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ABSTRACT The aryl hydrocarbon receptor (AhR) is a cytoplasmic receptor/transcrip-
tion factor that modulates several cellular and immunological processes following
activation by pathogen-associated stimuli, though its role during virus infection is
largely unknown. Here, we show that AhR is activated in cells infected with mouse
hepatitis virus (MHV), a coronavirus (CoV), and contributes to the upregulation of
downstream effector TCDD-inducible poly(ADP-ribose) polymerase (TiPARP) during
infection. Knockdown of TiPARP reduced viral replication and increased interferon
expression, suggesting that TiPARP functions in a proviral manner during MHV infec-
tion. We also show that MHV replication induced the expression of other genes known
to be downstream of AhR in macrophages and dendritic cells and in livers of in-
fected mice. Further, we found that chemically inhibiting or activating AhR recipro-
cally modulated the expression levels of cytokines induced by infection, specifically,
interleukin 1� (IL-1�), IL-10, and tumor necrosis factor alpha (TNF-�), consistent with
a role for AhR activation in the host response to MHV infection. Furthermore, while
indoleamine 2,3-dioxygenase (IDO1) drives AhR activation in other settings, MHV in-
fection induced equal expression of downstream genes in wild-type (WT) and
IDO1�/� macrophages, suggesting an alternative pathway of AhR activation. In sum-
mary, we show that coronaviruses elicit AhR activation by an IDO1-independent
pathway, contributing to upregulation of downstream effectors, including the provi-
ral factor TiPARP, and to modulation of cytokine gene expression, and we identify a
previously unappreciated role for AhR signaling in CoV pathogenesis.

IMPORTANCE Coronaviruses are a family of positive-sense RNA viruses with human
and agricultural significance. Characterizing the mechanisms by which coronavirus infec-
tion dictates pathogenesis or counters the host immune response would provide tar-
gets for the development of therapeutics. Here, we show that the aryl hydrocarbon
receptor (AhR) is activated in cells infected with a prototypic coronavirus, mouse
hepatitis virus (MHV), resulting in the expression of several effector genes. AhR is im-
portant for modulation of the host immune response to MHV and plays a role in the
expression of TiPARP, which we show is required for maximal viral replication. Taken
together, our findings highlight a previously unidentified role for AhR in regulating
coronavirus replication and the immune response to the virus.
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Coronaviruses (CoVs) are a group of positive-sense, single-stranded RNA viruses
responsible for agricultural and human disease with a high economic burden and

outbreak potential. Understanding the pathways driving CoV replication and patho-
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genesis is crucial to combat CoVs with high mortality, such as severe acute respiratory
syndrome (SARS) and Middle East respiratory syndrome (MERS) CoVs. Mouse hepatitis
virus (MHV), a prototypic CoV, causes hepatitis and/or encephalitis, depending on the
strain. Previous studies have detailed many of the cellular pathways critical for or
elicited by MHV infection (1, 2). Several antiviral mechanisms are induced by MHV
infection, but MHV encodes proteins that counter these host processes. For instance,
interferons (IFNs), especially type I IFNs (IFN-I), are vital to limiting MHV infection in mice
(3, 4), but IFN-I production and signaling are inhibited during MHV infection in multiple
cell types (5–7). MHV also inhibits the functions of downstream IFN-stimulated genes
(ISGs). For example, the MHV macrodomain, a virus-encoded ADP-ribosylhydrolase, re-
verses cellular ADP ribosylation by IFN-I-induced poly(ADP-ribose) polymerases (PARPs) that
limit viral replication (8, 9).

The aryl hydrocarbon receptor (AhR) is a receptor/transcription factor that has been
shown to direct multiple host responses. While initially believed to operate only in
the context of the cellular response to toxins, AhR is now recognized as a significant
regulator of the host immune response, as well. AhR in the cytosol is activated by
binding ligands that are exogenous, such as the toxin 2,3,7,8-tetrachlorodibenzodioxin
(TCDD), or endogenous, such as cellular metabolites (Fig. 1). This triggers AhR translo-
cation to the nucleus, where AhR complexes with AhR nuclear translocator (ARNT) or
other binding partners to induce expression of several different proteins (downstream
effectors) responsible for degrading the xenobiotic agent and for limiting potential
cellular damage. Upregulated genes include those encoding cytochrome P450 enzymes
(CYPs) that catabolize exotoxin, negatively regulating AhR activation by depleting AhR
ligands (10). Another inhibitory protein, the AhR repressor (AhRR), is also upregulated
and competes with ARNT for AhR dimerization in the nucleus (11). PARP7, also known
as TCDD-inducible PARP (TiPARP), is highly induced by AhR activation, as well, indicat-
ing a relationship to cellular ADP ribosylation. TiPARP is responsible for mitigating
pathology after TCDD administration to mice, at least in part due to feedback inhibition
of AhR (12).

FIG 1 Schematic diagram of AhR activation in MHV-infected cells. Ligands that can bind to AhR can be
exogenous (pentagons), such as toxins like TCDD, or endogenous metabolic products (parallelograms),
such as kynurenine derived by IDO1-catalyzed tryptophan degradation. CoV infection produces an
unknown AhR-activating ligand independent of IDO1 (triangles). AhR in the cytosol is activated upon
ligand binding and translocates to the nucleus to bind to genomic DNA. The specific genes targeted and
induced by AhR are influenced by AhR binding partners, including ARNT and NF-�B. Modulated genes
include those encoding AhR downstream effectors, such as CYPs, AhRR, and TiPARP, or immune proteins,
such as cytokines. AhR activation/ligand binding can be inhibited chemically by treatment with
CH-223191.
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In the context of the immune response, endogenous metabolites are likely the
primary ligands that drive AhR activation. The prototypical endogenous ligand is
kynurenine, a tryptophan catabolite produced by indoleamine 2,3-dioxygenase 1
(IDO1) or IDO2 in immune cells or tryptophan 2,3-dioxygenase (TDO) (encoded by the
TDO2 gene) in the liver (13, 14). IDO1, the best characterized of these enzymes, is
induced by inflammatory factors, such as IFN-I or IFN-II, transforming growth factor beta
(TGF-�), and interleukin 6 (IL-6) (15). AhR also activates IDO1 expression and enhances
its activity through multiple pathways (16), and the resulting IDO1-AhR-IDO1 positive-
feedback loop prolongs the effects of AhR activation (17, 18). Though kynurenine is
believed to be the predominant derivative of tryptophan that drives AhR activation,
multiple other degradation products of tryptophan or other biomolecules are synthe-
sized independently of IDO1/2 or TDO or can be sourced from the gut microflora, diet,
or even UV-mediated photo-oxidation (19). Prostaglandins, cyclic AMP (cAMP), and
oxidative species may also activate AhR, though with unknown physiological or path-
ological significance (20–22).

Many studies have demonstrated that AhR activation during immunostimulation
and inflammation generally exerts an immunosuppressive effect via multiple mecha-
nisms (23). AhR activation by chemical agonists has been shown to influence the
differentiation (24–28) and cytokine/chemokine production (25, 26, 29–32) of T cells,
dendritic cells, and macrophages. AhR has also been shown to bind to and modulate
the transcription specificity of NF-�B in multiple experimental settings, which could
contribute to cytokine modulation (30, 33–35). Other studies have shown that AhR
activation in immune cells is driven by IDO1, and the resulting IDO1-AhR-IDO1 positive-
feedback loop helps to establish immunotolerance (18, 36, 37). In contrast, less is
known about the role of AhR during virus infection. While previous work has explored
pathways affected by AhR activation during influenza A virus (IAV), herpes simplex virus
(HSV), hepatitis C virus (HCV), and Epstein-Barr virus (EBV) infection (38–41), the
virological impact of AhR is still largely uncharacterized. Here, we show that CoV
replication in macrophages results in AhR activation in an IDO1-independent manner,
leading to increased expression of several downstream effectors and to modulation of
the cytokine response. We also show that TiPARP, induced by AhR, is a proviral factor
in CoV-infected cells.

RESULTS
MHV-A59 infection induces TiPARP expression through IFN-I-dependent and

-independent mechanisms. Infection of bone-marrow-derived macrophages (BMDMs)
with the neurotropic JHM strain of MHV (MHV-JHM) results in increased expression of
several IFN-I-inducible PARPs (PARP7, -9 through -12, and -14) (8). However, PARP7
(TiPARP) was also induced during MHV-JHM infection of IFNAR�/� BMDMs, suggesting
that other factors besides IFN-I mediate TiPARP upregulation during infection (8). To
expand on these results, we infected delayed brain tumor (DBT) astrocytoma cells (Fig.
2A) or 17Cl-1 fibroblast-like cells (Fig. 2B), both of which minimally produce IFN
during MHV infection (6, 7), with the A59 strain of MHV (MHV-A59). We used
MHV-A59 because it replicates to higher titers than MHV-JHM in vitro (42). Upregu-
lation of most PARPs, including PARP9, -11, -12, and -14, was lost or attenuated in
these cell lines during infection, contrasting with the robust PARP upregulation
profile seen in MHV-A59-infected wild-type (WT) BMDMs (Fig. 2C). Despite the
diminished expression of many IFN-dependent PARPs, TiPARP was highly upregu-
lated following MHV-A59 infection in all three cell types, suggesting a conserved
mechanism of induction. Furthermore, induction of TiPARP in IFNAR�/� BMDMs was
conserved after infection with MHV-A59, consistent with previous findings with MHV-
JHM (Fig. 2D). Although not further studied here, PARP13 was also upregulated in
infected IFNAR�/� cells. Overall, these results indicate that TiPARP is upregulated by
another pathway during infection in the absence of IFN-I signaling.

TiPARP knockdown restricts MHV-A59 replication. We previously noted that viral
genomic RNA (gRNA) levels during MHV-JHM infection were reduced in BMDMs treated
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with small interfering RNA (siRNA) directed toward TiPARP (8). To confirm this pheno-
type, we treated BMDMs with TiPARP-specific siRNA prior to infection with MHV-A59 at
low (0.1 PFU/cell) and high (5 PFU/cell) multiplicities of infection (MOI) and measured
replication by quantification of viral genomic content and infectious virus (Fig. 3). At
low MOI at 12 h postinfection (hpi), TiPARP knockdown decreased viral gRNA levels (Fig.
3A) and titers (Fig. 3B), though the former only trended toward statistical significance.
MHV infection at an MOI of 5 PFU/cell showed significantly decreased gRNA levels and
virus titers in TiPARP knockdown cells (Fig. 3C and D), indicating a role for TiPARP in
facilitating MHV-A59 infection. These differences in gRNA and virus titers persisted even
at later time points p.i., when cell viability was decreased, resulting in decreased
infectious-virus titers. Furthermore, while IFN-�4 and IFN-� mRNA levels were unaf-
fected by TiPARP deficiency at low or high MOI at 6 or 12 hpi, they were increased at
18 and 22 hpi (Fig. 3A and C). Together, our results suggest that TiPARP augments MHV
replication throughout infection and negatively regulates IFN-I expression during later
stages of infection.

MHV-A59 replication in vitro and in vivo induces expression of effector genes
downstream of AhR activation. Because expression of TiPARP is well established to be
induced by ligand-activated AhR (43), we hypothesized that MHV-A59 infection re-
sulted in AhR activation. To assess AhR activation during MHV-A59 infection in BMDMs

FIG 2 MHV-A59 infection upregulates TiPARP in cell lines and primary cells in the absence of IFN-I signaling. (A and B) DBT (A) or 17Cl-1 (B) cell lines were
infected with MHV-A59 at an MOI of 0.1 PFU/cell. Cells were collected at 18 hpi, and RNA was quantified by qRT-PCR with primers for the indicated PARPs. (C
and D) WT (C) or WT and IFNAR�/� (D) BMDMs were mock infected or infected with MHV-A59 at an MOI of 5 (C) or 0.1 (D) PFU/cell. Cells were collected at
18 hpi, and mRNA was analyzed for quantification by qRT-PCR with primers for the indicated PARPs. The data show the results of one experiment representative
of three independent experiments; n � 3. *, P � 0.05; **, P � 0.01; ***, P � 0.001; ns, not significant; nd, not detectable. The data are expressed as means
and SEM.
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at multiple time points, we quantified the mRNA expression of known effectors down-
stream of AhR, including CYP1A1, CYP1A2, CYP1B1, TiPARP, and AhRR (Fig. 1). We also
analyzed gene expression of AhR itself and of the AhR ligand-producing enzymes IDO1,
IDO2, and TDO, as IDO1 gene expression can also be induced by AhR activation. We
found that, while CYP1A1, CYP1A2, IDO2, and TDO2 mRNAs were undetectable at all
time points, CYP1B1, AhRR, TiPARP, IDO1, and AhR mRNAs were all upregulated over
the course of infection (Fig. 4A). To determine if this response is conserved in other
immune cell types, we quantified the transcription of these downstream effectors in
bone marrow-derived dendritic cells (BMDCs) (Fig. 4B). At both 12 and 22 hpi, CYP1B1,

FIG 3 MHV replication is diminished following TiPARP knockdown in BMDMs. WT BMDMs were transfected with siRNA targeting TiPARP and were then infected
at 30 h posttransfection with MHV-A59 at an MOI of 0.1 (A and B) or 5 (C and D) PFU/cell. RNA was quantified by qRT-PCR with primers specific for viral gRNA
or for the indicated transcripts (A and C), or virus titers were determined by freezing-thawing cells, followed by plaque assay on HeLa cells expressing the MHV
receptor (B and D). RNA and cell collection occurred at 12 hpi for an MOI of 0.1 PFU/cell (A and B) or at 6, 12, 18, and 22 hpi for an MOI of 5 PFU/cell (C and
D). (A and C) The data show the results of one experiment representative of at least two independent experiments; n � 3. (B and D) The data show combined
results of 2 experiments; n � 6. *, P � 0.05; **, P � 0.01; ***, P � 0.001; ns, not significant. The data are expressed as means and SEM.
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FIG 4 MHV infection results in upregulation of AhR downstream effector genes in BMDMs and BMDCs and in vivo. (A)
BMDMs were infected with MHV-A59 at an MOI of 5 PFU/cell and collected at the indicated time points. mRNA levels

(Continued on next page)
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AhRR, TiPARP, IDO1, and AhR were all upregulated in BMDCs, suggesting that AhR
activation occurs following MHV-A59 infection in multiple cell types.

To determine if our in vitro results could be recapitulated in vivo, we infected
C57BL/6 mice with MHV-A59 via intraperitoneal injection (Fig. 4C). At 3 and 5 days
postinfection (dpi), levels of CYP1B1, TiPARP, AhRR, and IDO1 mRNA increased in the
livers of infected mice, suggesting that MHV elicited AhR activation. Furthermore,
upregulation of these downstream genes paralleled viral replication at 3 and 5 dpi, as
assessed by measuring viral gRNA levels. In contrast to our results in BMDMs, IDO2 and
TDO2 mRNAs were detectable in liver samples and modestly increased at 3 dpi.

Consistent with the results obtained using infected livers, the level of AhR activation
was correlated with virus replication in BMDMs, as downstream effector mRNA levels
were less upregulated when cells were infected at lower MOI (Fig. 5A). In addition,
UV-inactivated virus infection was unable to induce expression of AhR downstream
effectors, indicating that AhR activation during MHV infection is completely dependent
on viral replication (Fig. 5B).

AhR antagonist and agonist treatment modulates expression of downstream
effector genes during infection. To examine whether AhR activation and not an
alternative factor facilitated expression of these downstream effectors, we infected cells
following chemical inhibition of AhR (Fig. 6A). We opted for treatment with CH-223191,
a well-described chemical inhibitor that prevents ligand binding to AhR (Fig. 1) but
does not inhibit other receptors, such as the estrogen receptor (44, 45). We first
confirmed that CH-223191 inhibited chemical AhR activation by agonist TCDD in
BMDMs without altering cell viability (Fig. 6B and C). During MHV-A59 infection, AhR
inhibitor treatment resulted in dose-dependent attenuation of CYP1B1, AhRR, and
IDO1. Surprisingly, TiPARP induction was not diminished at any concentration of inhibitor.
Furthermore, CH-223191 treatment actually increased AhR mRNA levels slightly at 12
hpi but had no effect on gRNA levels, indicating that the CH-223191-mediated reduc-
tion in downstream effector expression was due to inhibition of AhR activation itself
rather than decreased AhR expression or increased virus replication.

To complement these results and to determine if concurrent chemical activation
during infection could further activate AhR, we treated BMDMs with TCDD and quan-
tified induction of the same downstream effector genes that were attenuated by AhR
inhibition (Fig. 7A). After confirming that TCDD did not affect cell viability (Fig. 7B), we
found that agonist treatment increased expression of CYP1B1 and AhRR compared to
vehicle treatment in both mock- and MHV-infected BMDMs. TiPARP mRNA increased
following TCDD treatment of uninfected cells and only marginally, if at all, after infection.
IDO1 required infection for any expression and was potentiated by TCDD at 22 hpi.
Finally, TCDD treatment with or without infection resulted in small decreases in AhR
expression in mock- and MHV-infected cells at 12 hpi but did not affect gRNA levels,
again suggesting that agonist-induced changes in downstream effector expression was
due primarily to AhR activation.

TiPARP is regulated by both IFN and the AhR during MHV infection. TiPARP
expression was induced by AhR agonist treatment (Fig. 7A) but did not change
following inhibitor treatment during infection (Fig. 6A), suggesting MHV could also
induce TiPARP expression by an AhR-independent mechanism. Because IFN-I treatment
in BMDMs can induce TiPARP expression (8), we next examined whether IFN-I upregu-
lated TiPARP expression after inhibition of AhR activation. Using MHV-infected IF-
NAR�/� BMDMs treated with CH-223191, we observed a dose-dependent decrease in

FIG 4 Legend (Continued)
of downstream effector AhR or IDO1 genes were then quantified by qRT-PCR. (B) BMDCs were infected with MHV-A59
at an MOI of 5 PFU/cell and collected at 12 or 22 hpi. mRNA levels of the indicated genes were quantified by qRT-PCR.
(A and B) The data show the results of one experiment representative of two independent experiments; n � 3. (C)
C57BL/6 mice were intraperitoneally infected with 104 PFU of MHV-A59, and perfused livers were harvested at 3 and
5 dpi. RNA was isolated, and mRNA levels of downstream effectors, AhR, or kynurenine-producing enzymes were
quantified by qRT-PCR. The data show the results of one experiment representative of three independent experiments;
n � 4. *, P � 0.05; **, P � 0.01; ***, P � 0.001; nd, not detectable. The data are expressed as means and SEM.
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the expression of CYP1B1, AhRR, and IDO1 (Fig. 8), confirming that AhR activation did
not require IFN signaling. In addition, AhR inhibitor treatment reduced TiPARP induc-
tion in IFNAR�/� BMDMs, indicating that AhR and IFN-I were compensatory in inducing
TiPARP during infection. However, CH-223191-mediated reduction of TiPARP mRNA
levels in IFNAR�/� BMDMs was less than that of CYP1B1, AhRR, or IDO1, suggesting that
an additional, as yet unknown factor modulated its expression. Finally, gRNA levels in
IFNAR�/� BMDMs trended toward a modest reduction following AhR inhibition
(P � 0.12), possibly reflecting decreases in TiPARP expression. Taken together, our data
show that MHV-induced AhR activation is responsible for upregulation of CYP1B1,
AhRR, and IDO1 in IFN-replete and -deficient cells and of TiPARP in the absence of IFN-I
signaling.

MHV infection activates AhR in an IDO1-independent manner. While our results
indicated that AhR activation during MHV-A59 infection modulates downstream IDO1

FIG 5 Virus replication is correlated with and required for expression of AhR downstream effectors during infection. (A) BMDMs were infected with MHV-A59
at the indicated MOIs. Cells were then collected at 12 hpi, and mRNA levels of the downstream effectors AhR and IDO1 were quantified by qRT-PCR. (B) BMDMs
were infected with untreated or UV-inactivated virus at an MOI of 5 PFU/cell. Expression of the indicated genes was quantified by qRT-PCR. The data show the
results of one experiment representative of two independent experiments; n � 3. *, P � 0.05; **, P � 0.01; ***, P � 0.001; nd, not detectable. The data are
expressed as means and SEM.
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expression (Fig. 6 to 8), IDO1 can also act as an upstream regulator of AhR by catabolizing
tryptophan to the AhR ligand kynurenine (Fig. 1) (13, 17). To determine if IDO1 has a
role in AhR activation during MHV-A59 infection, we infected IDO1�/� BMDMs with
MHV-A59 and quantified effector mRNA levels (Fig. 9B). Interestingly, levels of CYP1B1,
AhRR, TiPARP, AhR, and gRNA were equivalent following infection in WT or IDO1�/�

BMDMs. As expected, IDO1 mRNA was not detectable in deficient cells. To rule out
compensatory effects of other enzymes known to produce kynurenine, we also as-
sessed cells for IDO2 and TDO2 mRNAs but could detect neither in WT or IDO1�/�

BMDMs. Together, our results suggest that MHV-A59 infection of BMDMs elicits AhR
activation through a pathway independent of IDO1.

MHV-induced AhR activation modulates cytokine production. AhR activation
can induce or modulate cytokine/chemokine production during the innate immune

FIG 6 Chemical inhibition of AhR during MHV infection results in attenuated expression of downstream genes. (A) WT BMDMs were pretreated with vehicle
(0.01% DMSO) or 0.2, 1, or 5 �M CH-223191 and infected with MHV-A59 at an MOI of 5 PFU/cell. RNA was collected at 12 or 22 hpi and quantified for mRNA
levels of the downstream effectors AhR and IDO1 and gRNA by qRT-PCR. The data show the results of one experiment representative of three independent
experiments; n � 3. (B) Viability of BMDMs treated with vehicle or 5 �M CH-223191 was quantified by MTT assay at 12 and 24 h posttreatment. The data show
the results of one experiment representative of two independent experiments; n � 4. (C) CH-223191 inhibitor efficacy was determined by preincubating
uninfected BMDMs with vehicle (0.01% DMSO) or 5 �M CH-223191, followed by addition of vehicle or 10 nM TCDD. At 12 h, RNA was harvested, and mRNA
levels of downstream effectors were determined by qRT-PCR. The data show the results of one experiment representative of two independent experiments;
n � 3. *, P � 0.05; **, P � 0.01; ***, P � 0.001; ns, not significant; nd, not detectable. The data are expressed as means and SEM.
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response (23). To determine whether AhR activation during CoV infection modulates
cytokine expression, we infected CH-223191-treated BMDMs with MHV-A59 and quan-
tified levels of IFN-�4, IFN-�, and IFN-� mRNAs and of cytokines previously shown to be
regulated by lipopolysaccharide (LPS)-induced AhR activation in macrophages (tumor
necrosis factor alpha [TNF-�], IL-1�, and IL-10) (29, 30) (Fig. 10A). Inhibition of AhR had
no impact on expression of IFN-�4/IFN-�/IFN-� mRNAs. On the other hand, CH-223191
treatment resulted in a dose-dependent increase in the levels of TNF-� mRNA and a
concurrent decrease in the levels of IL-1� and IL-10 mRNAs. Because AhR could be
further activated by chemical means during infection (Fig. 7), we substantiated these
findings by treating BMDMs with TCDD in the presence or absence of infection at low
and high MOI (Fig. 10B). Consistent with our AhR inhibitor data, TNF-� mRNA was
decreased and IL-1� and IL-10 mRNAs were increased by concurrent chemical activa-

FIG 7 Chemical activation of AhR in the absence and presence of infection enhances expression of downstream genes. (A) WT BMDMs were treated with vehicle
(0.01% DMSO) or 10 nM TCDD and concurrently mock infected or infected with MHV-A59 at an MOI of 0.1 or 5 PFU/cell. RNA was collected at 12 or 22 hpi
and quantified for mRNA levels of the downstream effectors AhR and IDO1 and gRNA by qRT-PCR. The data show the results of one experiment representative
of two independent experiments; n � 3. (B) Viability of BMDMs treated with vehicle or 10 nM TCDD was quantified by MTT assay at 12 and 24 h posttreatment.
The data show the results of one experiment representative of two independent experiments; n � 4. *, P � 0.05; **, P � 0.01; ***, P � 0.001; ns, not significant;
nd, not detectable. The data are expressed as means and SEM.
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tion of AhR. In summary, these results indicate that AhR activation modulates multiple
cytokine expression levels during MHV-A59 infection.

DISCUSSION

Here, we showed that MHV infection activates AhR, resulting in upregulation of
multiple downstream effector genes, including CYP1B1, AhRR, and IDO1 genes, in
infected BMDMs, BMDCs, and mouse livers (Fig. 4). We also demonstrated that another
AhR downstream effector, TiPARP, has a proviral role in MHV replication, as genomic
RNA levels and virus titers were decreased following TiPARP knockdown (Fig. 3). TiPARP
induction is multifactorial, since IFN-I treatment induced TiPARP expression in BMDMs
(8) but TiPARP expression was still observed in cell lines deficient in IFN expression and
in IFNAR�/� BMDMs (Fig. 2). Our results showed that AhR activation directly induces
TiPARP expression, as TCDD treatment enhanced TiPARP expression in uninfected cells
and to a lesser extent in infected cells (Fig. 6). Further, TiPARP induction during infection
was sensitive to chemical AhR inhibition in the absence, but not the presence, of IFN-I
signaling in WT BMDMs (Fig. 6 and 8), consistent with redundant roles for AhR and IFN-I
signaling in TiPARP expression during infection. Despite attenuation with inhibitor
treatment, TiPARP expression in infected IFNAR�/� cells was still induced, indicating
that other factors known to modulate TiPARP expression, such as estrogen receptor,
glucocorticoid receptor, or TGF-� signaling pathways, could also impact its expression
during CoV infection (46–48).

In addition to decreased replication, TiPARP knockdown also resulted in increased
IFN-�4 and IFN-� mRNA expression (Fig. 3C). However, viral genomic RNA levels were
reduced in TiPARP knockdown cells as early as 6 hpi, before IFN-I mRNA levels

FIG 8 Infection upregulates TiPARP through redundant mechanisms requiring AhR activation or IFN-I signaling. BMDMs from IFNAR�/� mice were pretreated
with vehicle (0.01% DMSO) or 0.2, 1, or 5 �M CH-223191 and infected with MHV-A59 at an MOI of 5 PFU/cell. RNA was collected at 12 or 22 hpi and quantified
for mRNA levels of the downstream effectors AhR and IDO1 and gRNA by qRT-PCR. The data show the results of one experiment representative of two
independent experiments; n � 3. *, P � 0.05; **, P � 0.01; ***, P � 0.001; ns, not significant; nd, not detectable. The data are expressed as means and SEM.
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increased. Further study will be required to establish a causal relationship between the
effects of TiPARP on IFN-I expression and replication. Our results align with those of a
previous study showing that during IAV infection, TiPARP ADP ribosylates TBK1, result-
ing in increased replication and reduced IFN-I levels (40). However, TiPARP has also
been shown to bind to Sindbis virus RNA to trigger an antiviral host response. Therefore,
it will be important to determine whether TiPARP facilitation of MHV replication is
dependent on its ADP-ribosylating and/or its RNA-binding activity.

In contrast with TiPARP, upregulation of the downstream effectors CYP1B1, AhRR,
and IDO1 during infection is driven primarily by AhR activation. This is evidenced by the
fact that expression of these effectors was enhanced by an AhR agonist and attenuated
in a dose-dependent manner by an AhR-specific inhibitor (Fig. 6 and 7). While AhR
activation has been studied in immune cells following agonist or immunostimulant
treatment, its role in the context of virus infection is relatively understudied, and only
a few studies have details of host pathways affected by AhR activation. EBV encodes the
viral protein EBNA-3, which binds to ARNT and enhances transactivation of downstream
effectors by AhR (41). AhR facilitates HCV infection by inducing expression of CYPs that
aid in the formation of lipid droplets required for virus production (38). As mentioned
above, AhR functions in a proviral manner in IAV infection by inducing TiPARP (40). In
contrast, AhR activation in HSV- or HIV-infected macrophages restricts replication by
inhibiting expression of cyclins and cyclin-dependent kinases (39). Thus, AhR activation
during viral infection has differing effects and modulates multiple cellular pathways,
many of which remain uncharacterized.

Surprisingly, while AhR is thought to be activated primarily by kynurenine synthe-
sized via IDO1 in inflammatory states and can drive positive-feedback cycles in immune

FIG 9 IDO1 expression is dispensable for MHV-mediated AhR activation. BMDMs from WT or IDO1�/� mice were infected with MHV-A59 at an MOI of 5 PFU/cell.
RNA was collected at 12 or 22 hpi, and expression of the indicated genes was quantified by qRT-PCR. The data show the results of one experiment representative
of two independent experiments; n � 3. ns, not significant; nd, not detectable. The data are expressed as means and SEM.
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cells (17, 18), our results demonstrate that MHV infection activates AhR independently
of IDO1 (Fig. 1 and 9). We detected gene expression of IDO2 and TDO2 in infected
murine liver samples (Fig. 4C), consistent with the notion that TDO is largely confined
to the liver (14). While TDO or IDO2 could be driving AhR activation by producing
kynurenine during in vivo infection, IDO2 and TDO mRNAs were undetectable in
IDO1�/� BMDMs. This suggests that kynurenine is produced by a novel IDOI/IDO2/
TDO-independent pathway in BMDMs or that the cells do not utilize kynurenine as the
primary AhR ligand during CoV infection. AhR can be activated by several biochemical
species, including metabolites of tryptophan or bilirubin or other metabolites of
uncharacterized biosynthetic pathways (49–52). Other potential initiating pathways
include prostaglandin synthesis, cAMP production, and general oxidative stress (20–22).
Alternatively, during infection, a host or viral protein could directly bind to AhR,
enhancing its transactivation activity in a manner similar to that of EBV-encoded
EBNA-3, though this may still require concomitant ligand binding (41). Nonetheless, the
levels of the ligand or binding partner activating AhR in BMDMs would likely scale with
replication, as downstream effector transcription was correlated with the virus load (Fig.
5). Additional investigation will be necessary to detail the exact mechanism of this
IDO-independent AhR activation pathway. Furthermore, while IDO1 does not regulate
AhR activation during MHV infection in BMDMs, it could still be modulating other
cellular pathways as part of the host response. For instance, IDO1 has been shown to

FIG 10 Inhibition or enhancement of AhR activation during MHV infection modulates cytokine expression. (A) WT BMDMs were pretreated with vehicle (0.01%
DMSO) or 0.2, 1, or 5 �M CH-223191 and then infected at an MOI of 5 PFU/cell. RNA was collected and quantified at 22 hpi for mRNA levels of the indicated
cytokines by qRT-PCR. The data show the results of one experiment representative of three independent experiments; n � 3. (B) WT BMDMs were treated with
vehicle (0.01% DMSO) or 10 nM TCDD and concurrently infected with MHV-A59 at an MOI of 0.1 or 5 PFU/cell. RNA was collected and quantified at 22 hpi for
mRNA levels of the indicated cytokines by qRT-PCR. The data show the results of one experiment representative of two independent experiments; n � 3. *,
P � 0.05; **, P � 0.01; ***, P � 0.001; ns, not significant; nd, not detectable. The data are expressed as means and SEM.
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regulate immune cell function by mediating tryptophan starvation, resulting in activa-
tion of mTOR, a mediator of several metabolic and immune pathways (53, 54).

Finally, chemical activation or inhibition of AhR during infection resulted in changes
in the mRNA levels of multiple cytokines (Fig. 10), suggesting that AhR functions to
modulate the cytokine response to MHV infection. Specifically, AhR negatively regu-
lated TNF-� and positively regulated IL-1� and IL-10, cytokines that are also upregu-
lated in the brains of MHV-infected mice (2). These changes were not due to alterations
in viral replication, as the viral load was unchanged by AhR activation or inhibition. The
mechanism driving cytokine changes during MHV infection is likely complex but
probably involves interaction of activated AhR with NF-�B (30, 33–35, 55) (Fig. 1). The
effects of these cytokine expression changes will need to be investigated in vivo to
determine their roles in pathogenesis, because their functions are protean: some of
these cytokines are additionally posttranscriptionally regulated, and activating ligands
may differ in cultured BMDMs versus infected mice. Thus, it is difficult to conclude at
present that AhR drives a strictly pro- or anti-inflammatory phenotype. Rather, AhR
activation may serve to fine tune the innate immune response to MHV infection.

MATERIALS AND METHODS
Mice. Pathogen-free C57BL/6 WT and IFNAR�/� mice were purchased from Jackson Laboratories, and

IDO1�/� mice were obtained as a generous gift from Mark Santillan (University of Iowa, Iowa City, IA). All
mice were bred and maintained in the animal care facility at the University of Iowa as approved by the
University of Iowa Institutional Animal Care and Use Committee (IACUC) following guidelines set forth in
the Guide for the Care and Use of Laboratory Animals.

Cell cultures. DBT cells, 17Cl-1 cells, and HeLa cells expressing the MHV receptor carcinoembryonic
antigen-related cell adhesion molecule 1 (CEACAM1) (HeLa-MHVR cells) were grown in Dulbecco’s
modified Eagle medium (DMEM) supplemented with 10% fetal bovine serum (FBS), 100 U/ml penicillin,
and 100 �g/ml streptomycin. Bone marrow cells obtained from WT, IFNAR�/�, and IDO1�/� C57BL/6
mice were differentiated into macrophages (BMDMs) by incubating the cells with 10% L929 cell
supernatant and 10% FBS in RPMI medium for 7 or 8 days. The BMDMs were washed and replaced with
fresh medium every day after the 4th day. Bone marrow cells obtained from WT C57BL/6 mice were
differentiated into dendritic cells (BMDCs) by incubating them with 50 �g/ml granulocyte-
macrophage colony-stimulating factor (GM-CSF) and 20 �g/ml IL-4. Extra medium was added at day
3 to refresh the cells, the medium was completely changed on day 6, and the cells were used for
infections on day 7.

Virus infection. MHV-A59 (56) was propagated on 17Cl-1 cells in the same manner described
previously (8). BMDMs were infected with virus at the indicated MOI with a 45-min adsorption phase. At
the indicated time points, the cells were lysed with TRIzol for RNA isolation or the cells were frozen with
supernatants for determination of titers on HeLa cells. To generate replication-deficient virus, MHV-A59
stocks were UV inactivated using a biosafety cabinet UV lamp for 30 min at room temperature.
Inactivation was confirmed by plaque assay. For AhR agonist studies, medium with 10 nM TCDD was
added after mock adsorption or adsorption with MHV-A59. For chemical inhibitor studies, BMDMs were
pretreated with 0.2, 1, or 5 �M CH-223191 (Sigma-Aldrich) vehicle (0.01% dimethyl sulfoxide [DMSO]) for
2 to 6 h prior to infection or to treatment with 10 nM TCDD. After TCDD treatment or infection, medium
containing inhibitors was added back to the cells. For mouse infections, 5- to 8-week-old mice were
anesthetized with ketamine/xylazine and inoculated intraperitoneally with 104 PFU of MHV-A59 in 300 �l
DMEM or mock infected (DMEM only). Mice were sacrificed at 3 and 5 dpi, and livers were harvested and
stored in TRIzol (Thermo Fisher Scientific).

siRNA transfection. BMDMs were transfected with 50 pmol/ml of siRNA with Viromer Blue (Lipoca-
lyx) following the manufacturer’s protocol. Media were replaced 4 h after transfection, and cells were
infected 28 h posttransfection. The sequences of negative (nonspecific) control Dicer-substrate short
interfering RNAs (DsiRNA) were as follows: sense, CGUUAAUCGCGUAUAAUACGCGUAT, and antisense,
AUACGCGUAUUAUACGCGAUUAACGAC. The sequences of DsiRNA oligonucleotides directed toward
TiPARP (Integrated DNA Technologies [IDT]) were as follows: sense, GAAGAUAAAAGUUAUCGAAUCAUTT,
and antisense, AAAUGAUUCGAUAACUUUUAUCUUCUG.

RT-qPCR analysis. RNA was purified using TRIzol (Thermo Fisher Scientific) on Direct-Zol columns
(Zymo Research) or by phase separation as instructed by the manufacturer. cDNA was synthesized using
Moloney murine leukemia virus (MMLV) reverse transcriptase (Thermo Fisher Scientific) and quantified
with a real-time thermocycler using PowerUp SYBR green master mix (Thermo Fisher Scientific). The
real-time quantitative PCR (RT-qPCR) primers are listed in Table 1. The primers spanned exon-exon
junctions when possible to avoid quantification of any residual genomic DNA. A control without reverse
transcriptase was also analyzed to confirm the absence of any contaminating DNA. Target genes were
normalized to housekeeping gene hypoxanthine-guanine phosphoribosyltransferase (HPRT) by the
following equation: ΔCT � CT (gene of interest) � CT (HPRT), where CT is the threshold cycle. All the results
are shown as ratios to HPRT calculated as �2ΔCT.

Cell viability assay. The viability/metabolism of BMDMs treated with 10 nM TCDD or 5 �M CH-
223191 for 12 or 24 h was assessed using a Vybrant 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-
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tetrazolium bromide (MTT) cell proliferation assay (Thermo Fisher Scientific) according to the manufac-
turer’s instructions. Cell viability was measured by absorbance at 540 nm (A540).

Statistics. An unpaired two-tailed Student t test was used to determine statistically significant
differences in means between groups. All the graphs show means and standard errors of the mean (SEM).
The n value represents the number of biological replicates for each figure. Multiple trials were combined
into a single figure when expression values or titers were comparable. Significant P values are annotated.
If the P value was less than 0.15 but greater than 0.05, the numerical value is listed above the graph bars
and was considered to be trending toward significance.
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