at the target
temperature of 680 mK. Our training data will thus consist of 1000 model
Hamiltonians, each labeled by simulated data. The autoencoder tries to minimize
the deviation between its input Ssim(Q). and filtered output, summed over all
random models in the dataset.

Training the autoencoder corresponds to determining the parameters (i.e.,W, b,
W′, and b′) that minimize a loss function L. Primarily, we are interested in
minimizing the squared error between the simulated data and autoencoder-filtered
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output, summed over all models H in the training dataset,

L ¼ 1
N

X
H

X
Q

mðQÞ S Qð Þ � SAE Qð Þð Þ2 þ λ

2

X
L

X
Q

wL
Q

� 	2
þ β

X
D

KL ρjjρ̂D
� �

:

ð5Þ
The second and third terms are relatively weak, and include two types of

regularization: An L2 regularization on the weight matrices W and W′, and a
sparsity regularization on the latent space activations SL32. The sparsity
regularization is a Kullback-Leibler divergence of average activation value, ρ̂D of the
hidden layer neurons and the desired average activation value, ρ has been set to
0.05. The regularizer coefficients λ and β are set to 0.001 and 1, respectively. This
regularization seems to improve the physical interpretability of the latent space
representation. Despite having millions of trainable parameters in the neural
network, the autoencoder does not seem prone to overfitting; the low-
dimensionality of the latent space itself acts as a strong regularizer. To find the
model parameters that minimize L, we use the scaled conjugate gradient descent
algorithm33, as it is implemented in Matlab. We also experimented with a Keras
autoencoder implementation, and found that it made little qualitative difference in
our final results.

We found that a simple fully-connected autoencoder works well for
experimental artifact removal from diffuse scattering data although other
architectures can be explored in detail such as multilayer convolutional neural
networks (CNN) or variational autoencoders. Note that artifact removal is inherent
to our implementation of the AE due to the nature of the training data. Specifically,
our dataset contained only simulated S(Q) data, and the autoencoder is trained to
reproduce that. Because experimental artifacts are not present in the simulated
data, the autoencoder inherently filters them out.

Optimization. Optimization proceeds iteratively. We initially select 100 random
Hamiltonians, where J2, J3, and J30 are each sampled uniformly from the range
−0.6 K to 0.6 K. At each subsequent iteration, we use all available data to build χ̂2SL ,

the low-cost approximator to χ2SL . Next, we randomly select 100 new Hamiltonians
H for inclusion in the dataset, each being sampled uniformly, subject to the con-
straint χ̂2 Hð Þ< c. The cut-off parameter c decreases exponentially, rescaling by a
factor 0.9 at each iteration. Consequently, later iterations in the optimization
procedure are focused on regions where χ2SL is smallest. The optimization proce-
dure terminates after about 40 iterations, at which point we take Hopt to be the
minimizer of χ̂2SL ðHÞ.

Uncertainty quantification. How can we compare uncertainties of J2, as estimated
from χ2SðQÞ vs. χ

2
SL
? From Fig. 4a alone, one might estimate that J2 could lie any-

where between −0.3 K and 0.5 K. This is the region for which χ2SðQÞ <C2
S Qð Þ , where

C2
S Qð Þ is an empirically selected tolerance denoted by the dashed horizontal line.

Working backwards, we can then ask: How much noise in the simulated Ssim(Q)
data would it take for C2

S Qð Þ to be the actual stochastic uncertainty in χ2SðQÞ?
Assuming that Ssim(Q) contains this level of noise magnitude, we can then measure
the corresponding stochastic uncertainty C2

SL
of χ2SL , which we plot as the dashed

line in Fig. 4c. Comparing with Fig. 4a, we conclude that the autoencoder-based
error measure χ2SL is more robust to stochastic noise, i.e., allows more precise

estimation of J2. Thus, we have selected χ2SL as the best cost function for inferring
the model Hamiltonian from the structure factor data.

Given experimental heat capacity data cv, we introduced a multi-objective cost
function χ2multi . Repeating the same procedure as above, we can define the multi-
objective tolerance threshold C2

multi in terms of the raw tolerance C2
S Qð Þ.

Clustering. To determine magnetic regimes, we employ the agglomerative hier-
archical clustering algorithm34. For this, we use the same dataset as was used to
train the autoencoder, i.e., a random selection of 1000 model Hamiltonians, and
their corresponding Ssim(Q) data. The clustering algorithm requires as input the
pairwise distances between all points in the dataset. We again employ the squared
distance in the autoencoder latent space, i.e., as it appeared in χ2SL .

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.

Code availability
The computer codes that support the finding of this study are available from the
corresponding author upon reasonable request.
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