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Abstract

The transcriptome-wide association study (TWAS) has emerged as one of several promis-

ing techniques for integrating multi-scale ‘omics’ data into traditional genome-wide associa-

tion studies (GWAS). Unlike GWAS, which associates phenotypic variance directly with

genetic variants, TWAS uses a reference dataset to train a predictive model for gene

expressions, which allows it to associate phenotype with variants through the mediating

effect of expressions. Although effective, this core innovation of TWAS is poorly understood,

since the predictive accuracy of the genotype-expression model is generally low and further

bounded by expression heritability. This raises the question: to what degree does the accu-

racy of the expression model affect the power of TWAS? Furthermore, would replacing pre-

dictions with actual, experimentally determined expressions improve power? To answer

these questions, we compared the power of GWAS, TWAS, and a hypothetical protocol uti-

lizing real expression data. We derived non-centrality parameters (NCPs) for linear mixed

models (LMMs) to enable closed-form calculations of statistical power that do not rely on

specific protocol implementations. We examined two representative scenarios: causality

(genotype contributes to phenotype through expression) and pleiotropy (genotype contrib-

utes directly to both phenotype and expression), and also tested the effects of various prop-

erties including expression heritability. Our analysis reveals two main outcomes: (1) Under

pleiotropy, the use of predicted expressions in TWAS is superior to actual expressions. This

explains why TWAS can function with weak expression models, and shows that TWAS

remains relevant even when real expressions are available. (2) GWAS outperforms TWAS

when expression heritability is below a threshold of 0.04 under causality, or 0.06 under plei-

otropy. Analysis of existing publications suggests that TWAS has been misapplied in place

of GWAS, in situations where expression heritability is low.
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Author summary

We compared the effectiveness of three methods for finding genetic effects on disease in

order to quantify their strengths and help researchers choose the best protocol for their

data. The genome-wide association study (GWAS) is the standard method for identifying

how the genetic differences between individuals relate to disease. Recently, the transcrip-

tome-wide association study (TWAS) has improved GWAS by also estimating the effect

of each genetic variant on the activity level (or expression) of genes related to disease. The

effectiveness of TWAS is surprising because its estimates of gene expressions are very

inaccurate, so we ask if a method using real expression data instead of estimates would

perform better. Unlike past studies, which only use simulation to compare these methods,

we incorporate novel statistical calculations to make our comparisons more accurate and

universally applicable. We discover that depending on the type of relationship between

genetics, gene expression, and disease, the estimates used by TWAS could be actually

more relevant than real gene expressions. We also find that TWAS is not always better

than GWAS when the relationship between genetics and expression is weak and identify

specific turning points where past studies have incorrectly used TWAS instead of GWAS.

This is a PLOS Computational Biology Methods paper.

Introduction

High-throughput sequencing instruments have enabled the rapid profiling of transcriptomes

(RNA expression of genes) [1–4], proteomes (proteins) [5–7] and other ‘omics’ data [8–10].

These ‘omics’ provide insight into the intermediary effects of genotypes on endophenotypes,

and can improve the ability of genome-wide association studies (GWAS) to find associations

between genetic variants and disease phenotypes. [11–13]. The integration of diverse ‘omics’

data sources remains a challenging and active field of research [14–17].

One approach to integrating ‘omics’ and GWAS is the transcriptome-wide association

study (TWAS), which quantitatively aggregates multiple genetic variants into a single test

using transcriptome data. Pioneered by Gamazon et al [18], the TWAS protocol typically has

two steps. First, a model is trained to predict gene expressions from local genetic variants near

the focal genes, using a reference dataset containing both genotype and expression data. Sec-

ond, the pretrained model is used to predict expressions from genotypes in the association

mapping dataset under study, which contains genotypes and phenotypes (but not expression).

The predicted expressions are then associated to the phenotype of interest. TWAS can also be

conducted with summary statistics from GWAS datasets (i.e. meta-analysis) as first demon-

strated by Gusev et al. [19,20]. TWAS has since achieved significant popularity and success in

identifying the genetic basis of complex traits [21–27], inspiring similar protocols for other

endophenotypes such as IWAS for images [28] and PWAS for proteins [29].

Despite its demonstrated effectiveness, important questions remain regarding the theoreti-

cal conditions under which TWAS is superior to GWAS. First: TWAS mapping relies entirely

on predicted expressions, but as shown by many methodological papers, the mean R2 between

predicted and actual expressions is very low (around 0.02 ~ 0.05). This is in part due to low

expression heritability [18], which bounds the maximum predictive accuracy attainable by the

genotype-expression model. Naturally, one can ask: given sufficiently low expression
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heritability, is there is a point at which TWAS performs worse than GWAS? Indeed in real

data, genes discovered with significant TWAS p-values tend to have a higher R2, and thus

expression heritability, than on average [18,19,30–32]. We therefore investigate the effect of

expression heritability on the power of TWAS, as well as its interactions with trait heritability,

phenotypic variance from expressions, number of causal genes, and genetic architecture. Sec-

ond: as described by Gamazon et al. [18], the key insight of TWAS is that it aggregates sensible

genetic variants to estimate “genetically regulated gene expression”, or GReX [18], for use in

downstream GWAS. Given this hypothesis, one may ask if actual expression data would fur-

ther improve the power of downstream GWAS over predicted expressions. This is not a trivial

question, as although actual expressions do not suffer from prediction errors, they also include

experimental or environmental noise which masks the genetic component of expression. To

test this problem, we invent a hypothetical protocol associating real expressions to phenotype,

which we call “expression mediated GWAS” or emGWAS. While emGWAS is not in practical

use due to the difficulties of accessing relevant tissues (e.g., in the studies of brain diseases), it

can potentially be applied to future analyses of diseases where tissues are routinely available

(e.g., blood or cancerous tissues). More importantly, emGWAS serves as a useful benchmark

for evaluating the theoretical properties of TWAS-predicted expressions against ground truth

expression data. By analyzing the power of TWAS, GWAS, and emGWAS, we develop practi-

cal guidelines for choosing each protocol given different expression heritability and genetic

architectures.

While there has been an existing study comparing the power of GWAS, TWAS, and a pro-

tocol which integrates eQTLs with GWAS [33], the existing study is purely simulation-based,

whereas we determine power directly using traditional closed-form analysis. We derive non-

centrality parameters (NCPs) for the relevant statistical tests and the linear mixed model

(LMM) in particular (Methods). Our derivation uses a novel method to convert an LMM into

a linear regression by decorrelating the covariance structure of the LMM response variable

(Methods). To our best knowledge, this is the first closed-form derivation of the NCP for

LMMs in current literature, with potential for broad applications as LMMs are the dominant

models used in GWAS and portions of the TWAS pipeline.

Unlike pure simulations, which stochastically resample the alternative hypothesis to esti-

mate statistical power, our closed-form derivation directly calculates power from a particular

configuration of association mapping data. As a result, our method saves computational

resources, yields more accurate power estimations, and adapts easily to similar protocols such

as IWAS [28] and PWAS [29,34]. Moreover, as the closed-form derivation avoids conducting

the actual regression, our power calculations do not depend on specific implementations of

GWAS and TWAS, which could otherwise cause our results to vary due to differences in filter-

ing inputs or parameter optimizations. Our work therefore characterizes the theoretical power

of the protocols across all LMM-based implementations and datasets, although we are unable

to account for power losses due to practical implementation issues.

In the following section we describe our novel derivation of NCPs for LMMs and our

power analyses of GWAS, TWAS, and emGWAS. We present guidelines on the applicability

of each protocol under different input conditions and discuss potential limitations of our

approach as well as areas for future research.

Methods

Mathematical definitions of GWAS, TWAS, and emGWAS protocols

While there are many variations of GWAS and TWAS [18,19,35–39], in this work we assume

that multiple genes contribute to phenotypic variation, and for each causal gene, multiple
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single nucleotide polymorphisms (SNPs) contribute to both gene expression and phenotype.

This setting is motivated by the fact that most complex traits are known to have multiple con-

tributing loci, and TWAS fundamentally assumes that genes have multiple local causal vari-

ants. To ensure consistency, we apply the same assumptions in the design of the hypothetical

protocol emGWAS. Specifically, we define the following models:

GWAS. For GWAS, we adopted a standard LMM similar to EMMAX [35]

Y ¼ bj01þ bj1Xj þ uþ ε; j ¼ 1; 2; . . . ; nx; ð1Þ

where n is the number of individuals, nx is the total number of genetic variants, Y is an n×1

vector of phenotypes, 1 is an n×1 vector of ones, Xj is an n×1 genotype vector with Xij2{0,1,2}

representing the number of minor allele copies for the ith individual and jth genetic variant, βj0
and βj1 are the intercept and effect size of the genetic variant, u is an n×1 vector of random

effects following the multivariate normal distribution, i.e. u � Nð0; s2
gKxÞ, and ε is an n×1 vec-

tor of errors with ε � Nð0; s2
e IÞ. In the distributions of u and ε, s2

g and s2
e are their respective

variance components, I is an n×n identity matrix, and Kx is the genomic relationship matrix

(GRM), which is a known n×n real symmetric matrix. Following Patterson et al [40], Kx is cal-

culated by

Kx ¼
1

nx

~X ~XT; ð2Þ

where nx is the total number of genetic variants and ~X is a standardized n×nx matrix. For

example, an element ~Xij in the jth genetic variant column is calculated as

~Xij ¼
Xij �

�X :j

SXj
; ð3Þ

where �X :j ¼
1

n

Pn
i¼1

Xij and S2
Xj ¼

1

n� 1

Pn
i¼1
ðXij �

�X :jÞ
2

are the sample mean and sample vari-

ance of the jth variant, respectively.

emGWAS. For emGWAS, we first regress the phenotype on the actual (not predicted)

expressions, and then regress the expressions on individual local genetic variants in a similar

manner as a cis-eQTL analysis. We chose the LMM to associate phenotype with expression,

since under the assumption that multiple genes contribute to phenotype, we expect that the

random term of the LMM can capture the effects of non-focal genes. We calculate the GRM

from DNA instead of expressions because they provide better estimates of pairwise relation-

ships between study participants than correlations based on predicted expression data. We

chose to use linear regression (LM) to model the association between expression and local

genetic variants (which correspond to cis-eQTLs), as it is the most common model used in cis-

eQTL analyses.

Specifically, the phenotype-expression model is

Y ¼ bl01þ bl1Zl þ uþ ε; l ¼ 1; 2; . . . ; nz; ð4Þ

where n, Y, 1, u and ε have identical interpretations as in the GWAS model from (1), nz is the

total number of genes, Zl is an n×1 gene expression vector for the lth gene, and βl0 and βl1 are

the intercept and effect size of the gene.

The linear regression associating gene expression with local genetic variants is

Zl ¼ blk01þ blk1Xlk þ εel; l ¼ 1; 2; . . . ; nz; k ¼ 1; 2; . . . ; nel; ð5Þ

where Xlk is an nel×1 vector of the kth local genetic variants for the lth gene, εel � Nð0; s2
elIÞ is a
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n×1 vector of errors with variance component s2
el, nel is the total number of local genetic vari-

ants in the lth gene, and βlk0 and βlk1 are the intercept and effect size of the variant.

TWAS. For TWAS, we apply an analysis similar to emGWAS, except that gene expres-

sions are predicted using a pretrained elastic-net model. Specifically,

Y ¼ bPl01þ bPl1
bZl þ uþ ε; l ¼ 1; 2; . . . ; nz; ð6Þ

where bZl is the altered notation representing an n×1 vector of predicted gene expressions for

the lth gene, and βPl0 and βPl1 are the intercept and effect size of the predicted gene expression.

There are several methods to estimate gene expression including least absolute shrinkage

and selection operator (LASSO) and elastic-net. Gamazon et al. has shown that elastic-net has

good performance and is more robust to minor changes in the input variants [18]. We there-

fore use the “glmnet” package in R to train a predictive model using elastic-net. The objective

function in “glmnet” is

LenetðbÞ ¼
1

2n
kZ � Xbk2

þ l
1 � a

2
kbk

2
þ akbk

1

� �

ð7Þ

where λ and α are tuning parameters. The penalty term is a convex (linear) combination of

LASSO and ridge penalties, where α = 1 is equivalent to the LASSO objective function, and α =

0 is equivalent to ridge regression. Optimal values of λ and α were chosen by minimizing the

cross-validated squared-error. Readers are referred to Appendix A in S1 Text for details.

In practice, the specific regression model varies depending on the tool in use. For example,

the leading TWAS tool PrediXcan [18] does not include the random effects of a mixed model,

and many TWAS tools can also analyze summary statistics instead of subject-level genotypes

[19]. The motivation of this work is to reveal the key issues of using gene expressions as media-

tions, therefore has to adapt comparable framework. In other words, we do not intend to com-

pare LMM against linear regression, which will mislead the comparison between GWAS and

TWAS. Since LMMs are dominant in GWAS, we chose LMMs as the underlying model for all

of the protocols we analyze, which allows us to compare them under an equivalent statistical

framework. We believe that LMMs are a sensible approach for TWAS, since the random term

can capture the genetic contributions of non-focal genes.

Closed-form derivation of NCP and power calculation

The non-centrality parameter (NCP) measures the distance between a non-central distribution

and a central distribution under a specific alternative hypothesis. The NCP enables calculation

of the probability of rejecting the null hypothesis, assuming the central distribution, when the

alternative hypothesis is correct. As such, the NCP naturally allows the power of a statistical

test to be determined in a closed form. We have developed the following method to derive the

NCP for LMMs, which we believe is new to the literature.

For a standard simple linear regression, the NCP of a t-test of the coefficient of the predictor

variable can be derived similarly to a one-sample t-test statistic as follows: if X1,. . .,Xn~N(μ,σ)

is a simple random sample, then the one-sample t-test statistic for evaluating the null hypothe-

sis H0:μ = μ0 is

T ¼
�X � m0

Sffiffi
n
p

¼

ffiffi
n
p
ð�X � m0Þ

sffiffiffiffiffiffiffiffiffi
ðn� 1ÞS2

s2

n� 1

r � tn� 1; ð8Þ

where �X and S are the sample mean and (unbiased) sample standard deviation respectively.
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Under H0,
ffiffiffi
n
p
ð�X � m0Þ=s � Nð0; 1Þ and ðn � 1ÞS2=s2 � w2

n� 1
, and thus T~tn−1. Under the

alternative hypothesis Ha:μ = μa, the test statistic T ¼
ffiffi
n
p
½ð�X � maÞþðma � m0Þ�=sffiffiffiffiffiffiffiffiffiffiffiffiffi

ðn� 1ÞS2=s2

n� 1

p follows a non-central t

distribution with NCP given by

v ¼
ma � m0

s=
ffiffiffi
n
p ð9Þ

To derive a closed-form NCP for LMMs, we convert the LMM to a linear regression with-

out intercept by decorrelating the response variable and the predictors, a technique that has

previously been applied to mixed models [41,42]. The procedure is as follows: we first fit the

null model Yc = u+ε with no genetic variants, following an existing innovation for reducing

the computational cost of repeatedly factorizing the GRM when analyzing many variants

[35,42]. We then estimate s2
g using the Newton-Raphson method detailed in Appendix B in

S1 Text. Denoting the eigen decomposition of the GRM as Kx ¼ UxLxU � 1
x , we construct the

de-correlation matrix as

Dx ¼ ðs
2

gLx þ s
2

e IÞ
� 1

2UT
x : ð10Þ

By left multiplying both X and Y by Dx, and denoting X� ¼ DxX ¼ ðX�1 ;X
�
2
; . . . ;X�nÞ

T
and

Y� ¼ DxY ¼ ðY�1 ;Y
�
2
; . . . ;Y�nÞ

T
, the covariance structure in Y� is thus removed and a linear

regression of Y� on X� is equivalent to the original LMM model. A proof of the validity of this

decorrelation structure is presented in Appendix C in S1 Text.

Based on the closed-form NCP for linear regression, we derive the estimated NCP of the

LMM from (1), which is given by

buGj ¼

Pn
i¼1
bX�ijbY

�
i

Pn
i¼1
bD2

xi� �
Pn

i¼1
bY �i bDxi�

Pn
i¼1
bX�ijbDxi�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1
ðbX�ijÞ

2
ð
Pn

i¼1
bDxi�Þ

2
� ð
Pn

i¼1
bDxi�
bX�ijÞ

2Pn
i¼1
bD2

xi�

q ; ð11Þ

where bX�j ¼ bDxXj ¼ ð
bX�

1j;
bX�

2j; . . . ; bX�njÞ
T
; bY � ¼ bDxY ¼ ðbY �1; bY

�
2
; . . . ; bY �nÞ

T
, and bDxi� ¼

Pn

j¼1

bDxij.

A proof of this expression of the NCP for LMMs is in Appendix D in S1 Text.

The above result allows us to derive the statistical power of the GWAS, emGWAS, and TWAS

protocols. For GWAS, we use the Bonferroni-corrected significance level ax ¼
0:05

nx
to account for

multiple testing [43], where nx is the total number of SNPs. Throughout this paper, we use f(t;υ)

to denote the probability density function of the non-central t distribution with n-2 degrees of

freedom and NCP υ. The statistical power of the jth SNP can then be estimated by PGj ¼
R þ1
F0
� 1ð1� axÞ

f ðt;buGjÞdt using the estimated NCP buGj, where F0(t) is the cumulative distribution func-

tion of the central t distribution with n-2 degrees of freedom, and F0
� 1ð1 � axÞ gives the critical

value for the central distribution. We directly implement this power computation in R via the

function “pt”, which takes the critical value, NCP, and degrees of freedom as parameters.

For emGWAS, we assume that the powers of the expression-phenotype and genotype-

expression regression models (4) and (5) are independent of each other. For the model Y =

βl01+Zlβl1+u+ε from (4), we left multiply the estimated bDx to both sides of the equation so that

the estimated NCP for the lth gene expression is given by

bueZl ¼

Pn
i¼1
bZ�ilbY

�
i

Pn
i¼1
bD2

xi� �
Pn

i¼1
bY �i bDxi�

Pn
i¼1
bZ�ilbDxi�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pn
i¼1
ðbZ�ilÞ

2
ð
Pn

i¼1
bD2

xi�Þ
2
� ð
Pn

i¼1
bDxi�
bZ�ilÞ

2Pn
i¼1
bD2

xi�

q ; ð12Þ
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where bZ�l ¼ bDxZl ¼ ð
bZ�

1l;
bZ�

2l; . . . ; bZ�nlÞ
T
. We use the significance level az ¼

0:05

nz
for each individ-

ual test, where nz is the total number of genes. The statistical power of detecting the lth gene

expression is then estimated by PeZl ¼
R þ1
F0
� 1ð1� azÞ

f ðt;bueZlÞdt. For the model from (5), we simply

calculate the estimated NCP of the standard linear regression, which is

bueXlk ¼

Pn
i¼1
ðXilk � X�

�lkÞZilffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1
ðXilk � X�

�lkÞ
2

q

bsel

; ð13Þ

where

bsel ¼
1

n � 2

Pn
i¼1
ðZil �

�Z �l þ bb lkðXilk �
�X �lkÞÞ

2
: ð14Þ

Again, we use the significance level ael ¼
0:05

nel
, where nel is the total number of local genetic vari-

ants in the lth gene, so that the power of detecting Xlk is estimated by

PeXlk ¼
R þ1
F0
� 1ð1� aelÞ

f ðt;bueXlkÞdt. Since we assume the power of (4) and (5) are independent, the

power of detecting the lth gene and the kth variants in the lth gene simultaneously is give by PeZl-
PeXlk. If the independence assumption is violated, i.e., the powers of these two steps are posi-

tively correlated, then the estimated power for emGWAS will be conservative.

For TWAS, the NCP is estimated in a similar manner as the first step of emGWAS, i.e.

buTl ¼

Pn
i¼1

bbZ�ilbY
�
i

Pn
i¼1
bD2

xi� �
Pn

i¼1
bY �i bDxi�

Pn
i¼1

bbZ�ilbDxi�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1
ð
bbZ�ilÞ

2
ð
Pn

i¼1
bD2

xi�Þ
2
� ð
Pn

i¼1
bDxi�
bbZ�ilÞ

2Pn
i¼1
bD2

xi�

q ; ð15Þ

where the only difference between (12) and (15) is that bZ�il ¼ bDxZil in (15) is replaced by
bbZ �il ¼

bDx
bZil in (15). The significance level is again az ¼

0:05

nz
and the power is estimated by

PTl ¼
R þ1
F0
� 1ð1� azÞ

f ðt;buTlÞdt.

Simulation of phenotype and expression

As the statistical power of each protocol depends on the magnitude of the genetic effect, we simu-

lated input data at various effect sizes. While effect size depends on a combination of many fac-

tors, we chose to focus on the following three aspects. 1) We considered two genetic architectures:

causality and pleiotropy (Fig 1). In the causality scenario, the contribution of genotype to pheno-

type is mediated through expression (Fig 1A), whereas in the pleiotropy scenario, genotype con-

tributes to both expression and phenotype directly (Fig 1B). We did not consider the scenario

where phenotype is causal to expression. 2) We considered the strength of three different variant

components: trait heritability (the variance component of phenotype explained by genotype,

denoted h2
x¼>y), expression heritability (the variance component of expression explained by geno-

type, denoted h2
x¼>z), and the phenotypic variance component explained by expression, denoted

h2
z¼>y and abbreviated as PVX. 3) We also considered the number of genes contributing to pheno-

type and the number of local genetic variants contributing to expression.

In all our simulations, we use real genotypes from the 1000 Genomes Project (N = 2504).

Although there are multiple existing datasets containing both expressions and genotype, we

chose to use simulated expressions instead as it is difficult to match real data exactly to desired

properties such as expression heritability or the number of contributing genetic variants. By

simulating expressions, we can perform a consistent power analysis across a comprehensive

range of prespecified input conditions.
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In the causality scenario, phenotypes were simulated with the following procedure. First,

several genes (nz−sig = 4, 9, or 13) were selected as causal genes. For each gene (indexed by

l = 1,2,. . .,nz−sig), several common and independent genetic variants were selected as causal

variants (nz(l)−sig = 4 ~9, MAF>0.05, and R2<0.01). A linear combination of local variants in

the lth gene is generated to produce the expression values Z(l), and a linear combination of

these gene expressions Z is generated as the genomic contribution to phenotype. Note that at

each step, we ensure the simulated linear combinations of variants and expressions match our

desired values for expression heritability h2
x¼>z and PVX h2

z¼>y (Appendix E in S1 Text).

In the pleiotropy scenario, we followed a similar procedure except that the phenotype Y was

directly generated from a linear combination of genotypes, instead of expressions (Appendix

F in S1 Text). Note that although the expressions Z and phenotype Y are unrelated by genuine

biological causality, they are generated from the same genetic variants and are therefore statis-

tically correlated. Therefore, if the trait heritability and expression heritability are sufficiently

large, TWAS can still identify causal genes using the statistical correlation between genetic var-

iants and expression.

We simulated both scenarios with expression heritability h2
x¼>z from the values (2.5%, 3%,

4%, 6%, 8%, 10%, 30%), and with trait heritability h2
x¼>y in the pleiotropy scenario or PVX

Fig 1. Causality (A) and Pleiotropy (B) scenarios for genotype (X), expression (Z) and phenotype (Y).

https://doi.org/10.1371/journal.pgen.1009405.g001
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h2
z¼>y in the causality scenario from the values (0.5%, 1%, 2.5%, 5%, 10%). Although we initially

tested more extreme values, our Results show that the turning points where TWAS outper-

forms GWAS are well within the range of values presented here, and the relative performance

of the protocols remains consistent under more extreme conditions. We therefore chose to

restrict our discussion to the most relevant values for protocol selection, noting that the

expression heritability values we examine are at the high-end of real observed values [18],

while the trait heritability values are lower than typically found in GWAS.

Finally, as each simulation involves multiple variants and genes, the overall power of each

protocol is defined as follows: the power of GWAS is the probability of detecting at least one

causal variant in any causal gene, the power of emGWAS is the probability of detecting at least

one gene and one local SNP of that gene simultaneously, and the power of TWAS is the proba-

bility that at least one predicted gene expression is significant. Specifically,

PGWAS ¼ 1 �
Ynx� sig

j¼1

ð1 � PGðjÞÞ; ð16Þ

PemGWAS ¼ 1 �
Ynz� sig

l¼1

ð1 � PeZðlÞPeXðlÞÞ;where PeXðlÞ ¼ 1 �
YnzðlÞ� sig

k¼1

ð1 � PeXðlÞðkÞÞ; ð17Þ

PTWAS ¼ 1 �
Ynz� sig

l¼1

ð1 � PTðlÞÞ; ð18Þ

where nx−sig, nz−sig and nz(l)−sig denote the numbers of significant SNPs, genes, and SNPs in the

lth significant gene respectively, G(j) denotes the jth significant SNP identified by GWAS, Z(l)
and X(l)(k) denote the lth significant gene and the kth significant SNP of the lth significant gene

identified by emGWAS, and T(l) denotes the lth significant gene identified by TWAS.

Results

As a quality control measure, we compared the actual expression heritability and the mean R2

of the predicted expressions (Table 1). As expected, the mean R2 grows closer to the actual her-

itability value as expression heritability increases.

Causality scenario

We first analyzed cases where expression heritability is high (h2
x¼>z = 0.1 or 0.3) but the PVX is

low (Fig 2). Overall, emGWAS clearly outperforms both GWAS and TWAS by a large margin,

Table 1. Comparisons of R2 of imputed gene expression under different levels of expression heritability and num-

ber of genetic variants.

Mean of R2 Sample Standard Deviation of R2

h2
1
¼ 0:025 0.007847616 0.007415877

h2
1
¼ 0:03 0.01259302 0.008410582

h2
1
¼ 0:04 0.02319834 0.009481371

h2
1
¼ 0:06 0.04415579 0.01083593

h2
1
¼ 0:08 0.06465895 0.01175991

h2
1
¼ 0:1 0.08518152 0.01264175

h2
1
¼ 0:3 0.2886779 0.01514781

https://doi.org/10.1371/journal.pgen.1009405.t001
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Fig 2. Causality scenario when expression heritability is high and PVX is low. The PVX is 0.005, 0.01, 0.025, and 0.05 in the

four columns as indicated by the X-axis labels. The number of genes contributing to phenotype for (A), (B) and (C) are 4, 9,

and 13 respectively. The expression heritability for the top and bottom rows of (A), (B) and (C) are 0.1 and 0.3 respectively.

The number of causal variants per gene is randomly sampled from the interval [4,9].

https://doi.org/10.1371/journal.pgen.1009405.g002
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and TWAS also generally outperforms GWAS. Note that although the PVX is low and favors

GWAS, TWAS is still more powerful due to the high expression heritability, which shows that

expression heritability affects the performance of TWAS more than the PVX. Consistent with

intuition, we observed that GWAS and TWAS have higher power as expression heritability

increases, whereas this increase is much smaller for emGWAS. The power of GWAS and emG-

WAS reduces as the number of causal genes grows, whereas TWAS is largely unaffected by the

number of causal genes. This is also consistent with intuition since TWAS uses GReX (bZ) to

aggregate genetic effects, avoiding the burden of multiple-testing correction.

We then analyzed cases where the PVX is high, but expression heritability is relatively low

(h2
x¼>z = 0.025, 0.03, 0.04 or 0.08). Evidently, emGWAS performs best with powers consistently

at 1.0. The comparison between TWAS and GWAS is more nuanced, as TWAS is suboptimal

to GWAS when the expression heritability is 0.025 or 0.03 (Fig 3A and 3B), begins to

Fig 3. Causality scenario when expression heritability is low and PVX is high. The PVX is 0.05 and 0.1 in the two columns as indicated by the X-axis labels. The

numbers of genes contributing to phenotype in the left, middle and right panels are 4, 9, and 13 respectively. The expression heritability levels in (A), (B), (C) and (D) are

0.025, 0.03, 0.04, and 0.08 respectively. The number of causal variants per gene is randomly sampled from the interval [4,9].

https://doi.org/10.1371/journal.pgen.1009405.g003
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outperform GWAS when the expression heritability is 0.04 (Fig 3C), and clearly outperforms

GWAS when the expression heritability is 0.08 (Fig 3D). This quantifies an important turning

point in that GWAS is superior to TWAS when expression heritability is less than 0.04, even if

PVX is high (favoring TWAS).

Pleiotropy scenario

Again, we first analyze cases where expression heritability is high and trait heritability is low (Fig

4). Unlike in the causality scenario, the power of emGWAS is very low compared to TWAS and

GWAS. A potential explanation is that when the effect of genetic variants on phenotype is not

mediated through expressions, the non-genetic effects within the actual expressions add noise to

emGWAS predictions. In contrast, the elastic-net model in TWAS captures only the genetic com-

ponent of expressions, meaning the predicted expressions are a more accurate model of the direct

genetic effect on phenotype. While errors are unavoidable in the elastic-net training process (as

revealed in Table 1), our results show that the loss of power due to non-genetic effects is over-

whelmingly greater than the loss due to training errors. As in the casualty scenario, TWAS gener-

ally outperforms GWAS except in the case where trait heritability is extremely low and the

number of contributing genes is large, which is rare in practice. We therefore conclude that in

both scenarios, TWAS has better power than GWAS when expression heritability is high.

We finally analyze cases where expression heritability is low but trait heritability is high.

Here, emGWAS continues to be the least powerful of the three protocols. As in the causality

scenario, we again observe a turning point where TWAS outperforms GWAS: TWAS has

lower power than GWAS when the expression heritability is 0.025 or 0.04 (Fig 5A and 5B),

TWAS has comparable power when the expression heritability is 0.06 (Fig 5C), and TWAS

outperforms GWAS when the expression heritability is 0.08 (Fig 5D).

Our results can be summarized in two observations. First, emGWAS outperforms TWAS

and GWAS in the casualty scenario, but is less powerful in the pleiotropy scenario regardless

of the accuracy of the predicted expressions (Table 1). This demonstrates that when non-

genetic components in expression do not contribute to phenotype (i.e. pleiotropy scenario),

predicted expressions capture genetic contributions better than actual expressions (which

include non-genetic components). Second, the turning point at which traditional GWAS out-

performs TWAS is an expression heritability of less than 0.04 in the causality scenario, or 0.06

in the pleiotropy scenario.

These turning points are immediately relevant to the practical conduct of association map-

ping studies, as shown by the following analysis of expression heritability in existing TWAS

publications. As few publications disclose their estimated expression heritability, we use pub-

lished R2 values of the correlation between predicted and actual expressions to approximate

the underlying expression heritability. We use the difference between expression heritability

and R2 as calculated from our simulations (Table 1) to map these R2 values to an estimated

expression heritability (i.e. R2 of 0.023 and 0.044 give expression heritability values 0.04 and

0.06, respectively), although in practice the true difference may vary depending on the predic-

tive model used in each study. Table 1 of the PrediXcan publication lists significant results

from their paper, in which 14 out of 41 discovered genes have R2 values less than 0.044, with 2

values less than 0.023. Additionally, our review of recent TWAS publications shows that most

of the genes presented have mean R2 values less than 0.044 or 0.023 (Table 2). As our power

analysis indicated, GWAS may have better power than TWAS given these low expression heri-

tability conditions. Although we are unable to determine if the genes discovered by these pub-

lications follow the causality or pleiotropy scenario, other advanced statistical models [44] may

be used to determine appropriate thresholds to distinguish between pleiotropy and causality.
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Fig 4. Pleiotropy scenario when expression heritability is high and trait heritability is low. The trait heritability is 0.005,

0.01, 0.025, and 0.05 in the four columns as indicated by the X-axis labels. The numbers of genes contributing to phenotype for

(A), (B) and (C) are 4, 9, and 13 respectively. The expression heritability for the top and bottom rows of (A), (B) and (C) are 0.1

and 0.3 respectively. The number of causal variants per gene is randomly sampled from the interval [4,9].

https://doi.org/10.1371/journal.pgen.1009405.g004
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In summary, we suggest the following modifications to the TWAS protocol. First, one may

estimate expression heritability in the reference panel and filter out genes with expression heri-

tability less than 0.04. Second, after conducting TWAS association mapping, determine the

underlying causality scenario (causality or pleiotropy) in order to choose an appropriate

expression heritability threshold (0.04 or 0.06). Finally, conduct GWAS for each gene with an

expression heritability below the given threshold.

Application to the power estimation of EpiXcan

Our NCP-based framework can be applied to estimate the power of other protocols. To dem-

onstrate this point, we estimated the power of EpiXcan [27], a novel TWAS-like protocol inte-

grating epigenetic functional annotations to improve the accuracy of predicted expressions

and therefore overall TWAS power. The original EpiXcan paper demonstrated that (1) the

Fig 5. Pleiotropy scenario when expression heritability is low and trait heritability is high. The PVX is 0.05 and 0.1 in the two columns as indicated by the X-axis

labels. The numbers of genes contributing to phenotype for the left, middle and right panels are 4, 9, and 13 respectively. The expression heritability levels in (A), (B), (C)

and (D) are 0.025, 0.04, 0.06, and 0.08 respectively. The number of causal variants per gene is randomly sampled from the interval [4,9].

https://doi.org/10.1371/journal.pgen.1009405.g005
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predictive accuracy of expressions is significantly increased, and (2) EpiXcan enabled the dis-

covery of novel genes [27]. We present here the first rigorous power analysis of EpiXcan. We

first conduct simulations where a subset of SNPs are assigned increased effects, which reflects

the main insight of the EpiXcan paper that epigenetic-relevant functional SNPs have higher

impact on variation in gene expression. In particular, we assume the real effect size follows a

standard normal distribution N(0,1), and sample effect sizes from this distribution. Assuming

these functional SNPs are known (based on various techniques of annotating SNP functions),

we relieve their penalty in training the predictive model. Using the predicted expressions, we

calculate power using our derived NCP, and compare the resulting analysis with the standard

TWAS protocol. S1–S4 Figs depict this quantitative evaluation of the improvement in power

due to the contribution of epigenetic-relevant functional SNPs. Evidently, under the causality

model EpiXcan indeed increases power by improving expression predictions, although the

improvement is more pronounced in the cases that expression heritability is low (S1 and S2

Figs). However, under the pleiotropy model, EpiXcan only shows almost no increase in power

over TWAS (S3 and S4 Figs). This observation suggests that when DNA mutations contribute

to phenotype directly, the benefit of more accurate predictions for expressions may not be sub-

stantial. The source data for Figs 2–5 and S1–S4 Figs are included in S1 Data.

Discussion

In this work, we produced a novel derivation of the NCP for LMMs based on the decorrelation

procedure, allowing us to calculate closed-form estimates of statistical power for three proto-

cols: GWAS, emGWAS, and TWAS. Our power analysis revealed two practical insights. First,

in the pleiotropy scenario, the use of predicted expressions in TWAS is overwhelmingly more

powerful than the use of actual expressions in emGWAS, regardless of the accuracy of the

predicted expressions per se (Table 1). This suggests that even if real expressions can be

experimentally determined, TWAS is still superior for the analysis of some genes. While

this appears counterintuitive, in statistical terms it is a direct result of the lack of a causal

relationship between expression and phenotype under pleiotropy. This result reinforces

the key insight, as presented by some publications [18], that TWAS uses expression as an

objective function to select a linear combination of genetic variants, rather than attempting

to accurately predict expressions. We note that this is equivalent to denoising in the field of

machine learning [47]. Second, expression heritability determines the relative power of

TWAS and GWAS. When the expression heritability is lower than 0.04 (in the casualty

Table 2. Mean R2 in published TWAS projects.

Title of the publication Description of prediction accuracy

Large-scale transcriptome-wide association study

identifies new prostate cancer risk regions [22]

The mean R2 = 0.07 for measured and predicted gene

expression for TCGA normal prostate samples using

models fitted in GTEx normal prostate.

A framework for transcriptome-wide association

studies in breast cancer in diverse study populations

[45]

The median CV R2 for the 153 genes is 0.011 in both

African American and white women.

Evaluation of PrediXcan for prioritizing GWAS

associations and predicting gene Expression [46]

The average of prediction accuracy (R2) is 0.023 for the

DGN model and 0.02 for the GTEx model, with both

using whole blood model.

A gene-based association method for mapping traits

using reference transcriptome data [18]

The average prediction R2 value is 0.0197 for GEUVADIS

LCLs. For GTEx tissues, the prediction R2 values are

0.0367 (adipose), 0.0358 (tibial artery), 0.0356 (left-

ventricular heart), 0.0359 (lung), 0.0269 (muscle), 0.0422

(tibial nerve), 0.0374 (sun-exposed skin), 0.0398 (thyroid)

and 0.0458 (whole blood).

https://doi.org/10.1371/journal.pgen.1009405.t002
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scenario) or 0.06 (in the pleiotropy scenario), GWAS outperforms TWAS despite not uti-

lizing gene expression information. This suggests that in practice, TWAS may often be sub-

optimal when expression heritability is low (Table 2 and Table 1 in [18]), which can be

mitigated by choosing the optimal association mapping protocol according to this work’s

quantitative guidelines.

A recent publication has also compared the statistical powers of GWAS and TWAS using

pure simulations [33]. However, since we calculate power from a closed-form NCP derivation,

our work establishes theoretical benchmarks for the performance of each protocol, indepen-

dent of their implementations. Our work also has a different focus: rather than comparing

techniques for training the genotype-expression predictive model and the impact of the actual

number of causal genetic variants, we rank the effectiveness of GWAS, TWAS and emGWAS

to better guide the practical application of TWAS. We analyze the theoretical effectiveness of

real expressions as utilized by emGWAS, but exclude the protocol eGWAS as analyzed in [33],

which uses eQTLs to assist association mapping. Our conclusions also differ slightly, as while

the previous publication highlighted the importance of expression heritability, they concluded

that expression heritability affects power only under the causality scenario, and not pleiotropy.

In contrast, we concluded that expression heritability affects both scenarios.

Finally, our closed-form derivation is readily adaptable to other methods utilizing middle

‘omics’ (endophenotypes) such as IWAS [28] and PWAS [29,34]. In fact, the variable Z in for-

mula (15) can already represent such data as images or proteins, and thus no further modifica-

tions of the NCPs are necessary to adapt this work.

The present NCP framework only focuses on statistical power for detecting associations,

and is not able to determine causality in the framework of Mendelian randomization such as

in SMR and its extensions [48,49]. As a future work, we may attempt to derive closed-form

power analyses for the MR framework.

There are several limitations in the present study. Although our closed-form derivation is

easily adaptable and works independently of specific implementations, it is unable to capture

power loss due to implementation limitations or bias in specific datasets. Additionally, closed-

form derivations are more sensitive to model assumptions than simulation-based methods.

Our calculation of the NCP also requires the variance component s2
g to be estimated from

data, in order to form the decorrelation matrix Dx. Although this approximation introduces

extra variability and may therefore cause a decrease in power, we have omitted this variability

from our analyses as the estimation of s2
g is generally well-established, and has high accuracy

in practice when given thousands of samples. Finally, we only compared linear models for

GWAS and TWAS. As a future work, we may explore kernel-based nonparametric and semi-

parametric methods for conducting both GWAS [50,51] and TWAS [52].

Supporting information

S1 Fig. Causality scenario of EpiXcan and TWAS when expression heritability is high and

PVX is low. The PVX (phenotypic variance explained by expression) is 0.005, 0.01, 0.025, and

0.05 in the four columns as indicated by the X-axis labels. In each of (a), (b), and (c), the

expression heritability for the top and bottom rows are 0.1 and 0.3 respectively. The number of

genes contributing to phenotype for (a), (b) and (c) are 4, 9, and 13 respectively. The number

of causal variants per gene is randomly sampled from the interval [4,9].

(TIFF)

S2 Fig. Causality scenario of EpiXcan and TWAS when expression heritability is low and

PVX is high. In each panel, the PVX is 0.05 and 0.1 in the left and right columns as indicated
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by the X-axis labels. In each of (a), (b), (c), and (d), the numbers of genes contributing to phe-

notype for the left, center, and right panels are 4, 9, and 13 respectively. The expression herita-

bility levels in (a), (b), (c), and (d) are 0.025, 0.03, 0.04, and 0.08 respectively. The number of

causal variants per gene is randomly sampled from the interval [4,9].

(TIFF)

S3 Fig. Pleiotropy scenario of EpiXcan and TWAS when expression heritability is high and

trait heritability is low. The trait heritability is 0.005, 0.01, 0.025, and 0.05 in the four columns

as indicated by the X-axis labels. In each of (a), (b), and (c), the expression heritability for the

top and bottom panels are 0.1 and 0.3 respectively. The numbers of genes contributing to phe-

notype for (a), (b), and (c) are 4, 9, and 13 respectively. The number of causal variants per gene

is randomly sampled from the interval [4,9].

(TIFF)

S4 Fig. Pleiotropy scenario of EpiXcan and TWAS when expression heritability is low and

trait heritability is high. The PVX is 0.05 and 0.1 in the two columns as indicated by the X-

axis labels. In each of (a), (b), (c), and (d), the number of genes contributing to phenotype for

the left, center, and right panels are 4, 9, and 13 respectively. The expression heritability levels

in (a), (b), (c), and (d) are 0.025, 0.04, 0.06, and 0.08 respectively. The number of causal vari-

ants per gene is randomly sampled from the interval [4,9].

(TIFF)

S1 Data. Source data for Figs 2–5 and S1–S4 Figs. The six columns are scenarios, protocols,

number of genes, expression heritability, trait heritability and power respectively.

(XLSX)

S1 Text. Supplementary information and detailed mathematical derivations.
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