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Abstract: We consider the dynamics of two-dimensional interacting ultracold bosons triggered by
suddenly switching on an artificial gauge field. The system is initialized in the ground state of a
harmonic trapping potential. As a function of the strength of the applied artificial gauge field, we
analyze the emergent dynamics by monitoring the angular momentum, the fragmentation as well as
the entropy and variance of the entropy of absorption or single-shot images. We solve the underlying
time-dependent many-boson Schrédinger equation using the multiconfigurational time-dependent
Hartree method for indistinguishable particles (MCTDH-X). We find that the artificial gauge field
implants angular momentum in the system. Fragmentation—multiple macroscopic eigenvalues of
the reduced one-body density matrix—emerges in sync with the dynamics of angular momentum:
the bosons in the many-body state develop non-trivial correlations. Fragmentation and angular
momentum are experimentally difficult to assess; here, we demonstrate that they can be probed by
statistically analyzing the variance of the image entropy of single-shot images that are the standard
projective measurement of the state of ultracold atomic systems.

Keywords: Boson systems; ultracold gases; trapped gases; dynamic properties of condensates;
collective and hydrodynamic excitations; superfluid flow; Bose-Einstein condensates; vortices;
topological excitations

1. Introduction

Since the first realization of Bose-Einstein condensates in 1995 [1-3], ultracold atoms
have become a standard probe for analog quantum simulations—due to the tunability and
flexibility of these quantum states of matter, they can be manipulated to behave like other
systems, for instance, condensed matter systems which are not as flexible or easy to observe.
Popular examples include the realization of the quantum simulation of the superfluid-to-
Mott-insulator transition [4,5], quantized conductance [6,7], the Dicke model [8,9], and
magnetism realized via artificial gauge fields for ultracold atoms [10].

Such artificial gauge fields can make the neutral ultracold atoms behave as if they
were charged particles experiencing a magnetic field and were investigated experimentally
and theoretically with an external lattice potential [11-13] or without one [14-16].

In this paper, we investigate the physics of a two-dimensional system of harmonically
trapped interacting ultracold bosons quenched with an artificial magnetic field (AMF) from
a many-body point of view. The time-dependent Gross-Pitaevskii mean-field theory [17,18]
is the most widespread tool to theoretically model many-body systems of ultracold bosonic
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atoms subject to an AMF. This approach recovers many of the physical phenomena ob-
served, but neglects correlations by its construction using a mean-field ansatz; here, we
go beyond mean-field and use the multiconfigurational time-dependent Hartree method
for bosons (MCTDH-B) [19-21] to approximate the solution of the Schrédinger equation
for ultracold atoms subject to an AMF. MCTDH-B is a method from the MCTDH family
of methods [22-27] for indistinguishable particles (MCTDH-X) [22,28-38] that is able to
self-consistently describe physics involving the presence and effects of quantum correla-
tions. MCTDH-X was successfully applied to demonstrate the importance of variances of
observables [39-43] and of single-shot images [9,44] to the correlations of particles in the
many-body state. Using MCTDH-X, intriguing correlation effects beyond the commonly
employed Bose-Hubbard description were found to be present in lattices [45-50] and cavity-
generated lattices [51-53] and the breakdown of commonly used mean-field approaches
has been demonstrated in tunneling dynamics [54-56] and in harmonic traps [57-59]. A key
focus of the applications of MCTDH-B has been the emergence of fragmentation [60-62],
where the reduced one-body density matrix has multiple significant eigenvalues, see,
for instance, Refs. [54,63-70]. To obtain the results presented in this work, we used the
MCTDH-X software hosted at http:/ /ultracold.org (accessed on 7m-day, 14 March 2021),
see References [38,50,71-74].

Our paper is structured as follows—in Section 2 we introduce the Hamiltonian and
the MCTDH-X method we use, in Section 3 we discuss the observables that we are using in
Section 4 to investigate the dynamics of ultracold atoms in an AMF; Section 5 summarizes
our conclusions and provides an outlook.

2. Hamiltonian and Methods

We consider a system of bosonic particles with two-body interactions in two spatial
dimensions. The state of the bosons is initialized in the ground state of a parabolic trap
without an AMF present. Subsequently, the system is quenched by turning on suddenly an
artificial gauge field corresponding to a homogeneous AMF perpendicular to the plane in
which the bosons are trapped.

For the sake of clarity of presentation, we will omit the dependence of quantities on
time ¢ throughout this work, where it is obvious.

2.1. Setup

To setup the time-dependent many-body Schrodinger equation (TDSE), we use the
Hamiltonian

H= / dx ¥ (%) [T(x) + V(x)]¥ (x) +% / dxdx’ #H )T ()W (x, X VE () F (x). (1)

Here, we work in atomic units (7 = m = 1), the potential V(x) [with x = (x,y)] is chosen
to be harmonic, V(x) = 1x%, and we consider contact interactions W(x,x') = god(x — x').
Formally, one cannot use a contact interaction in two spatial dimensions with a complete
basis set since the outcome would be that of the noninteracting bosons [75,76]. In simple
terms, this is because the integral measure of the support of the Dirac-J is zero for two
and more spatial dimensions. For a proof, the interested reader is deferred to Ref. [76] and
for an example for finding non-zero ranged Gaussian interaction potentials with similar
physical behavior for ultracold bosons, see Ref. [75].

In the present work, we employ a finite truncation of the many-body basis (chiefly
M = 4 orbitals) and aim to demonstrate that beyond-mean-field phenomena do emerge.
The kinetic energy is augmented with an artificial gauge field A(x; t):

T(x) = = (—iVx — gA(x; 1)) )

NI~
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For simplicity, we consider the case of unit charge ¢ = 1 and a homogeneous magnetic
field B in z-direction of strength B(x; ):

B(x;t) = B(t)é,. 3)
Here, é, denotes the unit vector in z-direction. In the following, we work in Landau gauge,
A(x;t) = B(t)éy, 4)

and consider a quench scenario in the following, that is,
B(t) = BO(t). )

Here, ©(t) denotes the Heaviside step function, that is, the magnetic field is suddenly
turned on at t > 0 after the system has been initialized, see Figure 1 for a sketch.

A B (t)

YO

-2 0 2 -2 0 2

Figure 1. Sketch of our setup. Two-dimensional ultracold bosonic particles are prepared in the
ground state of an isotropic harmonic trap (label “GS”) for time t < 0. Att > 0, an artificial
magnetic field pointing in the Z-direction perpendicular to the ultracold atoms of strength B(t) (top)
is switched on suddenly. This quench triggers many-body dynamics of the state (label “t > 0”).

In our investigation, we analyze the many-body dynamics by monitoring observables
as a function of the effective magnetic field strength B at t > 0 after the quench.

2.2. Method

To solve the TDSE,
H|Y) = io:|¥), (6)
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we use the multiconfigurational time-dependent Hartree method for indistinguishable par-
ticles [19-21,38,50,71-73]. Regarding our notation in Equation (1), the MCTDH-X method
implies that the field operators are represented by a sum of M time-dependent single-
particle states or orbitals:

M
This corresponds to the following ansatz for the wavefunction:

%) = X Caliist). ®

For bosons, the summation runs on all
N+M-1
N
symmetric time-dependent configurations # = (ny,...,n)) with fixed particle number
N =YM, ;. To derive the MCTDH-X equations, the ansatz in Equation (8) is plugged in a
suitable variational principle [31,77-81]. The resulting equations are a two coupled sets—A
set of linear equations for the coefficients {Cj(t) } and a set of non-linear ones for the orbitals

{(]bj(x; t);j=1,..., M}, see Appendix A for the equations and References [19-21,38,71-73]
for details and derivation.

3. Quantities of Interest

Here, we define the observables that we use to quantify the dynamics of N-boson
systems: the one-body density, the eigenvalues of the reduced one-body density matrix
(1BDM), the angular momentum, and the image entropy and its variance evaluated from
simulated single-shot images.

Density, One-body density matrix, and Natural Occupations:
The 1BDM is a hermitian matrix defined as

P (xx) = (F[F ) ¥ (x)[¥) = kZpkqﬁ (6 £)pq (x; ). ©
q

Here, we used the matrix elements py, = (¥|bfb,['¥) to represent the 1BDM using the

orbitals corresponding to the creation and annihilation operators E; and Eq, respectively.
The diagonal of the one-body density matrix is referred to as the density p(x):

p(x) = pM (x,x' = x). (10)

The density p(x) is a real quantity and has no phase, because it is the diagonal of a
hermitian matrix, p(l) (x,x"). The eigenvalues of the 1BDM, Equation (9), can be obtained
via a diagonalization that corresponds to a unitary transformation of the orbitals ¢;(x; t) to

the so-called natural orbitals (p](NO) (x; £):

1) ! * /
)y A (x9N (). (11)
]

The eigenvalues A; are normalized, Z]-Ail Aj = 1and, without loss of generality, we consider
them to be sorted by size, Ay > A; > ..., throughout this work. The eigenvalues /\]- (natural
occupations) determine the degree of condensation and fragmentation of the system.
Bosons with a 1BDM with only a single contributing eigenvalue A are condensed [82] and
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bosons with a 1BDM with multiple macroscopic eigenvalues contributing A1 ~ O(N); Ay ~
O(N);... are fragmented [60,61].

The eigenvalues of the 1BDM can be used as a precursor of correlations in the state
|'¥). This can be seen using, for instance, the Glauber first-order correlation function [83],

o (x,x')

EICall (12

8 (xx)| = ‘

If the system is in a condensed state, the 1BDM has only a single eigenvalue and is therefore
a product of a single (complex-valued) orbital, o) (x,x') o ¢F(x)¢1(x'). It follows that
1g (x,x')| is constant for all (x, x')—for particles in a condensed state correlations are
absent. It is instrumental to note here, that this condensed, single-orbital case with absent
correlations is presupposed in mean-field approaches like the time-dependent Gross-
Pitaevskii theory [17,18]. Similarly, when oM (x,x’) is a sum of two or more orbitals
as in Equation (9) then it can no longer be represented simply using its diagonal, the
density p() (x, X' = x) = p(x). Furthermore, in this fragmented case, the denominator of
Equation (12) is a product of two weighted sums of orbitals, p(x), and p(x’), respectively.
This product involves non-trivial cross terms and the correlation function attains a value
1gM (x,x')| <1 forall (x,x')—for particles in a fragmented state, correlations are present
and the single-orbital picture of mean-field approaches like the time-dependent Gross-
Pitaevskii theory [17,18] cannot be applied.

Angular momentum:

The angular momentum operator in é,-direction for a two-dimensional system is
defined as

(amld

Z:éz.(fxp):—i(ﬁéy—ﬁéx). (13)

Bosonic quantum systems with angular momentum are rich in physics: they feature
condensed vortices [17,18,84], phantom vortices [69,85], spatially partitioned many-body
vortices [68,86], and fragmentation [68,69,85-88]. Since phantom vortices are the most
pronounced characteristic feature of angular momentum which we find in our study below,
we discuss them in the following. Typically, the term “vortex” refers to a topological defect
in the density of quantum system connected with a discontinuity in the phase. A phantom
vortex is an analog of such a conventional vortex, but for a natural orbital. A phantom
vortex thus represents a topological defect connected with a discontinuity in the phase
in one of the field modes of a many-particle states that corresponds to a natural orbital.
Phantom vortices were shown to emerge as topological defects in the correlation function
in Reference [69]. Moreover, in the common detection scheme for cold atoms, single-shot
images (see below) they show as topological defects whose position fluctuates from image
to image, see Reference [85].

Single shots, image entropy and its variance:

To assess the observability of the emergent physics in experimental setups with
ultracold atoms, we simulate the detection of our numerical model wavefunctions in
absorption or single-shot images [9,85,89]. A set of N; single shots,

Sj:(s]i,...,sé\]); j=1,...,N;, (14)

is nothing but Ny random samples that are N-variate and distributed according to the
N-particle probability given by |¥|?,

P(Xl,...,XN) = |‘F(X1,...,XN)|2. (15)

To generate images from these single shots, we convolute them with a point spread func-
tion. Typical choices include Gaussian (see [9,44,49,85]) or even quantum point spread
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functions [90]. Here, for simplicity, we consider the idealized case of a J-shaped point
spread function to obtain our single-shot images:

S(x—xJ). (16)

M=

Il
—_

Si(x) =

We will consider the image entropy { of single-shot images of the state |¥):

1N

(=L ¥y yszywmyw. (17)
s j:1

In the limit of large N;, the image entropy ( is equivalent to the density-entropy studied,
for instance, in Reference [91]. Fundamentally, the image entropy is a measure for the
information content in the particle distributions detected in single-shot images. While
Ref. [91] found the entropy to be connected to the presence of correlations in the state, we
found it not to be a conclusive pointer in our present work. The variances of observables,
however, serve as a precursor of quantum fluctuations and correlations in many-body
systems [39-43]; we are thus motivated to also analyze the variance o; of the image

entropy (:
1 &

2
= ﬁs .

o (18)

<-4

j=1

4. Results

We now carve out the connection between artificial gauge fields and many-body
correlations. For this purpose we focus on the dynamics of a model system of N =
100 two-dimensional ultracold bosonic atoms with an interaction strength of go = 0.05
[cf. Equations (1)—(5) for t < 0]. We now make an example for realizing this interaction
g0 with a real trap configuration with 8Rb in analogy to the study [69]—the Hamiltonian
in Equation (1) is multiplied by ﬁ, where m = 1.44 x 10~2° kg is the mass of a ¥Rb
and L is a length scale that we choose to be L = 0.75 x 107% m. This sets our trapping

frequency to w = (271)207 Hz and yields a unit of time, T”TLZ of 4.84 ms. The total interval
of time we consider in the following t € [0,200] thus corresponds to 0.97 s. In quasi-two-
dimensional setups, the interaction parameter gp = 2\/2717—; depends on the transversal

oscillator length, I, = / miwz, and the scattering length of 87Rb, a; = 90.4ap; here, w, is the
transversal trapping frequency and ag the Bohr radius. The two-dimensional interaction
strength we use, g9 = 0.05, is obtained for a transversal trapping of w, ~ (277)3.178 kHz.
We remark here, that our choice of gy corresponds to a weak interaction; the healing length
¢ = ng(lTl) ~ 0.101 is comparable to the oscillator length, that is, 1 in our units.

The system is initialized in its ground state and its dynamics (f > 0) are then triggered
by suddenly turning on an AMF of strength B [Equation (5)]. In what follows, we aim at an
understanding of how the strength of the AMF affects the emergent dynamical behavior.
For this purpose, in the main text, we solved the time-dependent many-body Schrodinger
equation with MCTDH-X using M = 4 orbitals [176,581 configurations in the state in
Equation (8)] and 128 x 128 DVR functions (“modes”) to represent each of the orbitals
{#j(x;t)}; the total number of optimized and fully time-dependent parameters is thus
176581 + 4 x 1282 x 4 = 242117. For a convergence study with different M and N see
Appendix B.

We open the exposition of our findings with the density p(x) and its decomposition

into natural orbitals ([)](NO).

Besides a slight deformation of the density and the orbitals, little effects are seen in
Figure 2a—e for a weak AMF, B = 1.0. The phases B/, (x), Figure 2f-g, hint there are no
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phantom vortices. The phases B3,4(x) feature topological defects aligned with zeros in
¢3/4(x), but these orbitals are occupied only by 0.1 particles.

X X X X X
-4-2 02 4-4-2 02 4 -4-2 02 4 -4-2 0 2 4 -4-2 0 2 4

41 a) b) c) d) e)

2
o @ @ e WP
2 NO .NO. NO NO
ip0o 10, 00 {110, 00 1§} 105" 000 1]} 10, o0 |

|L,/N|=0.04 { £) 9) h) 1)
A,=0.991 $

hm0. 008 . i‘ (
A4=0.001 p Vi
A,=0.001 B, (x) B, (x) Bs (x) By (X)

41 3) k) 1) m) n)

? My "
SR . - I S I <
2 (NO) (NO) (NO) (NO)
P 10, 00 11110, 00 1] 10, o0 [} 16, o0 |

|L,/N|=1.26 { o) p) q) r)
A;=0.665 ) Y '

A,=0.223 {% % % ]
A;=0.061 ' ] \_g" g
A,=0.051 By (X) B, (X) B3 (x) By (X)

Figure 2. One-body density, natural orbitals, and natural orbital phases for two distinct AMF
strengths: B = 1.0 (weak) in (a-i) and B = 6.5 (strong) in (j—r). The figure shows the quantities at
time ¢t = 50.0. For guidance, the angular momentum per particle and the natural occupations are
listed below (a) and (j) for weak and strong AMFs, respectively. The phase plots [;(x) in (f-i) and
(0-1)] are restricted to areas where p(x) > 0.01. The plot ranges are [0, ~ 0.2] for (a) and (j), [0, ~ 0.1]
for (b—e) and (k-n), and [, 7] for (o-1). See text for further discussion.

For a comparatively strong AMFE, B = 6.5, in contrast, vortices at the edges of the
density (so-called “ghost vortices” [92]) and phantom vortices [69] in the orbitals emerge in
Figure 2j-r—zeros of the orbital densities are accompanied by topological defects in their
phase [compare Figure 2, panels (k) and (0), (1) and (p), (m) and (q), (n) and (r), respectively].

These features of the density, orbitals, and their phases are hallmarks of the angular
momentum that is deposited in time by the action of a sufficiently strong AMF—for
increasing AMF strength B, the expectation value L, = (¥|L;|¥) of the angular momentum
operator i, [Equation (13)] increases. For instance, we find L, /N = 0.04 at time t = 50.0
and B = 1.0 in Figure 2a-iand L, /N = 1.26 at time t = 50.0 for B = 6.5 in Figure 2j-r].

To quantify the dynamics of angular momentum triggered by quenches of the AMF a
bit better, we plot L,/ N for our system as a function of evolution time and as a function of
the strength of the AMF in Figure 3.

We find from Figure 3a that a threshold AMF strength of about B 2 6 is required to
generate states with significant angular momentum at long evolution times (here, t = 200).
Furthermore, the average angular momentum content increases as the strength of the AMF
does. We remark here that the angular momentum features an oscillatory behavior for
all AMF strengths that we investigated. This can be understood as a consequence of our
quench scenario—the initial state is an eigenstate of the Hamiltonian in Equation (1) for
time ¢ < 0 and has vanishing angular momentum L, = 0. Att = 0, the Hamiltonian and
its spectrum is changed abruptly due to presence of the AMF, Equation (5). The dynamics
of the initial state is thus dependent on these changes in the spectrum of the Hamiltonian
by the AME. At low AMF (B < 6) strength, the time-evolution of |L;| quasi-periodically
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goes back to L, = 0 and is dominated by oscillations at a single frequency [Figure 3b]; we
infer that only very few states with |L;| # 0 are contributing. The dynamics of the state |'¥)
of the many-boson system is thus a superposition of a very small number of eigenstates of
the Hamiltonian after the quench in this quasi-adiabatic case.

1 2 3 4 U

200

: 8f ‘momentum |L,|/N

)
£100
=

a)

l ””‘\
i

m\\ M

| N

UH ‘ H““ i il
‘J; ‘UH‘U‘.“ ‘”\H“M ’( “‘m” ‘H “w
|
|

Ll il

m"\\ \‘

LN

0o

100 150 200

15 Tlme

Figure 3. Angular momentum as a function of propagation time and strength of artificial magnetic field (AMEF). The

expectation value L, /N =

(¥(t)|L2[¥(t))/N [cf. Equation (13)] is shown as a function of time t and AMF strength B

in (a). Interestingly, there is a drastic short-term increase following a subsequent equilibration of L; /N for 5 < B < 12. To

highlight the oscillatory nature of the angular momentum we plot the cuts at B = 1 and B = 7 [highlighted by the red

vertical lines in a)] in panels (b,c), respectively. The angular momentum returns to L, = 0 quasi-periodically for B < 6 [as in

(b)], but not for B 2 6 [as in (c)]. See text for discussion.

The situation changes for B 2 6, where the time-evolution of |L;| does not return to
L, = 0 quasi-periodically. In this case, the time-evolution of |L,| still has its shortest-time
oscillations of roughly the same amplitude as for the quasi-adiabatic case B < 6 [Figure 3c].
However, several large-amplitude oscillations with other frequencies contribute. We infer,
that the dynamics of the state |'¥) of the many-boson system is thus a superposition of a
large number of states of the Hamiltonian after the quench, in this genuinely non-adiabatic
evolution for B 2 6.

We remark here that our results on the oscillatory behavior of the angular momentum
in time render it impossible to approach the physics of the many-body state using a
co-rotating frame at a certain angular frequency as done in References [62,93].

In References [62,68,69,85,87,88,93-97], an intricate connection of angular momentum
content and the presence of correlations or the fragmentation of many-boson states has
been pointed out. This motivates us to analyze the time-evolution of the eigenvalues of
the reduced one-body density matrix as a precursor of correlations and the departure of
the analyzed state from a mean-field description; we, thus, underpin the limitations of a
mean-field description, see Figure 4 for a plot of A; as a function of time and strength B of
the AMF.

Our present findings for a quenched AMF are in line with results obtained with a
time-dependent and slow transfer of angular momentum via a rotating asymmetry of the
harmonic trapping potential [69,85]: the dynamical departure from a single-eigenvalue
1BDM to a fragmented many-body state with correlations accompanies the dynamical
acquisition of a significant amount angular momentum. In particular, the region in time
and AMF strength, with a quasi-adiabatic evolution of small |L, | in Figure 3 agrees roughly
with the regions with small fragmentation in Figure 4. Conversely, the region in time and
AMEF strength, with a non-adiabatic evolution of large |L;| in Figure 3 agrees roughly with
the regions with substantial fragmentation in Figure 4.
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0 0.5
200] IBDM ceigenvalues 1-A

)
E100
|_

00 5 B 10 15
Figure 4. Eigenvalues of the reduced one-body density matrix. The dynamical emergence of
multiple significant eigenvalues, i.e., the fragmentation of the many-body state, is quantified here

via the time-dependent depletion 1 — A; = ZkM: » Ak and is in sync with the dynamics of angular
momentum (cf. Figure 3).

We now turn to the question of the possibility of an experimental detection of the
emergent behavior of angular momentum and the eigenvalues of the one-body density
matrix. For this purpose we simulated Ns = 1000 single-shot images for all the many-body
wavefunctions |¥(t)) for every time in t = k- dt € [0,200] in steps of dt = 1.0. From
this dataset of single-shot images, we computed the image entropy and its variance o7
[Equation (18)]; see Figure 5.

0.01 0.02 0.03
'

200 —

00 5 0 15
Figure 5. Variance of the image entropy as a function of propagation time and strength of the

AME. The variance of image entropy ¢ tracks the behavior of the natural occupations and the
angular momentum in, respectively, Figures 3 and 4 closely, see text for discussion.

The variance o; becomes significant for the same values of time and AMF strength
where the natural occupations in Figure 4 herald the emergence of fragmentation and
correlations. We emphasize here, that fragmentation implies the inapplicability of mean-



Entropy 2021, 23, 392

10 of 17

field descriptions that are restricted to fully condensed and uncorrelated states, as already
described in Section 3. By itself it is an interesting result that the variance of image entropy
represents an experimentally feasible way to study the emergence of fragmentation in
ultracold bosonic systems. Moreover, we observe that the region in time and AMF strength
B, where |L,| features quasi-adiabatic (non-adiabatic) dynamics in Figure 3, coincides
roughly with the region where fragmentation and image entropy are low (large) in Figures 4
and 5, respectively. We therefore conjecture that an experimental detection of the presence
of a non-adiabatic evolution of angular momentum is feasible by measuring the variance
of the image entropy.

We remark that we have not shown complementary results on the image entropy ¢
[Equation (17)] as a function of AMF strength and time, because it shows only very little
overall variation. We noted that the entropy ( is lowest, where its variance (Figure 5) is
changing the most. The exploration of a possible fundamental connection of the gradient
of the image entropy and the variance 0 goes beyond the exploratory scope of our present
investigation.

5. Conclusions and Outlook

We analyzed the dynamics of interacting two-dimensional ultracold bosonic particles
triggered by a quench of an artificial gauge field. We used the multiconfigurational time-
dependent Hartree method for indistinguishable particles software (http:/ /ultracold.org)
(accessed on 7r-day, 14 March 2021) to solve the many-body Schrodinger equation from
first principles. Our exploratory investigation demonstrates that fragmentation emerges
due to the quench if the artificial magnetic field is sufficiently strong. Such an emergence
of fragmentation entails the breakdown of conventionally-used mean-field descriptions
and, therewith, the occurrence of many-body correlations. We underpin our results by
checking their consistency across different quality levels of our MCTDH-X approximation
and different numbers of particles.

We have portrayed how correlations show in the expectation value of the angular
momentum operator and in the orbitals and their phases as phantom vortices. Using
simulations of single-shot images, we demonstrate that the fragmentation and correlations
can be detected via the variance of the entropy of the images.

Our work highlights the importance of deploying modern computational and theoret-
ical many-body approaches like the MCTDH-X to systems with artificial gauge fields as
well as the necessity to consider not only the wavefunctions of ultracold atoms themselves,
but also their detection.

Our results complement the recent findings, that the variances of observables are
sensitive probes of correlations in the state of ultracold atomic systems [9,38-43,96,98].

Straightforward continuations of this investigation include the deployment of the
developed analysis and computational tools to other many-body systems. As examples
of interest, we name here the variance of the image entropy in ultracold dipolar atoms as
discussed in Refs. [44,48,49] and an exploration of the competition of long-ranged dipolar
interactions and artificial magnetic fields for two-dimensional ultracold atoms. Another
direction of physical interest is the dynamics of two-dimensional bosonic Josephson junc-
tions [99] subject to gauge fields and the resulting tunneling of (phantom) vortices or the
emergence of quantum turbulence [100] via entropy production [101], which, in turn, as
we have shown above, could result from the presence of artificial gauge fields.
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Appendix A. The Equations of Motion of the Multiconfigurational Time-Dependent
Hartree Method for Indistinguishable Particles

We now discuss the equations of motion of the MCTDH-X. For simplicity, we present
them using the gauge condition (¢;]¢;) = 0; for other possible gauges, see for instance [22,102].

idigy) = P|hlg, +kZI (e} orsigWar O B)lgg) |5 =13 ) (i, (AD)
,5,q,1=1 i
i0:Ci(t) = Y (il t|H[n;t)Cap. (A2)

n’

Here, we introduced the matrix elements of the reduced one-body and two-body den-
sity matrices,

(A3)
| ) (A4)

qu:<

|
Pkslg = < |
respectively. The {p} 7(1 notation denotes the jk-th matrix element the inverse of a matrix

filled with the entries defined in Equation (A3).
Moreover, the time-dependent local interaction potentials were used

Wy (x; ) = / o* (X W (x, X5 1)y (X3 £)dx'. (A5)

In this work, we solve the Equations (A1) and(A2) with the MCTDH-X software [74]
hosted at http:/ /ultracold.org (accessed on 7r-day, 14 March 2021).

Appendix B. Investigation of Convergence

Here, we discuss the convergence of our numerical simulations with respect to the
number of variational parameters in the ansatz of the MCTDH-X wavefunction. For this
purpose, we consider the same systems as investigated in the main text, but perform
the solutions of the Schrodinger equation with MCTDH-X with a different number of
orbitals M.

Figures A1l and A2 show the result for the first eigenvalue A of the 1IBDM for B =1
and B = 5, respectively, as a function of time for M < 5.

The time-evolution of A; is not fully converged for M < 5. However, all shown time-
evolutions with M > 1 show a significant departure from the mean-field case, i.e., A1 <1
for M > 1. Importantly, the magnitude of the departure from the mean-field case increases
drastically as the strength of the AMF is increased (cf. ranges of Ay in Figures A1l and A2).
We note that the number of time-dependent configurations |n1, ..., ns;t) for N = 100 and
M = 5is 4598126 ~ 4.6 x 10° and the total number of optimized and fully time-dependent
parameters in these demanding computations is thus 4598126 + 5 x 1282 x 4 = 4680046 ~
4.7 x 10°.
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To verify this finding about A1 in a setting, where a larger number of orbitals can be
included in our simulations, we repeated our convergence study in a system with N = 10
particles. To keep the mean-field interaction go(N — 1) and predictions comparable, we
investigated a stronger interaction of go = 0.5 in this case.

Figures A3 and A4 show the N = 10 results for the first eigenvalue A1 of the 1BDM
for B = 1 and B = 5, respectively, as a function of time for M < 13.

A complete convergence of the eigenvalue A (t) is still not achieved; however, the
discrepancies for different M are very small, cf. the M = 12 and M = 13 cases in Figure A3
and the M = 11 and M = 12 cases in Figure A4. The tendency to an increased amount of
fragmentation and correlations for an increased AMF field strength inferred in the N = 100
case in Figures Al and A2 is also underpinned by the results for N = 10: B = 5 yields
a drastically smaller Aq(t) than B = 1 (cf. ranges of A; in Figures A3 and A4). At this
stage, the discrepancies may well arise due to the formal problems with the true contact
interaction potential [75,76] that we have chosen to use for our present investigation. We
note that the number of time-dependent configurations |ny,...,1n13;t) for N = 10 and
M = 13is 646646 ~ 6 x 10° and the total number of optimized and fully time-dependent
parameters in these demanding computations is thus 646646 + 13 x 1282 x 4 = 859638 ~
9 % 10°.

In summary, our convergence study corroborates our main observations about the
emergence of fragmentation and correlations in the main text and underpins the accuracy
of our MCTDH-X computations.

1k '
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099 B=t :
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Figure Al. Convergence: A1 (t) for different M with N = 100 and B = 1. See text for details.
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Figure A2. Convergence: A (t) for different M with N = 100 and B = 5. The M = 5 computation

was continued only up to time ~ 80, due to the disproportionately large amount of computational

resources required. See text for details.
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Figure A3. Convergence: A1 (t) for different M with N = 10 and B = 1. See text for details.
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