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Abstract: Geopolymers, as a kind of inorganic polymer, possess excellent properties and have been
broadly studied for the stabilization/solidification (S/S) of hazardous pollutants. Even though
many reviews about geopolymers have been published, the summary of geopolymer-based S/S
for various contaminants has not been well conducted. Therefore, the S/S of hazardous pollutants
using geopolymers are comprehensively summarized in this review. Geopolymer-based S/S of
typical cations, including Pb, Zn, Cd, Cs, Cu, Sr, Ni, etc., were involved and elucidated. The S/S
mechanisms for cationic heavy metals were concluded, mainly including physical encapsulation,
sorption, precipitation, and bonding with a silicate structure. In addition, compared to cationic ions,
geopolymers have a poor immobilization ability on anions due to the repulsive effect between them,
presenting a high leaching percentage. However, some anions, such as Se or As oxyanions, have
been proved to exist in geopolymers through electrostatic interaction, which provides a direction
to enhance the geopolymer-based S/S for anions. Besides, few reports about geopolymer-based
S/S of organic pollutants have been published. Furthermore, the adsorbents of geopolymer-based
composites designed and studied for the removal of hazardous pollutants from aqueous conditions
are also briefly discussed. On the whole, this review will offer insights into geopolymer-based S/S
technology. Furthermore, the challenges to geopolymer-based S/S technology outlined in this work
are expected to be of direct relevance to the focus of future research.

Keywords: geopolymer; stabilization/solidification; cations; anions

1. Introduction

The sources of solid waste could be divided into several aspects, including industrial,
residential, and commercial activities, etc. [1]. Since the last century, waste production
has risen sharply as the world’s population has grown and gradually become more urban
and affluent. It has been predicted that it will double again by 2025. Specifically, the
global solid-waste generation will increase from more than 3.5 million tonnes per day in
2010 to more than 6 million tonnes per day in 2025 [2]. Solid-waste composition varies
substantially with industries, technologies, locations, waste collections, etc. Generally,
solid waste can be divided into several categories, including industrial waste (e.g., tailing,
fly ash, slag, sludge, etc.), municipal waste (e.g., metal, paper, organic matter, etc.), and
agricultural waste (e.g., rice husk, food waste, etc.) [3–6]. Normally, there are always certain
amounts of hazardous pollutants, including heavy metals and organic contaminants, in
solid waste [7,8]. Once this waste cannot be properly handled, serious air, water, and
soil pollution occur. To solve the problems caused by solid waste, some rules, including
resource recovery, waste reduction/minimization, safe disposal of waste, etc., have been
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proposed at the government level [9,10]. Resource recovery from solid waste is a complex
procedure because the capital market is another important factor in the resource recovery
process besides the advanced technologies. Currently, only 30% of the total waste material
is involved in resource recovery globally [11]. In addition, waste minimization means
reducing the volumes of hazardous waste for further landfilling or transportation. A
typical example is the incineration of municipal solid waste, contributing to the reduction
in waste mass and volume by 70% and 90%, respectively [12]. Therefore, the safe disposal
of waste is still an extremely important way to treat solid waste.

The safe disposal of solid waste, especially hazardous waste, can be seen as the
final and most vital step in effective waste management, and its main purpose is to pre-
vent/reduce the motilities of pollutants in the waste [13]. Stabilization/solidification (S/S)
is always adopted as the pretreatment process before landfilling or burying in the under-
ground to achieve the safe disposal of hazardous waste [14]. Generally, the S/S process is to
mix the solid waste with binding materials, including cement, asphalt, etc., to achieve good
physical properties and, meanwhile, immobilize harmful components within solidified
material [15,16]. Thus, binding material plays a critical role in the S/S performance for the
specific waste. Ordinary Portland cement (OPC) is, of course, broadly adopted for the S/S
process, due to its easy handling, low cost, and good S/S performance [17]. In addition,
some other types of cement, such as magnesia-based cement, calcium aluminate cement,
sulfate aluminate cement, etc., have been also adopted for the S/S of heavy metals [18–22].
However, cement-based S/S of waste is relatively fragile to physical and chemical degrada-
tion processes, which depends on factors, such as permeability, chemical and mineralogical
composition, and microstructure [23]. Furthermore, the production of ordinary Portland
cement consumes much energy and, meanwhile, leads to massive CO2 emissions [24–26].
Thus, more attention should be increasingly paid to developing environmentally friendly
low-carbon green solidification materials.

Geopolymers are a kind of inorganic polymer consisting of SiO4 and AlO4 tetrahedrons
connected by sharing the oxygen atoms [27]. They can be normally synthesized by low-
temperature polycondensation of different materials, such as metakaolin and coal fly
ash [28]. It has been viewed as a practical alternative to Portland cement because it
exhibits better mechanical properties and durability, and has lower energy requirements
and greenhouse gas emissions [29]. In recent years, geopolymers have gradually attracted
much attention for S/S treatment. For the safe disposal of radioactive waste with high
radioactivity, geopolymers, especially, can provide the potential for extremely long-term
storage [30]. Over the past several decades, geopolymer technologies have been rapidly
developed by academic researchers. There are also some reviews on the application of
geopolymers from the perspectives of heavy metal sorption [31,32] and adsorbents for
wastewater [33]. However, the sorption process can be seen as a part of the S/S process,
and there is still a significant difference between them. By now, there are few reviews
reported about the geopolymer-based S/S process. Thus, this review firstly attempts to
comprehensively present the S/S of hazardous pollutants, including heavy metals and
organic contaminants, using geopolymer as the binding material. This paper will contribute
to the further understanding of the geopolymer-based S/S process of hazardous pollutants.

2. Geopolymer

Since Prof. Joseph Davidovits introduced the terminology geopolymer in the 1970s [34],
it has been developed for more than thirty years. Geopolymer is most commonly referred
to inorganic aluminosilicate based on geological materials, which can react with an alkaline
solution to form a binder through a polycondensation reaction [35]. There is also another
way to use an acidic phosphate component or phosphoric acid as the activator for the
complex acid-based reaction to initiate. The polymerization occurs between the Al–O layer
in the aluminosilicate and P–O tetrahedron in the activator, and the obtained solid can
also be called chemically bonded phosphate ceramics [4,36]. In addition, the borate can be
also substituted for the silicate in aluminosilicate to participate in the geopolymerization
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reaction [37]. Generally, geopolymer can be formed through the geopolymarization process,
mainly including dissolution, nucleation, oligomerization, and polymerization [38]. Taking
an alkali-activated geopolymer as an example, the aluminate and silicate can be dissolved
from raw material under alkali conditions. Then, the dissolved Al and Si tetrahedrons go
through gelation, reorganization, and polymerization to form the hardened geopolymer
paste [39]. Because of the negative charges generated from Al tetrahedrons, cations, such
as Na+ and K+, are needed to achieve the charge balance. In addition, geopolymer is a kind
of amorphous substance with a zeolite-like structure, and alkali metals (Na+ or K+) can be
exchanged with other cations, such as Cs+, Cd2+, Pb2+, etc. [31].

Based on the aluminosilicate sources, geopolymers can be divided into several types,
such as fly ash-based geopolymer, metakaolin-based geopolymer, slag-based geopolymer,
and mine tailing-based geopolymer, etc. [40,41]. Different aluminosilicate sources possess
various chemical activities. Therefore, the properties of generated geopolymers, such as
mechanical performance, thermal behavior, durability, etc., have a close relationship with
aluminosilicate sources. It is widely accepted that amorphous phases in the aluminosilicate
source are the main reactive components during the geopolymerization process, and most
of the crystalline phases are hardly dissolved during the reaction [42]. Thus, thermal acti-
vation was proposed as an effective method to modify the physicochemical properties of
materials. During thermal treatment, phase transformations occur in the material, resulting
from the loss of volatile components and reorganization of atomic structures [43]. For
example, the dehydroxylation of kaolinite at temperatures between 700 and 900 ◦C can
convert its crystalline structure to an amorphous substance, which can be activated by
alkaline solutions [44]. However, there is no change for some minerals, such as quartz, and
mullite after thermal treatment. Alkaline fusion was proposed to increase the geopolymeric
reactivity of materials. The structures of quartz and mullite are decomposed by the calcina-
tion of the mixture of raw material and alkaline, then promoting the dissolution of Si and
Al species [43]. In addition, mechanical activations, including grinding, comminution, etc.,
have also been put forward to increase the specific surface areas and reaction sites [45]. On
the other hand, NaOH or KOH and Na2SiO3 or K2SiO3 solutions are commonly used as the
activators for geopolymer synthesis [46,47]. Soluble silicate has a significant effect on the
properties of geopolymer. Generally, the geopolymer pastes activated by Na2SiO3 solution
always have better mechanical strength than that obtained from NaOH activation [46,47].

There are some unique features for geopolymer. From the view of the structure,
geopolymer has an amorphous structure, which is always regarded as the precursor
of zeolite due to their similar composition [48]. The differences between the synthesis
of geopolymer and zeolite mainly refer to reaction conditions, including Si/Al molar
ratio of raw material, liquid/solid ratio, and ambient temperature. For instance, zeolite
can normally be formed under the condition of an H2O/SiO2 molar ratio of 10–100 and
OH–/SiO2 of 2–20 [49]. However, the reaction condition of H2O/SiO2 molar ratio of
2–10 and OH–/SiO2 of 0.1–0.5 is employed for geopolymer [50]. At a certain condition, the
crystal minerals, such as pollucite, nepheline, etc., can be generated in the final product after
thermal treatment is conducted to the geopolymer [51,52]. Another important point that
should be noted from a view of macroscopic property is that a dense and compact structure
can be formed for geopolymer [53]. This should be the principal consideration as to why
geopolymer can be called man-made stone. It has been proved that some additives, such
as calcium oxide, magnesium oxide, etc., could influence the compactness of geopolymer
paste [54,55]. This provides an effective method for the control of geopolymer compactness,
since higher compactness of geopolymer, to a large extent, can reduce the leaching amount
of pollutants from S/S paste.
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3. Geopolymer-Based S/S Process
3.1. S/S of Heavy Metals

Heavy metal pollution has become a severe problem in many parts of the world, mainly
caused by anthropogenic activities, including mining, smelting, coal combustion, etc. [56].
Specifically, it is precisely because of the improper disposal of the waste produced from
these anthropogenic activities. Heavy metals can be converted, persistent and irreversible in
the environment because heavy metals cannot be decomposed, but they can exist in various
chemical associations. Normally, heavy metals can be divided into cationic and anionic
metals and both of them can cause serious pollution to the environment. A summary on the
S/S of typical heavy metals in geopolymers is presented in Table 1. Due to their different
immobilization mechanisms, a statement of the S/S process for cationic and anionic metals
was described in detail.
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Table 1. Recent studies about S/S of heavy metals using geopolymers.

Materials Heavy Metal Species
(Content) Curing Condition Leaching Conditions

or Methods
Leaching Concentration

(mg·L−1)
Immobilization

Efficiency Reference

Coal gasification fly ash
Metakaolin
Steel slag

Pb (4 wt%)
Zn (4 wt%)

Cr (0.5 wt%)

Cured at room temperature for 3 and
7 days. EPA Method 1311 –

Pb (93.12–99.29%)
Zn (93.85–96.74%)
Cr (95.44–99.45%)

[57]

Rare earth tailing
Metakaolin Pb (0.2 wt% to 1 wt%)

Cured at 60 ◦C for 8 h and then at
room temperature for another 1, 3, and

7 days.
EPA Method 1311 Pb (<0.1)

Ba (<0.4)
Pb (>95%)
Ba (>95%) [58]

Coal fly ash Pb (1 wt% to 8 wt%) Cured at 85 ◦C for 24 h and then at
room temperature for another 7 days. EPA Method 1311 Pb (6–116) Pb (>98.9%) [59]

Sludge residue Zn (2726 mg/kg)
Cu (1077 mg/kg) Cured at room temperature for 7 days. EPA Method 1311 Zn (1.33)

Cu (0.02)
Zn (>95%)
Cu (>95%) [60]

Municipal solid waste
incineration

Pb (2249 mg/kg)
Zn (6368 mg/kg)
Cd (282 mg/kg)

Cured at the temperature of 20 ± 2 ◦C
and humidity higher than 90% for 7,

14, and 28 days.
HJT300-2007

Pb (0.085)
Zn (0.766)
Cd (0.054)

Pb (>99%)
Zn (>99%)
Cd (>99%)

[61]

Zinc mine tailing
Metakaolin Zn (2.1%) Cured at 60 ◦C for 6 h and then cured

at room temperature for 7 days. EPA Method 1311 Zn (2.77) Zn (>99.09%) [62]

Fly Ash
Ground Granulated Blast

Furnace Slag

Pb (0.1–0.5%)
Cd (0.1–0.5%)
Cr (0.1–0.5%)

Cured at 70 ◦C for 24 h and then
Curing at room temperature for

28 days.
HJ/T 300–2007 –

Pb (91–99.99%)
Cd (99.13–99.69%)

Cr (91–97%)
[63]

Drinking water
treatment residue
municipal waste

incineration bottom ash

Pb (1–4%)
Cd (1–4%)
Zn (1–4%)

Cured at 80 ◦C for 8 h and then at
room temperature for another 7, 14,

and 28 days.
EPA Method 1311

Pb (<10)
Cd (<12)
Zn (<3)

Pb (>99.43%)
Cd (>99.43%)
Zn (>99.43%)

[64]

Fly ash
Ground granulated
blast-furnace slag

Pb (2%)
Cd (2%)

Cured at a temperature of 20 ± 3 ◦C
and relative humidity of 95% for

28 days.
EPA Method 1311 Pb (0.14 to 2.55)

Cd (<1)
Pb (92.98–94.67%)

Cd (>99.943) [65]

Fly ash Cs (2%) Cured at 60 ± 0.5 ◦C for 28 days.
pH = 1 H2SO4 solution

or 5% (wt)
MgSO4 solution

– Cs (<0.5%) [66]

Metakaolin Cs (33.37 wt%) Cured at 60 ◦C for 48 h, and calcined at
low temperature (≤1000 ◦C) for 2 h.

EPA Method 1311
ANSI/ANS 16.1-2003 – Leaching rate:

2.51 × 10−4 g m−2 d−1 [67]



Molecules 2022, 27, 4570 6 of 21

Table 1. Cont.

Materials Heavy Metal Species
(Content) Curing Condition Leaching Conditions

or Methods
Leaching Concentration

(mg·L−1)
Immobilization

Efficiency Reference

Fly ash
Slag

Metakaolin
Sr (1, 3, 5, 7, and 9 wt%)

Cured at 25 ± 1◦C for 24 h and
calcined at the temperature (≤1000 ◦C)

for 2 h.
Deionized water – Leaching rate:

<2 × 10−3 g m−2 d−1 [68]

Fly ash Cs (10 g/L)
Sr (10 g/L)

Cured at 60 ◦C for 24 h and then at
room temperature for four weeks. ANSI/ANS-16.1-2003 – Cs (95.95–96.79%)

Sr (>99.96%) [69]

Mn slag
Metakaolin Co (1.13 wt%)

Cured at a temperature of 25 ± 0.5 ◦C
and relative humidity of 90% for

30 days.
EPA Method 1311 – Co (>99.65%) [70]

Fly ash Cr (0.5–2%)
Cured at room temperature and
relative humidity of 90 ± 5% for

28 days.
SRPS EN 12457-2 Cr (3.78) – [71]

Metakaolin Se (2%)
Cured at room temperature and
relative humidity of 93 ± 2% for

28 days.
EPA Method 1311 – Se (24.15–93.74%) [72]

Note: Leaching procedures can be referred to as the standard documents of each method.
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3.1.1. S/S of Cationic Metals
Pb

The applications of geopolymers in the S/S of Pb have been widely reported. Chen
et al. [57] adopted coal gasification fly ash to synthesize geopolymer for the immobilization
of Pb. Most Pb was remained in the aluminosilicate structure of the geopolymer. Hu
et al. [58] prepared geopolymer using rare earth tailing and metakaolin, showing extraor-
dinary S/S performance of Pb2+. The Pb2+ was participated in the polycondensation of
the Si/Al gel phase and formed PbO inside the network of the geopolymer. Furthermore,
Guo et al. [59] utilized coal fly ash to synthesize geopolymer for the immobilization of
Pb and compared the immobilization efficiency of geopolymer to Pb compounds, such as
PbO, PbSO4, and PbS. The results indicated that the immobilization limit of Pb content is
approximately 4% for PbO and PbSO4, and 8% for PbS. Except for common waste, such
as fly ash, tailings, and drinking water, treatment residuals were also adopted as the raw
materials of geopolymer synthesis for Pb immobilization [73,74]. There are also reports
on geopolymer synthesis using lead–zinc smelting slags and Pb in slags can be well so-
lidified through physical encapsulation and chemical associations [75,76]. As a whole, it
is commonly recognized that Pb2+ could attack the SiO4 tetrahedron structure and form
covalent bonds in the Pb–O structure (Figure 1), while, due to the negative charge of Al
tetrahedrons and higher ion potential of Pb2+, Pb2+ can exchange with Na+ or K+ in the
structure of the geopolymer [77]. However, Pb2+ would precipitate under an alkaline
medium. Therefore, ion exchange of Pb2+ with Na+ or K+ could be the main interaction
of sorption using geopolymer as an adsorbent. It should be noted that sorption can be
included in the stabilization process. There are so many publications about the adsorption
of Pb2+ using geopolymers synthesized from metakaolin [78], fly ash [79–81], slag [82],
foundry dust [83], mine tailings [84], biofuel ash [85], and red mud [86]. To further improve
the adsorption efficiencies, zeolite-based adsorbents transformed from geopolymers were
developed and achieved better adsorption performance of Pb2+ [87–91]. Furthermore,
geopolymer-based composites, such as geopolymer–alginate–chitosan composites [92] and
porous microsphere/geopolymers [93], were designed and used for the adsorption of Pb2+.
In addition to alkali-activated geopolymers, an acidic phosphoric-based geopolymer was
adopted for the S/S of Pb. It was shown that the acidic phosphoric-based geopolymer has
a better S/S performance of Pb2+ than that of alkali-activated geopolymers under acidic
conditions [94]. Pb2+ can react with PO2−

4 to form stable compounds, including Pb3(PO4)2
and PbHPO4, which are proposed as the main reaction mechanisms.
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Zn

Zinc is also a very communal pollutant in the environment and the improper disposal
of waste, such as lead–zinc slags, mine tailings, etc., can cause serious pollution [95].
Nath [96] utilized zinc slag and fly ash to prepare geopolymers and the leaching of Zn from
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geopolymers containing 40–80% slags is within the permissible limit. Sun et al. [60] used
sludge residue to synthesize geopolymer and achieved a high-efficient immobilization of
the unstable forms of Zn. It is also reported that the immobilization rate of more than 99%
for Zn can be achieved by geopolymer-based S/S [61]. Similarly, the alkaline condition of
the geopolymer plays an important role in the S/S of Zn. However, to some extent, Zn can
be dissolved in alkaline conditions [97]. Wan et al. [62] reported that Zn can be stabilized
in geopolymers through physical encapsulation and adsorption of leached Zn2+ by the
geopolymer. Wang et al. [98] also proposed that Zn2+ can partially replace Na+/K+ balanced
with the negative charge of an Al tetrahedron in geopolymer structure (Figure 1). Therefore,
the reaction mechanisms of geopolymer-based S/S of Zn can be summarized as physical
encapsulation and electrostatic adsorption [99]. On the other hand, compared to the
solidification of Zn using geopolymer, there are more reports about the adsorption of Zn2+

using geopolymer-based adsorbents, such as natural volcanic tuff-based geopolymers [100],
metakaolin-based geopolymers [101], fly-ash-based geopolymers [102], hollow gangue
microsphere/geopolymer composite [93], clay-fly-ash-based geopolymer [103], etc. As a
whole, Zn and its compounds possess the properties of amphoteric metal, and the specific
associations of Zn in geopolymers should be further explored.

Cd

Cadmium, as one of the most toxic heavy metals, can cause serious disorders for
humans, such as heart disease, cancer, or diabetes [104]. Zhang et al. [105] utilized fly
ash-based geopolymer to immobilize Cd and found that Cd immobilization is mainly
related to the solubility of a hydroxide phase and can be effective at high pH. Furthermore,
Muhammad et al. [63] observed that a higher leaching amount of Cd occurred in an acidic
medium from a ground-granulated blast furnace slag and fly-ash-based geopolymers.
Zheng et al. [106] suggested that the crystalline phase containing Cd was not produced
in geopolymer. Ji et al. [64,74] indicated that the main form of Cd should be a divalent
state linked as Al–O–Cd in the drinking water treatment residue-based geopolymer. Wang
et al. [107] further pointed out that Cd2+ was considered to balance the negative charge of
Al tetrahedrons in the geopolymer framework. However, Wang et al. [65] proposed that
the formation of Cd(OH)2 was the main solidification mechanism of Cd2+ in geopolymers.
By now, it has not been certified that these two kinds of associations are included in
the geopolymer S/S of Cd, which might be largely influenced by the concentration of
Cd. As a whole, the distribution of Cd can be well overlapped with Al and Si (Figure 2).
El-eswed et al. [108] confirmed that Cd cannot replace Si in the geopolymer framework.
Anyway, geopolymers possess excellent immobilization performance of Cd2+ through
physical encapsulation and chemical stabilization [109]. Being similar to the case of Pb2+,
geopolymer-based adsorbents, such as magnetic geopolymer [110], dolochar ash-based
geopolymer [111], and zeolite-based geopolymer [112], etc., have been designed and
studied for the adsorption of Cd2+. A large adsorption amount of Cd2+ can be achieved by
geopolymer-based adsorbents. Ion exchange should also be the main reaction mechanism
for the Cd2+ sorption process onto geopolymer [77].

Cs

Cs is one of the alkali metals and possesses good mobilities in both acidic and alkali
conditions. 137Cs, as one of the most hazardous radionuclides, possesses a long half-
life (30 years) and strong radioactivity [113]. Compared to ordinary Portland cement
(OPC), geopolymer shows better S/S performance of Cs due to their excellent properties.
Kozai et al. [114] compared geopolymer-based S/S with cement (OPC)-based S/S and
indicated that less than 1% Cs+ was released from the geopolymer, while more than 30%
was leached from OPC. Tian et al. [115] also found that less Cs+ was leached out from
geopolymer where Cs-zeolite was solidified. Li et al. [66] solidified Cs+ in a fly-ash-based
geopolymer and less Cs+ was leached out from geopolymer blocks under acidic or saline
conditions. Furthermore, He et al. [116] found that Na-based geopolymers presented
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a lower leaching rate of Cs+ than K-based geopolymers, and higher temperature and
saline solution can accelerate the leaching of Cs+. Since Cs+ can replace Na+ or K+ in
the geopolymer structure, ion exchange is the main mechanism for the S/S of Cs+ in
geopolymers, which was firstly proposed by Bortnovsky et al. [117]. To further improve
the S/S efficiency of Cs+ in geopolymer, a series of strategies have been proposed. Ofer-
Rozovsky et al. [118] and Haddad et al. [119] prepared a series of low-Si geopolymers for
the S/S of Cs, and crystal minerals, such as zeolite A, zeolite F, zeolite F, feldspathoid,
etc., can be formed from the amorphous structure of the geopolymer, contributing to the
enhanced immobilization of Cs+.
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Thermal treatment has been proposed as an effective method to further improve the
S/S efficiency of Cs (Figure 3). Under high temperatures, geopolymer can be viewed as
precursor for the formation of ceramic, and meanwhile, pollucite has been regarded as
one of the most stable phases for the safe disposal of Cs [120]. It has been reported that
geopolymer containing Cs+ could be gradually crystallized into pollucite upon heating
above 900 ◦C [121]. Chlique et al. [122] pointed out that a higher concentration of Cs+

in geopolymer tends to reduce the amorphous phase and improve the quantification of
pollucite and nepheline. He et al. [123] found pollucite can be formed from Cs-based
geopolymers synthesized from synthetic metakaolin at a lower temperature (800~1000 ◦C).
Furthermore, He et al. [67] obtained pollucite with excellent S/S performance of Cs from
geopolymer calcined at a low temperature (<1000 ◦C) via alkali metal ion doping and
optimizing the Na/Cs ratio. Chen et al. [124] proposed a hybrid hydrothermal-sintering
process including a 200 ◦C hydrothermal process and an additional 1200 ◦C sintering
process, which can effectively lower the amount of Cs lost to volatilization. To improve the
efficiencies of pollucite formation, Xiang et al. [125] adopted rapid microwave sintering
to prepare Cs-defined ceramics, which can be formed at below 1100 ◦C within 30 min.
He et al. [113] found that pollucite can be formed at approximately 700 ◦C with the addition
of 7.5 wt% B2O3. Liu et al. [126] investigated the effect of sodium salts on the hydrothermal
process (<200 ◦C) of a volcanic-ash-based geopolymer and concluded that the introduction
of CsOH·H2O can promote the formation of pollucite. Concerning the structure of the
Cs-geopolymer and its thermal product, the pair distribution function (PDF) has always
been adopted to analyze their microstructures [127]. On the other hand, it should be stated
that geopolymer-based adsorbents, such as layered double hydroxide/geopolymers [128],
phosphoric-acid-based geopolymers [129], graphene oxide/geopolymers [130], geopolymer
foams [131], etc., have been well developed for the adsorption of Cs+ in aqueous conditions.
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Other Cations

In addition to the cationic metals discussed above, there are still other metals, such
as Sr, Cu, Ni, V, Co, U, etc., which have also been targets solidified in geopolymers. 90Sr
is also one of the radionuclides that can be generated in the fusion process, as well as
137Cs. Liu et al. [68] investigated the immobilization of simulated 90Sr in a fly-ash-slag-
metakaolin-based geopolymer, and the cumulative fraction leaching rate of 90Sr is much
lower than that of cement. Jang et al. [69] indicated that the diffusivity of soluble Sr2+ ions
was highly correlated with the critical pore diameter of the binder. Therefore, geopolymers
can better retard the diffusion of nuclides due to their compact structure. From the view
of the structure, Walkley et al. [133] found that both Sr2+ and Ca2+ can induce the same
structural change in the gels and partially Sr-substituted zeolite A was formed with the
gels cured at 80 ◦C. Furthermore, Li et al. [134] proposed that the distribution of Sr2+ had a
closed relationship with Ca2+ in geopolymer. Thus, an effective S/S method for Sr can be
developed with the consideration of Ca properties. The formation of a nepheline structure
in geopolymer at 1200 ◦C for the blocking of Sr was proposed, which largely reduced the
leaching rate in the deionized water [135]. In most cases, the radioactive Sr2+ was firstly
adsorbed onto adsorbents, such as zeolite A [136], clinoptilolite [137], and titanate ion
exchangers [138,139], etc., which were then encapsulated in geopolymers, showing great
S/S performance.

In addition, Zhang et al. [140,141] verified that fly ash- or slag-based geopolymers
could effectively immobilize Cu and achieve an immobilization efficiency of higher than
90% under the concentration of Cu in a range of 0.1–0.3%. El-eswed [108] proposed
that Cu can replace Si in the geopolymer structure, being similar to Pb. Moreover, the
leaching of Cu was always evaluated in terms of geopolymers synthesized from fly ash and
industrial sludge [142], mine tailing [143], lead–zinc smelting slag [75], sludge incineration
residue [144], red mud, and municipal solid waste incineration fly ash (MSWI) [145–147],
melting slag of MSWI and bottom ash [148], electrolytic manganese residue [149], electric
arc furnace dust [150], etc. Importantly, the leaching concentration of Cu can be satisfied
with related standards. This can also be found in the cases of Ni [151–154] and V [155–158]
immobilizations using geopolymers. Compared to the above-mentioned metals, there are
only a small number of reports about Co, U, etc. Yu et al. [70] utilized Mn-slag to synthesize
geopolymer for the S/S of Co and found that divalent Co was oxidized to trivalent Co in
the matrix, contributing to higher solidification capacity. Zhou et al. [159] immobilized U-
contaminated soils using a coal gangue-based geopolymer and achieved a fixation efficiency
of U up to approximately 77%. Furthermore, Li et al. [160] added nano-hydroxyapatite
into geopolymer to enhance the S/S performance of U and the leaching concentration of U
from the solidified body with an additive was low to 15 ppm. Chen et al. [161] designed a
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thermal method for stabilizing U(VI) in red mud, contributing to a successful solidification.
As a whole, geopolymers can possess good S/S ability for cationic pollutants.

The main geopolymer-based S/S mechanisms for cations are concluded, as shown in
Figure 4. Physical encapsulation is the basic function of geopolymer, which can achieve high
mechanical strength and compact structure, protecting immobilized waste from contact
with solutions. In addition, the negative charges produced by Al tetrahedrons can permit
cation exchange with Na+ or K+. Under thermal treatment, the amorphous structure of
geopolymer can be transformed into crystals, chemically enhancing the S/S performance.
In addition, during the geopolymerization process, some cations can be replaced with Al
and be linked with Si directly. On the other hand, precipitation of cations is also another
important role for the geopolymer-based S/S.
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3.1.2. S/S of Anionic Metals
Cr

Chromium can exist in the form of both cationic ions (Cr3+) and anionic ions (CrO2−
4 and

Cr2O2−
7 ). Importantly, Cr(VI) possesses better mobilities and higher toxicity than Cr(III) [162].

Therefore, the S/S of Cr was discussed in the current section. Al-Mashqbeh et al. [163] utilized
metakaolin-based geopolymer to immobilize the inorganic anions (Cr2O2−

7 , MnO−
4 , and

Fe(CN)3−
6 ) and concluded that geopolymer had limited capacity for the immobilization of

metal anions. Nikolić et al. [71] employed fly ash-based geopolymer to immobilize Cr(VI)
and found that geopolymer pastes containing Cr (0.5–2.0%) cannot meet the requirement of
landfills due to the high leaching concentration. Moreover, Muhammad et al. [63] used poly-
carboxylate superplasticizer to enhance the compressive strength. However, a higher leach-
ing amount of Cr(VI) can be observed in an acidic medium. Thus, the reduction of Cr(VI)
to Cr(III) using zero-valent iron [164,165], ferrous salts [166,167], and sulfide [168,169] has
been proposed as an important strategy for the higher geopolymer-based S/S ability. It
has been proved that the detoxification of Cr(VI) before solidification is more efficient, as
compared to the simultaneous reduction in and solidification of Cr(VI) in the geopolymer.
Then, the Cr(III) reduced from Cr(VI) can be stabilized through sorption and ion exchange
in the geopolymer, which is similar to other cations [170]. Based on the mechanism, some
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adsorbents, such as green-rust-functionalized geopolymers [171], geopolymer–zeolite com-
posite membranes [172], and organically modified geopolymers [173], etc., were designed
and applied in the removal of Cr(VI) from solutions. On the other side, Wei et al. [174] syn-
thesized a Cr(VI)-added geopolymer treated by hydrothermal processing, and the leaching
of Cr was far below the available limit, suggesting that hydrothermal processing can be a
potential candidate technique for the disposal of Cr.

Se

Strictly speaking, selenium is not a metal element. 79Se is one of the fission prod-
ucts in nuclear reactors and it possesses an extremely long half-life of approximately
1.11 × 106 [175–177]. Serious injuries to plants, animals, and even humans would be caused
once 79Se is unintentionally released into the environment (e.g., the Fukushima accident),
because of its strong radioactivity. Generally, Se can exist in several oxidation states, includ-
ing selenide (–II), elemental Se (0), selenite (IV), selenate (VI), etc. Among them, SeO2−

3 and
SeO2−

4 are the dominant species in water environments, with high mobility and transporta-
bility [178]. However, there are only a few studies about the S/S of Se in geopolymers. It
has been reported that more Se was leached out from geopolymers synthesized by coal fly
ash and slag [158], coal fly ash and metakaolin [157], spent aluminate, and fly ash [179],
etc. Tian et al. [72] reported that sodium silicate-activated geopolymers can substantially
reduce the Se leaching amount compared to sodium hydroxide-activated geopolymers, and
also proposed that electrostatic interaction is the main association of SeO2−

3 and SeO2−
4 in

geopolymers (Figure 5). The cations, such as Na+, bridged the negative charge produced
by the Al tetrahedron and oxyanion, which was certified by the sequential study [180]. On
the other hand, compactness plays a vital role in the Se leaching from geopolymers.
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Other Anions

There are always geopolymer-based adsorbents developed for the removal of anions,
such as I− [181], F– [182,183], Se oxyanions [128,184], As oxyanion [185], P oxyanion [186],
S oxyanion [187], Sb oxyanion [188], etc. In most cases, geopolymers are adopted as
the matrix, and sorption active sites are loaded through ion exchange, precipitation, etc.,
Compared to cationic metals, there are few studies reported about the S/S of anionic species
using geopolymers, except for the above-mentioned elements in detail. High leaching
amounts of anions always occurred in most cases due to the negative charge repulsion. Al-
Mashqben et al. [163] also indicated that geopolymer has limited immobilization capacity
for the encapsulation of heavy metal anions, including MnO−

4 and Fe(CN)3−
6 . Arsenic is a

typical element belonging to metalloids, possessing hypertoxicity. It has been stated that
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arenite can also be associated in the geopolymer structure by electrostatic interaction [180].
This is similar to the case of Se oxyanions. However, arsenate ions tend to recrystallize into
the arsenate compound (Na3.25(OH)0.25(H2O)12(AsO4)) in geopolymers [180].

3.2. S/S of Organic Pollutants

Generally, organic waste is always burned to reduce the volume. It has been proved
that organic compounds are poorly retained in inorganic materials, such as ordinary Port-
land cement [189]. Therefore, there are few studies about the S/S of organic pollutants in
geopolymers now. Only several reports were published on the preparation of geopolymer-
based photocatalysts, including graphene/fly-ash-based geopolymers [190], TiO2-doped
zeolite/geopolymers [191], Cu (I) oxide, and titanium dioxide/geopolymers [192], for the
degradation of organic pollutants or the adsorbents/membrane, including magnetic geopoly-
mers [193], defective analcime/geopolymer membranes [194], geopolymer/alginate [195], for
the removal of organic pollutants from the aqueous conditions.

4. Future Perspectives

Even though geopolymers, as a kind of promising material, have been widely studied
in the S/S of hazardous pollutants, there are still some challenges that require further ex-
ploration. First of all, geopolymer possesses a negative charge provided by Al tetrahedrons,
showing a repulsive effect on anionic ions. Although it has been certified that anionic
species, such as the oxyanions of Se and As, can exist in the three-dimensional structure of
geopolymer through electrostatic interaction, leaching amounts of them are still higher than
the relevant standards. More effective methods should be developed to enhance the ability
of geopolymers for the S/S of anionic species. In addition, geopolymers always show good
S/S ability for cationic ions. Thermal treatment (≥1000 ◦C) is always used to improve
its S/S efficiency, which consumes plenty of energy. Under the background of carbon
neutrality, it is imperative to find alternative ways to improve the S/S efficiency with a
lower-temperature thermal treatment. In addition, the S/S of hazardous pollutants, espe-
cially radionuclides, normally require long-term stability. Nevertheless, less attention was
paid to the properties of the solidified body in the long-term run. On the other hand, most
publications are largely concerned about the leaching behavior of immobilized pollutants
from blocks. There are few works conducted to elucidate the influence of encapsulated
pollutants on the mechanical properties of geopolymers. Therefore, even though so many
studies have been reported, geopolymer-based S/S technology requires more effort to make
great achievements.

5. Conclusions

Geopolymers, as a kind of novel inorganic polymers, possess excellent properties of
high mechanical strength, good durability, chemical resistance, etc. Furthermore, solid
waste, such as coal fly ash and slags, can be adopted as raw materials for geopolymer
synthesis, pointing out that these wastes can be safely disposed of through chemical trans-
formation, or can be used for S/S of other hazardous waste. Therefore, geopolymer shows
its unique advantages for the immobilization of hazardous pollutants. Currently, geopoly-
mers have been widely studied for the S/S of hazardous pollutants, which are divided
into heavy metals (cations and anions) and organic pollutants. The S/S of cationic metals,
including Pb, Zn, Cd, Cs, Sr, Cu, Co, Ni, U, and V, have been examined by geopolymers
synthesized from metakaolin, fly ash, slags, solid residues, etc. The immobilization pro-
cess for these metals is mainly dependent on the mechanisms of physical encapsulation,
sorption, precipitation, and bonding with silicate structures. In addition, geopolymers
have also been adopted for the S/S of anionic pollutants, such as Se oxyanions, As oxyan-
ions, Cr oxyanions, etc. It has been verified that Se or As oxyanions can be associated in
geopolymer through electrostatic interaction, even though the leaching amounts are still
higher compared to cationic metals. There are few reports about the geopolymer-based
S/S of organic pollutants. Besides, the development of adsorbents for heavy metals and
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some organic pollutants is always a hot topic in research. Furthermore, the challenges
to geopolymer-based S/S technology outlined in this work are expected to be of direct
relevance to the focus of future research. As a whole, this review will offer insights into the
use of geopolymers as S/S materials for various pollutants.
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