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One shot ancient character 
recognition with siamese similarity 
network
Xuxing Liu, Weize Gao, Rankang Li, Yu Xiong, Xiaoqin Tang & Shanxiong Chen*

Ancient character recognition is not only important for the study and understanding of ancient history 
but also has a profound impact on the inheritance and development of national culture. In order to 
reduce the study of difficult professional knowledge of ancient characters, and meanwhile overcome 
the lack of data, class imbalance, diversification of glyphs, and open set recognition problems in 
ancient characters, we propose a Siamese similarity network based on a similarity learning method to 
directly learn input similarity and then apply the trained model to establish one shot classification task 
for recognition. Multi-scale fusion backbone structure and embedded structure are proposed in the 
network to improve the model’s ability to extract features. We also propose the soft similarity contrast 
loss function for the first time, which ensures the optimization of similar images with higher similarity 
and different classes of images with greater differences while reducing the over-optimization of back-
propagation leading to model overfitting. Specially, we propose a cumulative class prototype based 
on our network to solve the deviation problem of the mean class prototype and obtain a good class 
representation. Since new ancient characters can still be found in reality, our model has the ability 
to reject unknown categories while identifying new ones. A large number of experiments show that 
our proposed method has achieved high-efficiency discriminative performance and obtained the best 
performance over the methods of traditional deep learning and other classic one-shot learning.

Ancient characters have far-reaching research value as treasures that record ancient history, economy, culture, and 
scientific and technological development. After the long-term efforts of paleographers, more and more ancient 
character materials have been sorted out. However, researchers who use computers to solve ancient character 
recognition are also discouraged by the lack of relevant domain knowledge. Unfortunately, even for ancient 
characters researchers with lots of domain knowledge, it is very time-consuming to identify these unmarked 
ancient characters and even discover new ones. The study of ancient character recognition by computer can not 
only greatly improve the repetitive behavior of manual processing of character identification, but also efficiently 
explore the constant pattern of characters in the historical changes using neural networks which can effectively 
help researchers to conduct further investigation of history and culture.

Different from general handwritten Chinese character  recognition1–3, ancient character recognition has more 
difficult problems. Firstly, for example, handwritten Chinese characters or numbers can easily obtain thousands 
of training data, but it is difficult to obtain a large amount of ancient character data. Secondly, the distribution 
of the number of characters among ancient characters is extremely unbalanced, and some characters even have 
only a few sample data. Moreover, the variation of similar characters in ancient characters is large, unlike the 
differences caused by different writers in Chinese character recognition, and there is more variability in the 
characters themselves caused by the number of strokes or different shapes. The similarity of ancient characters 
between different types of characters is extremely disturbing to the recognition accuracy. There are also practical 
situations where ancient characters are still being excavated and we generalize existing methods to these unfa-
miliar new classes, which may be expensive due to limited data and extensive retraining. Thus, the existence of 
various difficulties in ancient characters is also a great challenge for recognition.

To eliminate the dependence on a large amount of data, few-shot learning is becoming a hot spot for research-
ers in various  fields4–6, but there is almost no application in ancient character recognition. In particular, the task 
of using a single sample to recognize the pattern is called one-shot  learning7, which is to recognize the category 
matched by the test image in the support set composed of only one picture in each category. In areas where it is 
difficult to collect a large amount of training data, such as human faces and ancient characters, the method of 
one-shot learning is very desirable. There are still many problems in ancient character recognition such as the 
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insufficient amount of data and imbalance data, more similar characters of the same kind of variants and similar 
characters of different classes, and open set recognition to predict unseen  class8,9.

On the one hand, we hope to develop an effective ancient character similarity matching model, based on 
which we can develop automatic recognition and retrieval tools to facilitate the work of archaeologists and pale-
ontologists. On the other hand, as part of pattern recognition, visual analysis of images reveals little difference 
in pattern recognition in similar fields, and it is hoped that our research will not be limited to ancient character 
recognition but will also be useful for general character or sketch-based related fields.

Overall, this work has three main contributions: First, this paper proposes a Siamese similarity network 
framework that does not rely on specific domain knowledge to solve the data imbalance, insufficient data, and 
variant character recognition problems in ancient character recognition. Second, this paper proposes the soft 
similarity contrast loss function for the first time. It ensures the optimization of similar images with higher 
similarity and different classes of images with greater differences while reducing the over-optimization of back-
propagation leading to model overfitting. This not only improves the recognition accuracy of similar images of 
different classes, but also makes an important contribution to similarity models and metric learning methods. 
And we propose a cumulative class prototype to obtain a better class representation. Third, our model can 
discover new ancient characters and perform ancient character open set recognition, which means it can reject 
instances in unknown categories.

Related work
Archaeologists and palaeographers have made long-term unremitting efforts in the study of ancient characters, 
but their efficiency in solving the recognition and interpretation of unknown characters is relatively poor. In 
recent years, some researchers have started with computer vision to process and analyze ancient  characters10,11. 
Guo et al.12 proposed a new multi-level representation that combines  Gabor13 related low-level representation 
and sparse self-encoding high-level representation to recognize ancient Oracle and sketch  characters14. Narang 
et al.15 proposed a joint  SIFT16 and Gabor features for handwritten ancient Devanagari character recognition. 
These traditional recognition methods need to manually design domain-adapted features, so the generalization 
ability of such algorithms and the stability of recognition performance are difficult to guarantee. One-class clas-
sification  approach17 has been applied to determine if the input data is seen class or unseen class which is efficient 
to find new ancient characters, but it is still hard to distinguish new ones from others.

Currently, deep  learning18 has reached state-of-the-art performance on various pattern recognition tasks, 
especially on visual  classification19 problems. Compared with traditional methods based on rules and manually 
designed features, deep convolutional  networks20 have a greater advantage in terms of generalization ability and 
performance in processing images. Zhao et al.21 used feedback from convolutional neural networks to determine 
an algorithmic model of clustering labeling hyperparameters to improve the recognition rate of ancient hand-
written Shui characters. Ghanim et al.22 used hierarchical clustering techniques and ranking algorithms to rank 
cluster members, and finally studied the impact of six different deep convolutional neural networks on Arabic 
character recognition. However, when these neural network-based algorithms are forced to make predictions 
on a small amount of available data, they tend to crash due to severe overfitting leading to difficulty in train-
ing. Zhang et al.23 proposed a triplet network based on deep metric learning, which maps character images to 
Euclidean space as feature vectors and then uses nearest neighbor classifiers for oracle recognition. Due to its 
triplet training approach, it is difficult to train to meaningful training samples, which leads to its slow training 
learning and high computational cost. And the recognition performance is not monitored during the training 
process thus the generated model has very poor generalization ability.

Thus, it is necessary to propose new one-shot learning methods to be applied in the field of ancient character 
recognition. Data  augmentation24 is the most common method used in ancient character recognition, but the 
extremely small data space leads to a very limited transformation pattern and does not fundamentally solve the 
overfitting problem. Transfer  learning25 is also a more common research method, and the performance of pre-
trained networks is greatly reduced when the target dataset differs significantly from the source domain dataset. 
The metric-based approach of one-shot learning is simpler and more efficient, and the data will have different 
representations based on different tasks. Especially, learning task-based representations can achieve better per-
formance on high-dimensional data. One of the most representative achievements is the method based on the 
Siamese network proposed by Koch et al.26 which rank the similarity between inputs and perform classification 
recognition. The biggest contribution of the model is to use the ability of the verification model to distinguish 
the similarity, which is directly used for one-shot recognition and has a good effect on new class recognition. 
Later, Vinyals et al.27 proposed to use a matching network to predict the test set category by learning embedding 
vectors on the support set using a cosine-based attention mechanism. The model uses segmented sampled mini-
batch data to simulate the test task during training, which can reduce the difference between training and testing, 
thereby improving the generalization performance on the test set. Snell et al.28 further explored the relationship 
between the class embedding vectors in the embedding space, and believed that there is a prototype expression 
for each category, and then proposed a prototype network. In the article, the class embedding vectors are closely 
clustered around the class representatives, which is the mean value of the embedding vector of the support set, 
so the classification problem becomes the category of finding the nearest neighbor of the class prototype rep-
resentative of the test image, and good results have been achieved. The Siamese structure has been widely used 
in many fields, such as image  recognition26, visual  tracking29, and person re-identification30. Drawing on the 
Siamese network-based one-shot image recognition method proposed by  Koch26, this paper specifically improves 
it based on the problems in ancient characters and proposes Siamese similarity network (SSN) for end-to-end 
one-shot recognition of ancient characters.
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Compared with the traditional Siamese network, SSN mainly makes the following improvements : (1) The 
Siamese backbone in SSN uses a large number of multi-scale feature fusion structures and embedding structures 
instead of traditional simple convolution to extract image fusion features; (2) Based on the idea of deep metric 
learning and contrast learning, soft similarity contrast loss (SSCL) is proposed in SSN to train the model so that 
the similarity of similar ancient characters is higher and the similarity of different ancient characters is lower. The 
prediction and recognition performance of the model is generalized by the powerful discriminative ability; (3) 
Inspired by the prototype concept, the trained SSN is used to calculate the cumulative similarity value to obtain 
the cumulative class representative prototype which is more robust than the original random class prototype 
and the mean class prototype. The traditional deep network usually utilizes a model with many parameters and 
then uses a large amount of data to prevent overfitting, while the SSN in this paper can obtain a large number 
of image pairs from a small amount of training data to train the parameters thus reducing model overfitting.

Methodology
General strategy. Methods based on deep metric learning and one-shot learning have achieved very good 
performance in various fields of pattern recognition. However, the research directly using these methods in 
the field of ancient character recognition is very rare. In this paper, the proposed method works by proposing 
a deep metric learning method to learn a good image representation, then directly reusing the features of the 
network without any retraining, and finally building a one-shot task for nearest neighbor classification. The 
multi-categorization problem of imbalanced datasets is transformed into a simple validation problem, where 
the input to the model will be balanced positive and negative sample pairs, and the sampling of balanced posi-
tive and negative sample pairs will eliminate the problem of category imbalance even if the data set categories 
themselves are unbalanced.

Figure 1 shows the proposed recognition strategy, which constructs an end-to-end two-stage single-sample 
recognition framework. In the first learning stage, by inputting a large number of image pairs which can be 
obtained under the condition of insufficient data for the verification task, we learn a verification model that 
can distinguish the sample pairs and even give a similarity score, which is the Siamese similarity network (SSN) 
proposed in this paper. Among them, it is proposed to use a multi-scale fusion network as the backbone of SSN 
as well as to add embedding structures to obtain more abundant scale information. Subsequently, more accu-
rate fusion distances can be calculated and the distance layer is simply mapped to the similarity probabilities. 
Finally, a more efficient and accurate gradient value can be obtained by using the SSCL to update the parameter 
weights. At this stage, our SSN learned the ability to distinguish between similar or different classes of images. 
In the second classification stage, all parameters of the previously trained SSN are fixed and we directly use them 
for one-shot classification. We determine the class to which the test image belongs by solving for the highest 
similarity value of the input image pair. Different from the mean clustering center in the prototype network, 
we propose to choose the more representative and robust cumulative clustering center as our class prototype. 
In this stage, the most similar sample classification is completed by the similarity score values output by SSN. 
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Figure 1.  The general strategy. We adopt a two-stage end-to-end recognition framework. In the learning 
stage, a good representation of the SSN model is obtained through a series of verification tasks, and in the 
classification stage, the trained model is used to perform nearest neighbor classification.
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If the features learned in SSN are sufficient to confirm the test character classes from some known classes, then 
after acquiring the ability to match character pair differences under extensive training, our model can also reject 
instances of unknown classes and find new classes. This is more practical and valuable because in reality new 
classes are still being discovered.

Network structure. Figure 2 illustrates the structure of our SSN. It receives two characters images X(1),X(2) 
of the same or different categories. Firstly, the character image features F(X(1), F(X(2)) are extracted through 
the processing of Multi-Scale Backbone, and then the corresponding feature embedding representations 
E
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))

,E(F
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)

) are obtained through a special fusion embedding structure. Accordingly, these two 
feature vectors are passed through the proposed non-parametric fusion distance layer to obtain the semantic 
distance values D(X(1),X(2)) of the two images, at which time the fusion distance is a weighted sum of the 
cosine distance and the Euclidean distance, which represents a simultaneous constraint on the distance in terms 
of value and direction, that is Dunion = αDeul + (1− α)Dcos . Since distance and similarity are closely related, 
images with large distances are less similar to each other and images with small distances are more similar to 
each other. We use a simple mapping layer containing one node to obtain the final similarity score S(X(1),X(2)) , 
and apply the softmax function to restrict the similarity score to be between 0 and 1. Our embedding represen-
tations show a clear clustering feature in the metric space, which finally means that the higher the similarity of 
characters with the same category and the lower the similarity of characters with different categories.

Multi‑scale fusion backbone structure. Due to the simple convolutional layer stack used in the previous Siamese 
 network26 or the more traditional classical neural  network31, we have been aware that these simple convolutional 
structures have limited non-linear learning capabilities in complex data sets and there are large variations in 
ancient character. Based on the network structure in Szegedy et al.32, we use the MSB module that contains a 
large number of multi-scale channel fusions as our feature extraction, including a large number of receptive field 
convolution kernels of various scales and different shapes, which play an important role in capturing multi-scale 
features and local features. Since increasing the network depth is proven to better extract the target features, 
our network will use a large number of  residuals33 to skip the connection structure so that the network can be 
deepened while reducing the degradation phenomenon. The proposed MSB module uses a large number of dif-
ferent size perceptual fields to obtain multiscale features and rich local features, which are very important for 
obtaining invariant features in variant characters, thus improving the recognition accuracy of variant characters 
to a certain extent.

Our MSB mainly consists of five consecutive multi-scale blocks, each of which is followed by a reduc-
tion block. Figure 3 briefly illustrates the MSB module. In each multi-scale block, there are multi-scale and 
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Figure 2.  The structure of proposed SSN. It mainly includes multi-scale fusion backbone structure (MSB), 
embedding structure (EB), fusion distance layer (D), similarity layer (S) and soft similarity contrast loss (SSCL).
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Figure 3.  The architecture of MSB module. The input of MSB is the 256× 256× 1 ancient character image. The 
original image is first obtained by a simple convolution process to obtain the shallow features of the image, and 
then there are 5 consecutive multi-scale blocks, each of which is followed by a reduction module.
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multi-shape convolution channels containing 4 receptive field branches of 1*1, 3*3, 5*5, and 7*7, namely C(1), 
C(3), C(5), C(7). All branches use the same padding which tries to pad evenly left and right and a default stride 
of one which makes the size of the feature map in each block unchanged. The first channel is 32*1*1 convolution, 
the second channel is 32*1*1, 32*1*3, and 64*3*1 convolution, and the third channel is 32*1*1, 32*1*5 and 64*5*1 
convolution, and the fourth channel is 32*1*1, 32*1*7 and 64*7*1 convolution. The fusion of the multi-scale 
features of each channel is followed by the 1*1 convolution to normalize the number of channels, and finally the 
multi-scale feature fusion feature is obtained through residual connection. It can be expressed as:

In Eq. (1), the double Plus " " represents the concatenation operation and the " " symbol refers to the convo-
lution operation. R(xconcat) refers to the concatenation of the feature maps produced in four multi-scale branches. 
x and Y  denote the input and output features of the multi-scale block respectively. The size of the feature map 
after passing through the multi-scale block does not change, which is subsampled by the reduction block which 
does convolution and pooling. Our reduction block also contains four branches. All of the branches use the 
same padding as in the multi-scale block and a stride of two in the only last node of each branch which halves 
the size of the feature map in the reduction block. The first branch is 3*3 maximum pooling, the second branch 
is 32*1*1 and 64*3*3 convolution, the third branch is 32*1*1 and 64*5*5 convolution, and the four branches are 
32*1*1, 32*3*3 and 64*5*5 convolutions.

Embedding structure. Since the traditional embedding structure only uses the Fully Connected Layer (FCL) 
to vectorize the feature map, the structure often results in severe overfitting due to the need to optimize a large 
number of parameters, which results in extremely poor generalization performance of this  network34,35,36,37. 
Another kind of embedding structure, namely Global average pooling (GAP)34, will lose a lot of detailed infor-
mation due to its rough processing method, and may slow down the convergence speed. Inspired by the idea 
of residual learning  in33, we therefore use the residual structure to link the combination of FCL, GAP, and 
 Dropout35 as our embedding structure. Our EB structures ensure that more detailed information is added while 
reducing the number of parameters, which is helpful to improve classification performance and generalization 
ability. And three EB structures are proposed in Fig. 4, namely the embedding structure with only parallel GAP 
and FCL (GF), the embedding structure with Dropout in FCL (GFD_IN) and the embedding structure with 
Dropout in the outermost layer (GFD_OUT). The ADD operation means the eltwise sum. Specially, our FCL 
is just one dense layer with Relu activation containing the same dimension as GAP layer. Unlike the residual 
learning of the original feature map in the residual network, our embedding structure adds a richer set of image 
features learned through the fully connected layer to the vector obtained after global average pooling, using the 
following equation.

The symbols of x and Y denote the input and output of this embedding structure, respectively. GAP(x) 
denotes the global average pooling of the input to obtain the original embedding representation. R(x) denotes 
the residual mapping to be learned, and the residual features learned from the fully connected layer are added 
to the embedding representation via GAP to obtain the most informative and accurate embedding representa-
tion. F(x) which means the fully connected layer can be adjusted to represent the same number of channels as 
the original embedding.

Learning strategies. Soft similarity contrast loss function. In this paper, we design a new loss function 
based on the traditional contrast loss (CL)38, called the soft similarity contrast loss function (SSCL), which is 
expressed as shown in Eq. (3) below. The proposed loss function can not only implicitly define the similarity 
measure which is the end-to-end similarity value of the output two characters images but also achieve the goal of 
metric learning that the similarity of similar characters is high while the similarity of different characters is low. 
In addition, we consider that contrast loss can over-optimize and thus lead to poor generalization performance. 
Therefore, our loss function emphasizes that the optimization object is between certain threshold values, other-
wise no optimization is performed. It can prevent over-optimization from bringing overfitting, reduce problems 
such as incorrect optimization, and also speed up the optimization speed.

Specifically, owing to the upper bound of similarity, optimization will be stopped when the similarity value of 
two images is higher than a certain upper bound. Similarly, there is a lower bound of dissimilarity, and optimiza-
tion will be stopped when the dissimilarity value of two images is lower than a certain lower bound.

( ) = ∑ (1) ⧺ ∑ (3) ⧺ ∑ (5) ⧺ ∑ (7)

= ( ) Kernel(1 ∗ 1) + x (1)

(2)

{

Y = R(x)+ GAP(x)or
Y = R(x)+ GAP(x)+ dropout
R(x) = F(x)orF(x)+ dropout

(3)L
(

x(1), x(2)
)

= y(1)(2)max
((

a− s
(

x(1), x(2)
))

, 0
)

+
(
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y(1)(2) denotes the labels of two images. if the two images are of the same category, then y(1)(2) = 1 , and 
y(1)(2) = 0 if they are of different categories. The parameters a and b denote the upper bound threshold for 
reducing over-optimization of similar images and the lower bound threshold for over-optimization of images 
of different categories, respectively. s

(

x(1), x(2)
)

 denotes the similarity score value output by SSN. As shown in 
Fig. 5, CL will continue to optimize when the two objectives are extremely similar while SSCL will optimize up 
to a certain threshold to stop the optimization, which can avoid the problems caused by over-optimization and 
speed up the optimization in the meantime. It is obvious that SSCL is faster and more reasonable than CL. The 
experiments in the supplementary material illustrate these at the end of this paper. The proposed SSCL designed 
in this paper helps researchers to explore the study of similarity models, and this more direct way of similarity 
measurement will help to bridge the gap between validation models and classification models.

Training strategies. Since our model uses a recognition method that combines the verification model and the 
nearest neighbor one-shot classification, we have two strategies for monitoring performance during the training 
process. One is to set a verification task to monitor the generalization performance of the verification model, 
which requires that the verification model performance can be extended to the recognition model. The other 
way is to set the one-shot recognition task directly during the verification process to monitor the recognition 
performance so that the training process is closer to the real recognition scenario to obtain the optimal recogni-
tion generalization performance. In practice, we choose both monitoring methods and use the second method 
as our training termination criterion, which is more consistent with the final real one-shot recognition scenario. 
And it is proved that the verification model that performs well in one-shot task also performs well in the verifi-
cation task.

Cumulative class prototype. The approach of the mean class prototype (MCP) is proposed in the prototype 
 network28, which can represent this class of character images to some extent. When there is a large deviation 
in a certain class of a certain image, such as the target foreground is small, the background is large, the target is 
partially obscured or the sample image contains only part of the target, etc., the contribution of such images to 
the mean class prototype will have a great impact. The method of taking the mean value can easily make the class 
prototype deviate from the class center and make it difficult to obtain a good class representation, thus having a 
certain impact on the final recognition effect.
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Figure 4.  Traditional embedding structure and our residual embedding structure. (1) is the traditional 
embedding structure and (2) (3) (4) is our proposed residual embedding structure.
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In this paper, we propose a cumulative class prototype (CCP) based on SSN to solve the deviation problem 
of this mean class prototype. In the verification task stage, our model hasn’t learned the ability to distinguish 
between the same or different types of character, and at this stage our model still uses the random class prototypes 
for model training. In the classification task stage, after our model has learned the ability to distinguish different 
characters, we will replace the original random class prototype with CCP for one-shot classification. The specific 
cumulative class prototype is calculated by the formula shown in (4).

where x denotes a certain category of ancient character images, i  and j denote a certain one of such images, 
respectively. N denotes the total number of images contained in this category. S denotes the similarity score of 
two images calculated by SSN. ACC means the cumulative similarity score of one image in this category, and 
finally the image with the maximum value in ACC is taken as our cumulative class prototype Proto . As shown 
in Fig. 6, we found that since there is only one particular sample, which deviates from the more representative 

(4)
{

ACC
(

xj
)

=
∑N

i=1 S
(

xi , xj
)

Proto(x) = argmax{ACC(x1),ACC(x2) . . .ACC(xN )}

(1).CL (2).SSCL

Figure 5.  Two loss functions. The blue dots indicate that similar objects need to be as close as possible in the 
metric space, and the black dots indicate the ideal class center representation. (1) denotes the traditional contrast 
loss, which requires the objects with high similarity to be brought infinitely close. (2) denotes our proposed soft 
similarity contrast loss, which stops over-optimization when the high similarity ones are brought closer to a 
higher threshold to speed up the convergence rate.

PCCPCM

Prototype Space

Figure 6.  Our CCP. The solid circles represent instances of a particular class of images, the green six-
pointed stars represent the mean class prototype, and the orange solid circles represent the cumulative class 
prototype. The extreme values outside the large circle pull the mean class prototype away from the class center 
while the cumulative class representatives near the class center have larger similarity values to serve as class 
representatives.
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clustering center by calculating the mean class prototype. And using our proposed cumulative class prototype, 
we find that such deviated images we do not achieve a high cumulative similarity score will be eliminated.

One-shot classification. After learning a verification task consisting of a large number of pairs of ancient 
character images, our SSN can be directly used in the one-shot classification of ancient characters. There exists 
a support set S taking N ancient character prototypes composed of one representative image per class, namely 
N-way one shot, which is denoted as S = {

(

x1, y1
)

,
(

x2, y2
)

, .., (xN , yN )} . y denotes the labels of such character 
images. For two images of ancient characters, our SSN will give the corresponding similarity score, which has 
the powerful distinguishing performance of judging the same class or different one. Therefore, for the category 
of the test image of ancient characters, the distinguishing performance of SSN is used to find the prototype of 
the test image with the largest similarity score, so that the category of the test image can be judged for effective 
classification and recognition.

More importantly, our classification based on one-shot learning is an open-set classification method. In real-
ity, some ancient characters are still being discovered, so an effective open set recognition method is also very 
important for ancient character recognition. Our model can reject unknown ancient characters and recognize 
new ones. Experiments show that our method can still deal with the open set problem and get excellent recogni-
tion performance.

For unknown character images, which belong to different categories from those in the support set, the 
obtained similarity score value is relatively low. Therefore, setting a suitable threshold value can reject such 
unknown images. Once the new class prototypes are identified, our model recognizes instances of these newly 
discovered classes. Even though more and more class prototypes are added to be recognized, our model still 
achieves good recognition performance.

Experiment
Dataset. We conduct experiments on six datasets: Omniglot, HWAYI, HWOBC, CASIA-AHCDB, OBC306, 
Bronze-10&Oracle-57.

Omniglot:  Omniglot39 is a public dataset of handwritten characters for one-shot learning consisting of 1623 
categories with a total of 32,460 images. Each category has 20 images. Each of these characters is a 105 × 105 
binary image.

HWAYI: The HWAYI  dataset40 contains a total of 112,031 handwritten ancient Yi characters in 1764 categories 
(27–96 images per category), and each character image has been normalized to 64 × 64 size.

HWOBC: The handwritten oracle dataset  HWOBC41 collected a total of 83,245 sample images in 3881 cat-
egories. (Each category has 19–24 images).

CASIA-AHCDB: A large-scale Chinese ancient handwritten characters database contains six datasets. We 
choose AHCDB-style1 of Basic  Category42 as our experimental dataset which contains annotated character 
samples of 2,621 categories. It provides 865,940 samples for training and 264,431 samples for testing.

OBC306:  OBC30643 is a rubbing oracle bone character dataset. It contains a total of 309,551 images covering 
306 different classes. The minimum category has only 1 image, and the maximum has 25,898 images.

Bronze-10&Oracle-57: The two datasets were provided by oracle experts from Capital Normal University. 
Bronze-10 contains a dataset of 10 categories totaling 38 inscriptions (3–4 images per category), and Oracle-57 
contains an oracle dataset of 57 categories totaling 1036 images (8–20 images per category).

To obtain the best experimental results, we did a series of pre-processing on the initial dataset of ancient 
character images. Firstly, considering that multi-channel color images do not affect the recognition accuracy, 
we first convert them into single-channel grayscale images in order to simplify the calculation. Secondly, to 
facilitate network training, we scaled the images to 224× 224 uniformly. Lateral  inhibition44 is a phenomenon 
in which adjacent receptors are able to inhibit each other. Since the phenomenon of lateral inhibition produces 
a stronger visual impact on the form of images with white characters on a black background, we transformed 
all the pictures of the dataset except OBC306 into the form of white characters on a black background. Finally, 
we add a black bounding box with a width of 16 pixels to the image becoming a uniform 256× 256 scale. Such 
a border avoids possible boundary effects during the execution of convolution and pooling. As shown in Fig. 7, 
some instances of our datasets are illustrated.

Using  SiameseNet26 as a benchmark, we first validate our proposed MSB, EB, SSCL, and CCP on Omni-
glot. Then we explore the recognition performance, rejection of unknown categories, and open-set classifica-
tion performance using our SSN on two ancient character datasets, HWAYI and HWOBC. Finally, we conduct 
comparative experiments on these three datasets with the classic method of one-shot learning and validate the 
generalization ability of our model on other datasets. The research in this paper is based on the TensorFlow 
framework and the hardware operating platform uses Nvidia GeForce RTX 2080s GPUs.

Validation of proposed structures. MSB and EB. To efficiently compare other classical feature extrac-
tion networks, we used the same hyperparameter settings, optimization algorithms, distance representation, 
and loss functions as  in26. The difference only lies in the Siamese backbone and the embedding structures, where 
the Siamese backbone are the simple CNN structures in the benchmark,  vgg1645,  resnet5033,  inceptionv346 and 
our MSB, and the embedding structures are the traditional two structures(FCL, GAP) and our proposed three 
EB(GF, GFD_IN, GFD_OUT). The final EB setting of 2048 dimensions is the most appropriate in the experi-
ment.

The results of the study are shown in Table 1, and the experiments demonstrate that our MSB significance 
outperforms other models. Meanwhile, the introduction of a more informative EB obtains better performance 
than the traditional structure. The accuracy of using the simple convolutional structure model in the benchmark 
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can reach 92% while using the multiscale feature fusion module in this paper can exceed the original paper by 
2.39%, and the accuracy after the joint proposed embedding structure reaches 95.72%, and the improvement in 
the Siamese branch makes our model exceed the original paper by 3.72%, achieving the best results.

SSCL and CCP. To achieve a better data representation to obtain higher similarity scores for similar images 
and lower similarity scores for dissimilar images of different classes, we propose SSCL to obtain such a good rep-
resentation. This is also the most essential difference between the baseline and the method in this paper, which 
introduces the idea of similarity learning to improve the robustness of the model. Considering the evaluation of 
the final one-shot classification performance, this paper obtains the similarity value based on the trained SSN to 
obtain the CCP, which is another major innovation of this paper.

Following the parameter settings and the optimal structure of the joint MSB and FGD_OUT from the above 
experiments, the difference mainly lies in the loss function and the class prototype. The loss function contains 
the cross-entropy loss function in the benchmark, the CL, and our SSCL. The approach of CL combined with 
the nearest neighbor classifier (NN) is used for recognition, while all others are tested for one-shot classification 
performance. The class prototypes used for one-shot recognition are the random class prototype, MCP, and 
our CCP. The random class prototype refers to a randomly selected class of representative images, while MCP 
and CCP are both computed by applying the model directly to each class of images after it has acquired some 
discriminative power through metric learning.

The experimental results are shown in Table 2. The SSCL proposed in this paper obtains better recognition 
performance than the cross-entropy loss function and CL. Meanwhile, we find that the CCP obtains better 
performance than the random class prototype and MCP, and the combination of SSCL and CCP even achieves 
the best performance. So far, our best model has reduced the error rate by 5.81% compared to the benchmark. 
Thus, we validate the proposed SSN and obtain the state-of-the-art performance.

Figure 7.  a variety of different images from four different characters in our datasets.

Table 1.  The comparisons of different networks and different embedding structure. Acc means the 20-way 
one-shot recognition accuracy on Omniglot dataset. The best-performing method is bolded.

Acc (%) Base Vgg16 Resnet50 Inceptionv3 MSB (Ours)

FCL 88.72 87.01 93.58 93.81 94.39

GAP 87.09 88.04 93.67 93.96 94.44

GF (Ours) 88.94 88.25 93.91 94.58 94.93

GFD_IN (Ours) 88.93 88.60 93.86 94.47 95.27

GFD_OUT (Ours) 89.25 88.75 93.96 94.76 95.72
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Ancient character recognition. Recognition performance. We conduct ablation experiments on three 
ancient character handwriting datasets to evaluate the efficient classification performance of our proposed 
method. In this part, SSN uses 60% of the data for training and monitoring, and the remaining 40% for testing 
one-shot performance. We perform 5-way one-shot and 20-way one-shot recognition tasks with a total of 550 
one-shot learning trials per task, from which we calculate the classification accuracy. The dropout rate is set 
to 0.5 in the experiments and the fusion distance is set to 0.1 to reach the best. To efficiently compare each of 
our proposed structures, we will use the same hyperparameters, optimizers, and weight initialization as in the 
benchmark. Then MSB, EB, SSCL, and CCP will be added to this structure in turn.

The experimental results are shown in Table 3. Not only can our ablation experiments demonstrate the impor-
tant role of each module on SSN, the experimental results also further prove the superiority of our proposed 
model. From the first row, it can be seen that by using MSB and EB, there is a large improvement in the 5-way 
and 20-way classification performance. By replacing the distance layer metric with the control variables method, 
we find that the optimal performance is obtained using a fusion distance. From the second row, it can be seen 
that the proposed SSCL has a significant effect on the improvement of the model, and reaches state-of-the-art 
with CCP. In the HWAYI dataset, our best model outperforms the benchmark by 4.43% and 5.64% in 5-way and 
20-way, respectively. Similarly, in the HWOBC dataset, our best model outperforms the benchmark by 3.98% and 
5.69% in 5-way and 20-way, respectively. Similarly, in the CASIA-AHCDB dataset, our best model outperforms 
the benchmark by 5.28% and 6.94% in 5-way and 20-way, respectively. Thus, our model has a large improvement 
over the traditional Siamese model and achieves the performance of state-of-the-art.

Rejection performance. By judging the similarity score our model can reject the instances of unknown catego-
ries. We choose to conduct rejection experiments on HWOBC with a large number of categories. We randomly 
select 1552 categories from 3881 categories as unknown categories, and the remaining 60% of categories are 
used to train and monitor the model. Among the known categories, 1552 categories are randomly selected and 
3 untrained images from each category are used to calculate the nearest neighbor similarity score, and the same 
number of images from each unknown category is selected to calculate the similarity value.

Figure 8 shows a large number of nearest neighbor similarity scores for known and unknown categories. 
We find that all images in known categories have nearest neighbor similarity scores greater than 0.4277, and all 
images in unknown categories have nearest neighbor similarity scores less than 0.7443. Therefore, we can set 
a rejection threshold T in this interval. We denote the accuracy of correctly rejecting the unknown category as 
ACCTN , and the accuracy of correctly receiving the known category as ACCTP . We need to maximize the accu-
racy of these to obtain the best rejection while reducing the number of incorrectly rejected instances. However, 
due to the overlap of some of the similarity scores, ACCTN and ACCTP have an opposite relationship. Thus, we 
choose a suitable threshold T by maximizing the sum of ACCTN and ACCTP . After some estimation and calcula-
tion, we obtain an optimal threshold of 0.6002. We also obtain 96.97% for ACCTN and 94.50% for ACCTP . There-
fore, our method not only has good recognition performance but also performs efficient rejection for unknown 
classes of instances, which is important for the study of ancient characters for the discovery of new ones.

Table 2.  Loss functions and class prototypes. Significant values are in bold.

Method Error

cross entropy 2.73%

CL + NN 2.82%

SSCL + random 2.64%

SSCL + MCP 2.46%

SSCL + CCP 2.19%

Table 3.  One-shot classification performance of our method on three datasets, the best-performing method 
is highlighted. “MED” indicates integration of MSB, EB and D in the Fig. 2. “MEDS” indicates integration of 
MSB, EB, D and SSCL. Significant values are in bold.

Method

Accuracy of one-shot classification (%)

Omniglot HWAYI HWOBC CASIA-AHCDB

5-way 20-way 5-way 20-way 5-way 20-way 5-way 20-way

base 96.27 92.0 95.32 92.18 95.27 91.81 94.36 91.18

MED(eul) 97.18 94.2 97.89 95.25 98.55 95.27 96.64 94.52

MED(cos) 97.55 94.75 97.56 94.55 98.0 94.36 97.32 95.24

MED(0.1) 98.12 96.81 98.12 95.5 98.75 96.18 98.12 95.45

MEDS + Random 98.18 97.36 99.0 96.91 98.91 96.36 98.32 96.36

MEDS + MCP 99.25 97.54 99.5 97.64 99.0 97.0 98.75 97.55

MEDS + CCP 99.36 97.81 99.75 97.82 99.25 97.5 99.64 98.12
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Further analysis of rejection performance can be found in Table 4. We randomly select 40% of categories as 
unknown categories, and the remaining 60% of categories are used to train and monitor the model. Three images 
from each category are used to calculate the similarity score. Our model can yield a better rejection performance, 
achieving an accuracy of over 93% for unseen characters and over 92% for seen characters correctly. We can 
obtain a better rejection threshold while ensuring the best recognition rates for both. In HWOBC, we obtained 
a threshold of 0.6002 and found that a more optimal threshold was obtained with more categories.

Open‑set recognition performance. Similar to the above experiments, we divide 10% of the HWOBC into a total 
of 388 categories as unknown new categories, and the remaining 90% is used for SSN training and monitoring 
the 20-way one-shot recognition performance. To evaluate our open-set recognition performance, we will add 
38 categories to the test set in batches until the last 388 unknown categories are added, and obtain the recogni-
tion accuracy of the new unknown instance for each batch. Here we explore nearest neighbor classification and 
random classification as comparative experiments of our method.

The experimental results are shown in Fig. 9. When we increase the number of new classes of ancient charac-
ters to be recognized, we find that our SSN can still maintain a high recognition rate compared with the nearest 
neighbor and random guess methods, which not only shows that our model can solve the problem of directly 

Figure 8.  The distribution of similarity score with the nearest neighbour for seen and unseen categories on 
HWOBC. The vertical axis means the similarity score, the horizontal axis means the instance number. The red 
dashed line indicates the upper and lower bound thresholds we use to reject instances of the unseen category.

Table 4.  The character rejection performance of our method on four datasets. “minV”: min similarity value in 
known categories. “maxV”: max similarity value in unknown categories. “T”: the rejection threshold (the ideal 
threshold is 0.5).

Datasets Instance number minV maxV ACCTN ACCTP T |T-0.5|

Omniglot 3894 0.4198 0.6832 93.42% 93.79% 0.6188 0.1188

HWAYI 4236 0.3563 0.7628 94.86% 92.18% 0.6147 0.1147

CASIA-AHCDB 6288 0.4244 0.7165 95.35% 94.32% 0.6116 0.1116

HWOBC 9312 0.4277 0.7443 96.97% 94.50% 0.6002 0.1002

Our NN Random

%
 A

cc
ur

ac
y

Number Of New Classes

Figure 9.  Open set of new class recognition. NN represents the nearest neighbor classifier, the horizontal axis 
represents a total of 10 batches with the number of classes 1–388, and the vertical axis represents the one-shot 
recognition rate.
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recognizing new classes without retraining the model or changing the model structure but also shows that our 
model performs well when increasing the number of new classes.

One-shot recognition comparison experiments. To further explore the proposed network, we choose 
other classic networks in the field of one-shot recognition to conduct comparative experiments. Therefore, in 
addition to the traditional augmented softmax classification method which uses the main structure of SSN with 
the last classification layer of 20 nodes, we also choose to test the 20-way one-shot performance of Siamese 
networks, matching networks, prototype networks, relation networks, and Meta-LSTM in the three datasets 
mentioned above. Fine-tuning indicates whether the model will be trained using a new category from the test 
set, which is a common method of fine-tuning for few-shot learning and can yield extra gains.

The above experimental results with several excellent networks show that the proposed SSN achieves better 
recognition performance than related mainstream methods. Compared with the traditional supervised softmax 
classification network by augmentation, our method still maintains excellent performance. As shown in Table 5, 
our model improves about 5.8~6.1% compared to the traditional Siamese network, about 2.3~6.5% compared 
to the matching network, about 1.5~2.3% compared to the prototype network, about 0.2~0.7% compared to the 
relation network, and about 3.8~4.2% compared to Meta-LSTM, which reflect the superiority of our proposed 
one-shot method. Our metric-based one-shot recognition method benefits from a good distance metric. In addi-
tion, the method of this paper obtains better recognition results after fine-tuning. In summary, not only in the 
field of ancient characters our SSN reaches the best classification performance but also in the field of one-shot 
learning it is an important contribution.

Generalization experiments. Studying the transfer performance not only can explore the generalization 
ability and robustness of our model, but also can make a great contribution to other studies on ancient character 
recognition with insufficient data. Since the datasets in our experiments are very similar to general ancient char-
acter datasets, we use the optimal models obtained on Omniglot, HWAYI, and HWOBC in the above experi-
ments directly or fine-tuned for the other three datasets for all classes of one-shot recognition.

Table 6 shows the experimental results, which indicate that our model has good generalization ability. By 
directly transferring the models pre-trained on other datasets to these three datasets, our models can obtain 
better recognition results. In addition, the models obtained by monitoring the three datasets during the train-
ing phase with simple fine-tuning can slightly improve the recognition accuracy. Due to the homogeneity of the 
datasets, we can see that the best model obtained in HWOBC transferred to Oracle-57 and OBC306 can obtain 
better performance than the other two models. It can be known that our model is insensitive to the categories and 
focuses more on the variability between characters. And the optimal model obtained on other ancient character 
datasets can obtain excellent generalization performance without retraining. This is a great encouragement for 
scholars who study the more limited data of ancient characters recognition.

Conclusions
In this paper, based on the method of one-shot recognition to analyze ancient characters, we propose a recogni-
tion method that uses Siamese similarity network to calculate the similarity of image pairs for one-shot classifica-
tion. In our approach, MSB and EB are used to obtain more abundant image features to improve the recognition 

Table 5.  The comparison experiments. (Except for our benchmark derived from the original paper, the 
other results are from the reproduced 20-way one shot classification with the best accuracy). “Eul.”: Euclidean 
distance. “Cos.”: Cosine distance. “Fus.”: Fusion distance of our SSN. “No” means that no test set categories 
will be used to assist in training the model, while “Yes” means that test set categories will be used to assist in 
training the model. Significant values are in bold.

Method Distance metric Fine-tune

Accuracy (%)

Omniglot HWAYI HWOBC

augmented + softmax – No 96.6 97.5 97.7

SiameseNet26 + ConvNet Eul No 92.0 92.2 91.8

SiameseNet26 + MSB + EB Eul No 94.2 95.4 95.8

MatchingNet27 Cos No 93.8 92.7 91.4

MatchingNet27 Cos Yes 94.1 93.5 92.8

MatchingNet  FCE27 Cos No 94.5 94.3 93.2

MatchingNet  FCE27 Cos Yes 95.4 95.1 95.6

ProtypeNet28 Eul No 96.0 96.5 96.3

RelationNet47 – No 97.6 97.7 97.4

Meta-LSTM48 – No 94.2 93.8 94.1

SSN (Ours) Eul No 97.1 97.4 96.6

SSN (Ours) Cos No 96.8 96.3 96.9

SSN (Ours) Fus No 97.8 97.8 97.5

SSN (Ours) Fus Yes 98.3 98.0 97.9
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of variant characters, and the proposed SSCL will result in higher similarity scores for similar images and lower 
scores for different classes of images, and CCP is used to obtain a better representation of image classes. Experi-
ments show that the proposed method achieves the best recognition accuracy than previous methods on these 
datasets. In addition, our model can reject unknown classes and recognize new classes, and it achieves better rec-
ognition accuracy even without retraining, demonstrating the excellent generalization performance of our model.

In future work, we will explore more methods based on deep metric learning to obtain better image repre-
sentation and choose better multi-scale models to increase the recognition performance of variant characters. 
In addition, we not only plan to use the proposed model for the discovery of new ancient characters but also 
apply it to the recognition of ancient characters in more realistic scenes and more recognition problems based 
on shapes or sketches.

Data availability
The datasets used during the current study are available from the corresponding author on reasonable request, 
and we confirm these data will be public for other studies very soon once our paper is published. Please pay 
attention to the data resources in the public domain: http:// swusm art. cn/ getIn fo? table= news.
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