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Abstract: Endocrine disruptors (EDs) are contaminants that may mimic or interfere with the
body’s hormones, hampering the normal functions of the endocrine system in humans and animals.
These substances, either natural or man-made, are involved in development, breeding, and immunity,
causing a wide range of diseases and disorders. The traditional detection methods such as enzyme
linked immunosorbent assay (ELISA) and chromatography are still the golden techniques for
EDs detection due to their high sensitivity, robustness, and accuracy. Nevertheless, they have the
disadvantage of being expensive and time-consuming, requiring bulky equipment or skilled personnel.
On the other hand, early stage detection of EDs on-the-field requires portable devices fulfilling
the Affordable, Sensitive, Specific, User-friendly, Rapid and Robust, Equipment free, Deliverable to
end users (ASSURED) norms. Electrochemical impedance spectroscopy (EIS)-based sensors can
be easily implemented in fully automated, sample-to-answer devices by integrating electrodes in
microfluidic chips. The latest achievements on EIS-based sensors are discussed and critically assessed.
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1. Introduction

Endocrine disruptors (EDs) are environmental contaminants that disrupt the normal functioning
of the endocrine system in mollusk, crustacea, fish, reptiles, birds, and mammals. For humans,
these compounds may cause cancerous tumors [1–3] and infertility [4]. Natural EDs originate in living
organisms and can be either hormones (testosterone, estrogen, or progesterone) or mycotoxins such
as zearalenone. Synthetic EDs can be found in plastic additives, industrial reagents, and waste. Some of
the most common synthetic EDs are precursors in the production of rubber, pesticides and plastic
additives such as atrazine, alkylphenols, bisphenol A (BPA) [5], parabens, perfluoroalkyl acids [6],
phthalates and polychlorinated biphenyls (PCBs) [7]. A list of relevant EDs is given in Table 1.

A variety of analytical methods have been used for the detection of EDs, including liquid
chromatography coupled with mass spectrometry (LC-MS) [8], gas chromatography coupled with
mass spectrometry (GS-MS) [9], high-performance liquid chromatography (HPLC) coupled with
fluorescence detection [10] or with mass spectrometry [11,12]. These methods usually require laborious
and time-consuming steps for sample pre-concentration, and high amounts of reagents. By comparison,
electrochemical sensors and biosensors offer advantages such as low cost, portability, and do not
require complex pretreatment steps. Moreover, biosensors can be used for selective, fast, and direct
detection of analytes in real samples.
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Table 1. List of relevant EDs compounds.

Analyte IUPAC Name Chemical Structure Molecular Weight
(g/mol) Source Ref.

17β-estradiol
(E2)

(8R,9S,13S,14S,17S)-13-Methyl-6,7,8,9,11,12,14,15,16,17-
decahydrocyclopenta[a]phenanthrene-3,17-diol
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272.388 
endogenous 
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medication 

[13] 

Acetamiprid 
(AAP) 

N-[(6-chloro-3-pyridyl)methyl]-N′-cyano-N-methyl-
acetamidine 

 

222.678 insecticide [14] 

Atrazine  
(ATZ) 

 

6-chloro-N2-ethyl-N4-(propan-2-yl)-1,3,5-triazine-2,4-
diamine 

 

215.69 
herbicide for 

grassy weeds in 
crops 

[15] 

Pentabromodiphenyl 
ether 

(BDE-47) 
2,2′,4,4′-Tetrabromodiphenyl ether 485.79 flame retardant [16] 

Bisphenol A 
(BPA) 

4,4′-(propane-2,2-diyl)diphenol 

 

228.291 

precursor to 
polycarbonates, 

plastic and epoxy 
resins 

[17] 

Carbendazim 
(CBZ) 

methyl 1H-benzimidazol-2-ylcarbamate 

 

191.187 fungicide [18] 

Cortisol 11β,17α,21-Trihydroxypregn-4-ene-3,20-dione 

 

362.46 
endogenous 

hormone, 
medication 

[19] 

Dibutyl phthalate 
(DBP) 

Dibutyl benzene-1,2-dicarboxylate 

 

278.348 plasticizer [20] 

272.388 endogenous hormone, medication [13]

Acetamiprid
(AAP)

N-[(6-chloro-3-pyridyl)methyl]-
N′-cyano-N-methyl-acetamidine
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Microcystin-LR
(MC-LR)

(5R,8S,11R,12S,15S,18S,19S,22R)-15-[3-
(diaminomethylideneamino)propyl]-

18-[(1E,3E,5S,6S)-6-Methoxy-3,5-dimethyl-7-phenylhepta-
1,3-dienyl]-1,5,12,19-tetramethyl-2-methylidene-8-

(2-methylpropyl)-3,6,9,13,16,20,25-heptaoxo-
1,4,7,10,14,17,21-heptazacyclopentacosane-

11,22-dicarboxylic acid
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Electrochemical impedance spectroscopy (EIS) is a sensitive technique which can be used to monitor
biomolecular events occurring at the electrode surface. These events include affinity interactions
involving peptides, receptors, nucleic acids, whole cells, and antibodies.

This work reviews recent trends in the newly developed EIS sensors for the detection of EDs
using different modified surfaces and various bioreceptors. In this review, significant examples of
impedimetric sensors and biosensors for the detection of EDs are discussed and critically reviewed.

2. Basic Elements of EIS-Based Sensors

2.1. Principle of EIS Detection

Electrochemical impedance spectroscopy (EIS) is an electrochemical technique that measures
the impedance properties of an electrochemical system using a large range of frequencies.
Here, the electrochemical process is described by an electrical circuit consisting of resistance, capacitors,
and constant phase elements combined in parallel or in series.

The most widely used model for describing processes at the electrochemical interface is the
Randles equivalent circuit [29], consisting of electrolyte resistance (Rs), charge-transfer resistance (Rct)
at the electrode/electrolyte interface, double-layer capacitance (Cdl), mass transfer resistance (Rmt)
and Warburg impedance (W). The Rs parameter is determined by the conductivity of the solution
and the distance between the electrodes. The double layer capacitance depends on the electrode area,
nature, and electrolyte’s ionic strength. Rct and W represent the Faradaic impedance. Rct depends
on the charge transfer kinetics and can be thought of as the ratio of overpotential to current in the
absence of mass transfer limitation. The linear segment registered at low frequencies is attributed to
the Warburg diffusion element, the impedance being controlled by the diffusion process in this region.

Equivalent circuit models can serve to describe the electrochemical, chemical, and physical
processes occurring at the electrode surface, since each circuit component can be assigned to a physical
process in the electrochemical cell. Electrochemical reactions involve electrolyte resistance, adsorption
of electroactive species, charge transfer at the electrode surface, and mass transfer from the bulk
solution to the working electrode surface. Each electrochemical process is represented by an electrical
circuit that consists of capacitors, resistance and constant phase elements that are connected in parallel
or in series.

EIS has been proven to be a useful tool for the analysis of interfacial or bulk electrical properties of
the electrode, which can be used to quantitatively determine electrochemical processes [30]. EIS enables
label-free detection with high signal-to noise ratio amenable to on-site analysis.

2.2. Types of Impedance Sensors

Impedance sensors can be classified according to the relation between the charge transfer process
and the parameters measured into Faradaic or capacitive sensors (Figure 1).

(A) Faradaic impedance sensors use electrodes with conductive surfaces; the measurements require
redox-active molecules in solution, such as hexacyanoferrate(II)/(III) anions or hexaammineruthenium
(II)/(III) cations [31]. Charge transfer resistance (Rct) is the main parameter that characterizes the
electrochemical process at the sensor’s surface. The surface-binding of non-conductive molecules
blocks the electron transfer (ET), causing an increase in Rct. Conversely, the binding of conductive
molecules or molecules able to catalyze redox reactions leads to the decrease in Rct.

(B) Non-Faradaic (Capacitive) sensors are systems where the sensing surface is covered by an
insulating layer. The double-layer capacitance (Cdl) is the main parameter that characterizes the
reactions occurring at the electrolyte/electrode interface [32]. The binding of the molecules to the
surface usually decreases the value of Cdl.
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Figure 1. Common equivalent circuit models for EIS biosensors. (a) Faradaic systems with the Nyquist
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2.3. Electrochemical Impedance Spectroscopy for Biosensing Applications

EIS also presents the possibility of carrying out label-free experiments, unlike other electrochemical
techniques, such as amperometry and voltammetry [30]. The EIS sensors are often based on various
modified surfaces that increase the amount of bioreceptor on the surface, and consequently the
performance of the biosensor.

A biosensor is an analytical device in which a biological component, called a bioreceptor,
is integrated or in direct contact with a physicochemical detector that turns the biological signal into
a measurable analytical signal [33]. Biosensors offer a simple, rapid and cost-effective alternative
for the detection of harmful compounds [34]. The bioreceptor is the component that interacts in
a specific manner with the analyte, and can be an enzyme, antibody, nucleic acid, organelle, cell,
or an organic tissue. The selectivity of the biosensor is determined by the affinity features of the
biological receptor. The signal generated by the interaction between the analyte of interest and the
biological recognition element is then transformed by a transducer to an optical or electrical readout.
The EIS technique has been used to monitor specific interactions occurring at the electrode surface
between a receptor and the specific target analyte; the impedance is used to quantitatively assess
the analyte. The advantages of EIS biosensors are their sensitivity, simplicity, and possibility to achieve
real-time detection. The use of EIS also has several disadvantages such as being sensitive to the
surrounding environment, often requiring a Faraday cage to reduce noise, bulky experimental setups
and the need for theoretical simulation for data analysis [35].

3. EIS Sensors for EDs Detection

Recently reported EIS sensors and biosensors for EDs detection have used various metal oxides [36],
metal organic frameworks (MOFs) [37] and molecularly-imprinted polymers (MIPs) [38], either as
supporting layers, or recognition elements. The immobilization strategy and the detection principles
will be discussed further.

3.1. Molecular-Imprinted Polymer Sensors

MIPs are artificial recognition elements used in the development of sensors due to their
high selectivity, chemical and thermal stability, and easy customization compared to receptors
from biological sources. MIPs are created by polymerizing a functional monomer in the presence
of the analyte template [39]. After the removal of the template, cavities with specific shapes are
formed, allowing a highly selective interaction with the target analyte [40]. MIPs bind to the target
molecules, leading to variations in physical parameters at the sensor surface, such as mass, absorbance,
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or electron transfer (ET) rate. In the case of electrochemical sensors, the specific interaction often
hampers the electron transfer between the electrode and the redox probe in the solution, which can be
quantified through EIS measurements. MIPs have been designed for the extraction of various EDs,
such as 17β-estradiol [38] or bisphenol A (BPA) [41] from contaminated environments. In MIP-based
EIS sensors, the ED molecules fill the MIP cavities, hindering ET and thus increasing the Rct value.
MIPs are usually immobilized on the sensor surface and interact with the analyte in solution.

A recent MIP-based sensor was developed for the impedimetric detection of 4,4′-
dichlorodiphenyltri-chloroethane (4,4′-DDT) by Miao et al. [42], based on magnetic Fe3O4 and
polydopamine, using BPA as virtual template and dopamine as functional monomer. The obtained
polydopamine (PDA)@Fe3O4-MIP magnetic nanoparticles (MNPs) were incubated in the sample
solution containing 4,4′-DDT; the composite material containing 4,4′-DDT molecules was separated
from the solution with the help of a magnet and deposited further on a glassy carbon electrode (GCE)
(Figure 2). The impedance of the resulting material was measured using EIS on a GCE. The method
was used to determine 4,4′-DDT concentration over a range from 1 × 10−11 to 1 × 10−3 M with a limit
of detection (LOD) of 6 × 10−12 M.
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Figure 2. Schematic illustration of (a) synthesis of PDA@Fe3O4-MIP MNPs and (b) stepwise preparation
process of the electrochemical impedance sensor for 4,4′-DDT detection. Reproduced from [42]
with permission of Elsevier.

Radi et al. [43] developed a MIP sensor for the detection of zearalenone (ZEN) based on
o-phenylenediamine (o-PD) electropolymerized on a screen-printed gold electrode and using the
ZEN molecule as the template. The sensor showed low LOD and low cross-reactivity with other
Fusarium mycotoxins. The latest achievements in the field are summarized in Table 2.
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Table 2. Impedimetric MIP-based sensors for EDs detection.

Analyte Platform Linear Range LOD Real Sample Advantages Limitations Ref.

E2 MIP/GCE 1 aM–1 µM 0.36 aM human serum Low detection limit;
High stability

Multiple preparation and
optimization steps

[44]

ATZ MIP/GFE 5–20 ppm - - High selectivity;
Simple modification protocol

Narrow linear range [45]

BPA E-MIP/ITO 1–12 mM 0.42 mM - Selectivity Low sensitivity;
High detection limit;
Narrow linear range

[46]

DBP MIP-PPY/PGE 0.01–1 µM 4.5 nM - Simple modification protocol Relatively high detection limit [47]

DDT PDA@Fe3O4-MIP MNPs in solution,
EIS measurements on GCE

1 × 10−11–1 × 10−3 M 6 × 10−12 M radish Reusability;
Wide linear range

Long assay time;
Multiple preparation and
separation steps;
Requires a magnet

[42]

DEHP MIP-APTES SAM/AuIDE 10–100 ppm - - Low sample volume Narrow linear range;
Requires electrode fabrication

[48]

DEHP MIP/AuIDE, capacitive sensor 10–200 ppm - - Simple modification protocol Limited sensor reusability;
Narrow linear range

[49]

Testosterone poly(o-PD) MIP/GO/GCE 1 fM–1 µM 0.4 fM human serum Fast response time;
Low detection limit;
High stability

- [50]

Tributyltin MIP-Fe3O4NPs/SPE 5 pM–5 µM 5.37 pM sea water Large active surface area;
High sensitivity;
Wide linear range

Multiple separation and
washing steps;
Requires a magnet

[51]

ZEN poly(o-PD) MIP/SPGE 2.5–200 ng/mL 2.5 ng/mL corn flakes High selectivity;
Simple modification protocol;
Short incubation time

Narrow linear range [43]

3-Aminopropyltriethoxysilane: APTES; Au interdigitated electrode: AuIDE; gold nanoparticles: AuNP; electropolymerized molecularly imprinted polymer: E-MIP; graphite felt
electrode: GFE; graphene oxide: GO; indium tin oxide: ITO; pencil graphite electrode: PGE; polypyrrole: PPY; self-assembled monolayer: SAM; screen-printed electrode: SPE;
screen-printed graphene electrode: SPGE.
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MIPs can also be prepared using biomolecules such as DNA fragments as templates. A MIP
sensor developed by Ensafi et al. [52] using a DNA-based MIP achieved very low LODs for BPA.
The modified sensor surface was obtained by electrodepositing AuNPs on a glassy carbon electrode
and depositing a thiolated DNA sequence with high affinity for BPA (p-63) and free BPA. Pyrrole was
electropolymerized on the surface of the GCE to entrap the BPA@p-63 complex, obtaining the MIP
cavities that act as binding sites for BPA. The obtained PPY/@p-63/AuNP/GCE achieved one of the
lowest LOD reported for an electrochemical sensor for BPA (80 aM). AuNPs enhance the active surface
area of the electrode and, thus, the density of active sites, ultimately leading to improved sensitivity.

3.2. Metal Composite-Based Sensors

Metal composites represent a combination of two metals or a combination between a metal and
another type of material, such as a polymer. Metal–polymer composites have a large surface area
and enhanced electrical conductivity due to their mesoporous structures. Metal–organic frameworks
(MOFs) are a class of compounds consisting of metal ions or clusters coordinated to organic ligands to
form one-, two-, or three-dimensional structures. Due to their customizable structure and functionality,
high porosity and large internal surface area, MOFs have great potential in electrochemical sensing
applications [53]. However, there are few notable works reporting MOF-based sensors for EDs s
detection with moderate performance, most of them not being tested on real samples.

A simple approach is based on the immobilization MnO2 on a gold electrode and this was
integrated into a microfluidic platform [36]. The system was used for the detection of BPA within
a linear range of 1 nM–62.5 µM with a detection limit of 0.66 µM. Cheng et al. [37] prepared a novel
microfluidic system for the detection of the perfluorooctane sulfonate (PFOS), perfluoroalkyl pollutant
and ED. The modified sensor uses a non-conductive mesoporous chromium terephthalate metal–organic
framework (Cr-MIL-101, MIL Matérial Institut Lavoisier) as MOF receptor. The Cr-MIL-101 provided
a higher surface area and higher affinity towards PFOS. The Cr-MIL-101 was immobilized on
an interdigitated microelectrode array with sandwiched capture probes (Figure 3). The modified
electrode was adapted into a microfluidic lab-on-a-chip sensing platform that achieved the detection of
PFOS within a linear range of 0.5 ng/L–50 µg/L with a detection limit of 0.5 ng/L, lower than other
non-electrochemical detection methods.
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3.3. Graphene, Carbon-Nanotubes and Cyclodextrins Based Sensors

Graphene is an allotrope of carbon with 2D layers of sp2-hybridized carbon. It is used for
sensor modification due to its high electric conductivity and large surface area, which is amenable
to functionalization with biomolecules. Single carbon nanotubes (SWCNT) and multiwalled carbon
nanotubes (MWCNT) were used to modify the electrochemical transducers, due to their high electron
transfer rate, surface area, minimization of the surface fouling and stability [54].

A simple approach for detecting polychlorinated biphenyls such as PCB-77 was developed
by Wei et al. [55], where pyrenecyclodextrin (PyCD) was immobilized a SWCNT-modified GCE.
The presence of the pyrenyl group on the CD favored the attachment on the surface of the carbon
nanotubes trough π–π stacking. The PCB-77 molecules formed complexes with the immobilized PyCD
that hindered ET between the ferro/ferricyanide anions and the sensor surface. Thus, the Rct parameters
increased with the concentration of PCB-77. The most relevant works on graphene, nanotubes and
cyclodextrin modified EIS sensors are summarized in Table 3.

Table 3. Impedimetric sensors for EDs detection with graphene, carbon-nanotubes or cyclodextrins.

Analyte Platform Linear Range LOD Real Samples Advantages Limitations Ref.

BPA Fe(III)TMPP/TRGO/Au 1 × 10−12

–1 × 10−8 M 2.1 × 10−13 M fresh milk High selectivity;
Wide linear range

Additional preparation steps
for the electrode materials [56]

DEHP β-CD–GO/
GCE 2–18 µM 0.12 µM wastewater from

plastics factory High selectivity
Narrow linear range;

Requires sample
deoxygenation

[57]

DEHP DEHP/β-CD/G/DAD/
GCE 0.2–1.2 µM 0.01 µM river water Good stability

Multiple preparation and
optimization steps;

Narrow linear range
[58]

PCB-77 PyCD/SWCNT/GCE 2–10 µM 1 nM - High selectivity
Long preconcentration time

(3h);
Narrow linear range

[55]

b-cyclodextrin: β-CD; 1,10-diaminodecane: DAD; graphene quantum dots: GQD; 3,3′,4,4′-tetrachlorobiphenyl:
PCB-77; pyrenecyclodextrin: PyCD; single-walled carbon nanotube: SWCNT; thermally reduced graphene oxide:
TRGO; triflato 5,10,15,20-tetrakis (4-metoxyphenyl) porphyrinato iron (III): Fe(III)TMPP.

Recently, Hsine et al. [56] combined the use of a porphyrin derivative with that of thermally
reduced graphene oxide (TRGO), which also can be attached using π–π interactions. BPA molecules
were absorbed on the surface of the nanocomposite, increasing the membrane resistance, which was
quantified with EIS.

4. EIS Biosensors for the Detection of EDs

4.1. Immunosensors

Immunoassays are based on the specific interaction between an antigen and the corresponding
antibody (Ab), which can be transduced into a measurable physical signal [59]. Immunosensors can
be prepared using monoclonal, polyclonal or recombinant Abs. Immunosensors have been used for
the detection of EDs, such as DES, estradiol, phthalates and bisphenol A [60]. The bonds between
antibodies and antigens are relatively weak and can be dissociated by changing the properties of the
environments, i.e., pH and ionic strength. Singh et al. developed a simple label-free immunosensor
for 17β-estradiol [61]. Silver wire electrodes were modified with an 11-mercaptoundecanoic
acid self-assembled monolayer (SAM) and the 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide
(EDC)-N-hydroxy succinimide (NHS) chemistry was used to covalently bind the 17β-estradiol
monoclonal antibodies. In this case, the parameter measured was the capacitance.

Another interesting approach was reported by Supraja et al. [62]. They have used MWCNT-ZnO
hybrid nanofibers for electrode modification. MWCNT-ZnO nanofibers were deposed on GCE and
treated with 3-sulfanylpropionoic acid to ensure the presence of -COOH groups. Anti-atrazine
antibodies were immobilized via EDC-NHS coupling, and the remaining sites were blocked with BSA.
The use of the MWCNT-ZnO nanofibers enhanced the surface area by 33% compared to the
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electrodes modified only with ZnO, and thus increased the amount of anti-atrazine antibodies on the
working electrode. Wang et al. [43] developed an immunosensor for the mycotoxin ZEN based on
enzyme-catalyzed precipitation. Strip-shaped Co3O4 (ssCo3O4), a material with peroxidase-like activity,
catalyzes the oxidation of 4-chloro-1-naphthol. The insoluble precipitate generated in this reaction was
nonconductive and accumulated onto electrode, hampering the electron transfer between the redox
probe to the working electrode. The glassy carbon electrode was first modified with hyaluronic acid
(HA)-functionalized TiO2 mesocrystals (TiO2 MCs). Then, an antibody, Ab1, was covalently attached
to HA via EDC-NHS coupling. In this sandwich assay, the ZEN molecules bind to the Ab1/HA-TiO2

MC/GCE immunosensor. Ab2@ssCo3O4 conjugate binds the captured ZEN molecules, causing the
accumulation of insoluble products at the surface and the increase in Rct; thus, the concentration
of ZEN was determined through EIS measurements. The most recent EIS immunosensors for ED
detection are presented in Table 4.

Chen et al. used a tyramine-modified rutile TiO2 mesocrystals (Tyr-RMC) to label a ZEN mimic
peptide [63]. The peptide@Tyr-RMC conjugate binds an antibody-modified GCE in competition with
free ZEN. Although the peptide-based sensor was designed for an assay based on dual-signal readout
competitive enzyme-linked immunosorbent assay (C-ELISA), the ZEN could also be detected by EIS,
with the signal gradually decreasing while the concentration increases.

4.2. Aptamer-Based Biosensors

Aptamers are oligonucleotides that bind to a specific target. Because of their in vitro selection and
production, the relatively new technology of aptamers has emerged as an alternative to antibodies,
as they are obtained through chemical synthesis, with high reproducibility, and their production is not
dependent on living organisms. They can be easily regenerated, have a much longer shelf life, and can
be stored at ambient temperature. Several significant impedimetric aptasensors for the detection of
EDs are presented in Table 5.

Kang et al. [64] developed a microfluidic aptasensor for the detection of BPA using an anodized
aluminum oxide-based capacitive sensor. A gold electrode surface was immobilized on top of the
Anodized aluminum oxide (AOO) surface and this allowed the immobilization of a thiol-modified
BPA aptamer. The capacitance of the system decreased due to the conformational change of immobilized
aptamer at the binding to the BPA molecules. The sensing surface was encased in a microfluidic
channel and this allowed a real-time capacitance measurement during the binding of BPA to the
immobilized aptamer. A capacitive aptamer microelectrode array has also been used for the detection
of BPA, with aptamers immobilized on an array made of interdigitated aluminum microelectrodes [65].
The method combines AC electro-kinetics (ACEK) effects and capacitance measurement. The main
advantages of the detection system are the low cost of the disposable microelectrodes, fast response
time (20 s), and the limit of detection reported for BPA is 2.8 fg/mL. Mirzajani et al. developed a BPA
aptasensor in an ACET (alternating current electrothermal) flow based system [66]. The BPA aptasensor
is based on printed circuit board technique combined with capacitive sensing (Figure 4). The ACET
effect generates directional microflows and long-range convection of the BPA molecules to the electrode
surface. To selectivity of the biosensors is also validated by using a flow containing a mixture of BPA
molecules along with the interfering compounds bisphenol S and bisphenol F. The capacitive biosensor
achieved one of the lowest LODs for BPA reported in the literature (152.93 aM).
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Table 4. Impedimetric immunosensors for the detection of EDs.

Analyte Platform Linear Range LOD Real Sample Advantages Limitations Ref.

E2 mAb/11-MUA/Ag wire electrode 1–200 pg/mL 1 pg/mL water

Fast response time;
Label-free;
Low sample volume;
High sensitivity

Low stability compared to MIP and
aptamer-based systems;
Risk of cross-reactivity

[61]

E2 Ag-ZnONRs-16-PHA-mAb-E2 0.1–200 pg/mL 0.1 pg/mL tap and packaged water

Label-free;
Low sample volume;
High sensitivity;
Fast response time

Multiple preparation and optimization steps [67]

ATZ GCE/MNF/MPA/EDC-NHS/Ab 1 zg/mL–1 µg/mL 0.22 zg/mL water

Label-free;
High sensitivity;
Simple protocol;
Wide linear range

Requires blocking of non-specific sites [68]

ATZ Ab-SPA-MWCNT-ZnO/GCE 10 zM–1 µM 5.368 zM -
Label-free;
Low detection limit;
Wide linear range

Multiple preparation steps;
Requires blocking of non-specific sites [62]

BDE-47 Ab/11-MUA/Au electrode 0.01–0.40 µg/mL 1.3 ng/mL - Facile antibody regeneration Narrow linear ranges;
Risk of non-specific binding

[69]
NorFLX 0.02–0.32 µg/mL 8.5 ng/mL - [69]

BPA Ab-nano-CP/GCE 1–100 ng/mL 0.3 ± 0.07 ng/mL human serum Label-free Narrow linear ranges [70]

Cortisol Ab/β-MnO2 CNs/GCE 0.1 pM–1500 pM 0.023 pM human sweat and saliva High stability;
Wide linear range

Requires blocking of non-specific sites;
Requires sample deoxygenation [71]

DBP antigen/CS/MWCNTs@GONRs/GCE;
Ab2-AuNP conjugate 5–500 ng/L 7 ng/mL pure, tap, pond and river water Low detection limit;

Low sample volume Risk of non-specific binding [72]

MC-LR Ab/MC-LR/3D GF electrode 0.05–20 µg/L 0.05 µg/L tap water High sensitivity;
Low detection limit

Additional preparation steps for the
electrode materials;
Low stability of bound antibodies

[73]

ZEN Ab2@ssCo3O4/ZEN/Ab1/HA-TiO2
MC/GCE

0.1 fg/mL–10
pg/mL 33 ag/mL beer Low detection limit;

Use of enzyme mimic
Low resolution of sensing system;
Requires redox label [74]

ZEN peptide@Tyr-RMC,
Ab/poly(Gly)/AuNCs/CNHs/GCE 10−6–10 ng/mL 10−6 ng/mL soybean sauce Fast response time;

Wide linear range

Multiple preparation and optimization steps;
Requires blocking of non-specific sites;
Requires redox label

[63]

11-mercaptoundecanoic acid: 11-MUA; Au nanocones: AuNCs, 16-phosphonohexadecanoic acid 16-PHA; 2,2′,4,4′-Tetrabromodiphenyl ether: BDE-47; carbon nanohorns: CNHs;
dithiobis-N-succinimidyl propionate: DTSP; hyaluronic acid: HA; monoclonal antibody: mAb; monoethanolamine: MEA; electrospun manganese oxide nanofibers: MNF; manganese oxide
cacti-like nanostructures: β-MnO2 CNs; 3-mercaptopropionic acid: MPA; nano-particle comprised conducting polymer: nano-CP; polyglycine: poly(Gly); Zinc Oxide nanorods: ZnONRs.
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Table 5. Impedimetric aptamer (Apt) and DNA biosensors for the detection of EDs.

Analyte Platform Linear Range LOD Real Samples Advantages Limitations Ref.

E2 Apt/dendritic Au/BDD electrode 1 × 10−14–1 × 10−9 M 5 × 10−15 M river water High sensitivity;
High specificity

- [75]

E2 Apt/CDs/SPCE 1.0 × 10−7–1.0 × 10−12

M
0.5 × 10−12 M river water High selectivity;

High stability
Additional preparation steps for the
electrode materials

[76]

AAP MCH/Apt/AuNPs/Au electrode 5–600 nM 1 nM wastewater, tomatoes Simple modification protocol Relatively low sensitivity;
Relatively narrow linear range

[77]

AAP MCH/Apt/Au/MWCNT-rGONR/GCE 5 × 10−14–1 × 10−5 M 1.7 × 10−14 M - Wide linear range Long preparation procedure [78]

AAP MCH/Apt/GOPTS/PtNPs/PMMA/IDE 10 pM–100 nM 1 pM tap and bottled mineral water High sensitivity Long incubation time (60min) due to
large custom-made electrochemical cell

[79]

ATZ 100 pM–1 µM 10 pM [79]

BPA Apt-Au/AOO, capacitive biosensor 1 × 10−9–1 × 10−7 M 100 pM - High sensitivity;
Microfluidic system

Requires custom-made electrodes;
Single-use device

[64]

BPA Apt/Cu2+/PPY-NTA/GCE 10−11–10−6 M 1.24 × 10−12 M - Simple modification protocol;
Wide linear range

- [80]

BPA MCH/Apt/Au-NPs/BDD 1 × 10−14–1 × 10−9 M 7.2 × 10−15 M spiked milk Low detection limit;
Simple modification protocol

[81]

BPA Apt/interdigitated aluminum
microelectrode, capacitive biosensor

1 fM–1 pM 10 fM human serum Fast response time (20s);
High sensitivity;
Low sample volume

- [65]

BPA PPY/BPA@p-63/AuNP/GCE 0.5 fM–5 pM 80 aM fresh milk, milkpowder, tap and
pretreated water in baby glass

Low detection limit;
Short assay time

- [52]

BPA Apt/IDE, capacitive biosensor 1 fM–10 pM 152.93 aM - Fast response time (20s);
Low detection limit

- [66]

BPA MB-DNA/MWCNTs-CS/PdNPs/C60/GCE 0.5–25 µM 0.35 µM - Detection of DNA damage
induced by ED

Relatively low sensitivity;
Narrow linear range

[82]

CBZ MCH/Apt/Au electrode 10 pg/mL–10 ng/mL 8.2 pg/mL mango juice, soya milk, tomato, plum Simple modification protocol Long preparation time [83]

CBZ MCH/Apt/AuNPs/1-AP-CNHs/GCE 1–1000 pg/mL 0.5 pg/mL lettuce andorange juice High selectivity Long preparation time [84]

DEHP Apt/AuNPs/MCH/Au 7.629 pg/mL–2 µg/mL 0.103 pg/mL tap water High sensitivity;
Low detection limit

- [85]

1-aminopyrene modified carbon nanohorns: 1-AP-CNHs; anodized aluminum oxide: AOO; boron-doped diamond: BDD; fullerene C60: C60; carbon dots: CDs; chitosan:
CS; (3-glycidyloxypropyl) triethoxysilan: GOPTS; interdigitated electrode: IDE; methylene blue: MB; 6-mercapto-1-hexanol: MCH; multiwalled carbon nanotubes: MWCNTs;
palladium nanoparticles: Pd NPs; poly(methylmetacrylate: PMMA; pyrrole-nitrilotriacetic acid monomer: PPY-NTA; platinumnanoparticles: PtNPs; reduced graphene oxide
nanoribbon: rGONR.
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4.3. Estrogen Receptor-Based Biosensors

Human-estrogen receptor alpha (ER-α) is a protein that belongs to the nuclear receptor group
and can bind xenoestrogens such as 17β-estradiol. Due to its specificity and ability to be engineered,
ER-α was used as bio-recognition element for the development of ED detection methods [86].
Estrogen receptor-based biosensors are not often encountered, but it is worth mentioning some
notable works (Table 6).

Table 6. Estrogen receptor-based impedimetric biosensors for the detection of EDs.

Analyte Platform Linear Range LOD Real Samples Advantages Limitations Ref.

E2 ER-α/AuNPs/s-BLM/Pt 5–150 ng/L 1 ng/L river water Does not require blocking of
non-specific sites;
Label-free;
Simple modification protocol

Low stability;
Narrow linear range;
Only detects total
estrogenic activity

[87]

E2 ER-α/3-MPA/Au - - - Label-free;
Simple modification protocol

Only detects total
estrogenic activity;
Requires blocking of
non-specific sites

[88]

E2 ER-α/3-MPA/Au 1 × 10−13–1 × 10−9

M
1 × 10−13 M human urine Label-free;

Simple modification protocol;
Wide linear range

Longer incubation time
(90 min);
Only detects total
estrogenic activity;
Requires blocking of
non-specific sites

[89]

E2 ER-α/3-MPA/Au 3.7 × 10−4–3.7 ng/L 3.7 × 10−4 ng/L - Label-free;
Simple modification protocol

Only detects total
estrogenic activity;
Requires blocking of
non-specific sites

[90]

3-mercaptopropionic acid: 3-MPA; bilayer lipid membranes: s-BLM.

Im et al. [88] developed an EIS biosensor for 17β-estradiol based on the biding of estrogen to
the surface-immobilized estrogen. The surface modification of the Au electrode involved the use of
3-mercaptopropionic acid (3-MPA), which binds to the Au surface via thiol groups and the ECD-NHS
chemistry for the covalent binding of the estrogen receptor-alpha (ER-α) to the carboxyl groups
of 3-MPA. The hormone has been detected at a concentration of 10−6 M. The biosensor was developed
further by the same group [89] by using BSA to block the remaining binding sites. The dynamic range
was within 1 × 10−13–1 × 10−9 M with a LOD of 1 × 10−13 M.
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4.4. Enzyme-Based Biosensors

Other biorecognition elements, such as enzymes, were used to develop the ED biosensors. In the
case of phenolic compounds, these biosensors are often based on the enzymatic oxidation by enzymes
such as tyrosinase [91] or laccase [92]. Metal composites have been used to modify the working
electrodes and to provide a large surface area for enzyme immobilization and improved surface
charge transfer.

Singh et al. [93] developed a tyrosinase biosensor for the impedimetric detection of BPA.
The sensing surface used was based on nanostructured TiO2 that was functionalized further with
an 3-Aminopropyltriethoxysilane (APTES)-based SAM and glutaraldehyde. The enzyme tyrosinase
was covalently immobilized on the modified surface. The immobilized tyrosinase oxidized BPA to
2,2-bis(phenylquinone)propane and the resulting electrons were transferred to the nTiO2/Ti electrode,
which led to a decrease in the Rct value (Figure 5). A linear relationship between variation of the Rct

and concentration of BPA was observed within a linear range of 0.01–1.0 µM. The Tyrs–APTES/nTiO2/Ti
biosensor achieved a LOD of 0.01 µM.
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Figure 5. Preparation of the Tyrs– APTES /nTiO2/Ti biosensor: the Ti electrode was modified
using self-assembled direct current (DC) sputtered nanostructured rutile TiO2 aiming the covalent
immobilization of tyrosinase. The oxidation of BPA caused changes in the charge transfer properties of
the interface, monitored through EIS measurements. Reproduced from [93] with permission of Elsevier.

Recently, a laccase biosensor for BPA detection was developed using a conjugate containing reduced
graphene oxide and ferrous-ferric oxide nanoparticles (rGO-Fe3O4 NPs) [94]. Chit95 (chitosan with
a degree of deacetylation of 95%) was used for laccase immobilization. The modified biosensor
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was used for both amperometric and impedimetric detection. Laccase (source: Trametes versicolor)
catalyzes the oxidation reaction of p-diphenols. The biosensor provided a linear range of 0.025–20 µM
and a LOD of 65 nM using EIS detection.

4.5. Peptide-Based Biosensors

Peptides are oligomers and polymers that can be customized with highly controlled
preparation methods, due to the variety of natural and synthetic amino acids available for synthesis.
Peptides have been employed in biosensing due to their specificity, better chemical and conformational
stability compared to antibodies [95], low cost and facile synthesis and modification protocols that
allow customization for a wide variety of applications [96].

Gutés et al. [97] reported a novel peptide-based biosensor for the detection of decabromodiphenyl
ether (DBDE). The supporting electrode was prepared by growing graphene on a copper foil, decorating
with AuNPs and spin-coating with poly(methylmetacrylate) (PMMA). The composite materials were
transferred on a GCE. The DBDE binding peptide sequence, WHWNAWNWSSQQ, was immobilized
by incubation of the AuNP-functionalized graphene electrode. The peptide-AuNP-graphene modified
electrode was used for the EIS determination of polybrominated diphenyl ethers (PBDEs) and provided
a response to molecules with similar structure and the biosensor showed little interference from similar
compounds such as diphenyl ether.

4.6. Microbial Biosensors

Microbial biosensors use microorganisms as a sensitive biological element. Their main
advantage is the fact that, unlike molecule-based biosensors, they provide information on toxicity or
bioavailability [98]. The microbes are usually genetically engineered by modifying their structure to
serve as bio-receptors for the target molecule [99].

Furst et al. have developed an electrochemical sandwich assay that measures the total estrogenic
activity of a sample [100]. E. coli cells were engineered to display the estrogen receptor α (ER-α) capture
agent, while a synthesized antibody mimic protein was immobilized on a gold electrode via cysteine
gold chemistry. The ED molecules first bind the receptor proteins anchored onto the surface, then
E. coli cells from solution attach to the receptor-bound ED, thus causing the increase in EIS signal.
The system was used for the detection of estrogenic activity in solutions containing 17β-estradiol,
4-nonylphenol, genistein and DES. The calculated LOD for 17β-estradiol was 500 pM. The method did
not detect individual compounds but allowed the estimation of the total estrogenic activity.

5. Conclusions

EIS (bio)sensors have been increasingly used over the past decade since they are versatile,
easy to functionalize and amenable for on-site field detection. Novel materials and capture elements
have been developed to enhance the performance of ED detection even in complex matrices.
Still, in label-free assays, EIS has to be used with precaution for avoiding false positive results,
related to the interface dynamics and its inherently low signal-to-noise ratio [101]. In the absence of a
laborious experimental control associated with an understanding of EIS concepts, variations caused by
drift or non-specific binding can be mistakenly interpreted as specific interaction, thus compromising the
analysis outcome. Although Faradaic EIS platforms are overwhelmingly used for label free detection,
more and more papers have reported EIS sensors with surface-confined redox probes, where the
non-Faradaic methodology (i.e., measuring changes in the dielectric properties at the target binding)
was better suited for cost-effective, ultra sensitive and at point-of-use devices [102]. Due to their
tunable nature and simple design, MIPs, aptamer, and peptide-modified biosensors represent reliable,
inexpensive alternatives to the detection methods that use classical capture elements. Biosensors with
biomolecules immobilized on different functional nanomaterials, (carbon nanotubes, graphene, graphite
and related) display an increased number of the binding sites, enhanced stability, and facile electron
transfer. Aptasensors are among the most sensitive biosensors, allowing the detection of the femtomolar
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concentration of several EDs, such as BPA. The implementation of Faradaic and non-Faradaic sensors
in microfluidic systems allows rapid detection with minimal consumption of samples and reagents.
Additional efforts are required to develop performing “lab-on-a-chip” sensing devices by coupling
EIS detection with mass-sensitive techniques such as surface acoustic wave (SAW) and surface
plasmon resonance (SPR). These tandem-interrogation concepts may provide promising tools for the
development of robust, user-friendly sample-to-answer platforms.
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double-layer capacitance; CDs, carbon dots; C-ELISA, competitive enzyme-linked immunosorbent assay;
CNHs, carbon nanohorns; DAD, 1,10-diaminodecane; DBP, dibutyl phthalate; DBDE, decabromodiphenyl
ether; DDT, Dichlorodiphenyltrichloroethane; DEHP, di(2-ethylhexyl) phthalate; E2, 17β-estradiol; EDC,
N-(3-dimethylaminopropyl)-N-ethylcarbodiimide hydrochloride; EIS, electrochemical impedance spectroscopy;
E-MIP, electropolymerized molecularly imprinted polymer; ER-α, estrogen receptor-alpha; ET, electron transfer;
Fe(III)TMPP, triflato 5,10,15,20-tetrakis(4-metoxyphenyl)porphyrinato) iron(III); GCE, glassy carbon electrode;
GFE, graphite felt electrode; GO, graphene oxide; GOPTS, (3-glycidyloxypropyl) triethoxysilan; GQD, graphene
quantum dots; IDE, interdigitated electrode; ITO, indium tin oxide electrode; MB, methylene blue; MCH,
6-mercapto-1-hexanol; MC-LR, microcystin-LR; MEA, monoethanolamine; MPA, Mercaptopropionic acid; MIPs,
molecularly-imprinted polymers; MNF, electrospun manganese oxide nanofibers; MNPs, magnetic nanoparticles;
MOF, metal–organic framework; MWCNTs, multi-walled carbon nanotubes; nano-CP, nano-particle comprised
conducting polymer; NHS, N-hydroxysuccinimide; NorFLX, norfluoxetine; o-PD, o-phenylenediamine; PBDEs,
polybrominated diphenyl ethers; PCBs, polychlorinated biphenyls; PCB-77, 3,3′,4,4′-tetrachlorobiphenyl; PdNPs,
palladium nanoparticles; PDA, polydopamine; PFOS, perfluorooctane sulfonate; PGE, pencil graphite electrode;
poly(Gly), polyglycine; PMMA, poly(methylmetacrylate); PPY, polypyrrole; PPY-NTA, pyrrole-nitrilotriacetic
acid monomer; Pt NPs, platinum nanoparticles; PyCD, pyrenecyclodextrin; Rct, charge-transfer resistance; Rmt,
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self-assembled monolayer; SAW, surface acoustic wave; s-BLM, bilayer lipid membranes; SPA, 3-sulfanylpropionoic
acid; SPCE, screen-printed carbon electrode; SPE, screen-printed electrode; SPGE, screen-printed gold electrode;
SPR, surface plasmon resonance; SWCNT, single-walled carbon nanotube; W, Warburg impedance; ZEN,
zearalenone; ZnONR, Zinc Oxide nanorods.
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