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Emotional consciousness preserved in patients
with disorders of consciousness?
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Abstract
Increasing evidence from studies of brain responses to subject’s own name (SON) indicates that residual consciousness is
preserved in patients with disorders of consciousness (DOC) and that specific network activation might provide evidence of
consciousness. However, it remains unclear whether SON is suitable for detection of emotional consciousness; moreover, the
particular aspects of brain network organization that are critical for consciousness are unknown. The present study used an
innovative approach to explore affective consciousness in patients with DOC during emotional stimuli. EEG data were acquired
from 15 patients and 15 healthy volunteers. We analyzed brain potentials and functional network connectivity with a passive
emotional paradigm based on graph theoretical methods. Larger N1 or P3a was detected in patients upon exposure to emotional
sound, relative to neutral stimuli. Brain topology revealed that emotional sound evoked significantly stronger network linkages in
healthy controls; additionally, it evoked several connectivity changes in patients with DOC. In conclusion, emotional conscious-
ness might be partially preserved in patients with DOC; moreover, EEG network patterns could provide new insights into the
neural activity of emotional perception in these patients.
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Introduction

Probing consciousness in noncommunicating patients is an im-
portant challenge in the field of neuroscience. Thus far, the
Coma Recovery Scale–Revised (CRS-R) continues to be a ra-
tional and practical choice for assessment of patients with dis-
orders of consciousness (DOC) [1, 2]. However, because of
motor and language deficits, the evaluation of non-reflex

behavior is often both challenging and uncertain [3]. Notably,
in these cases, a lack of responsiveness is not necessarily indic-
ative of absence of consciousness and awareness. Recent pub-
lications have demonstrated preservation of awareness across
the boundary of consciousness, as well as in patients with un-
responsive wakefulness syndrome (UWS) [4, 5]. Yu et al. spec-
ulated that UWS preserved Baffective consciousness^ as evi-
denced by pain cries, which may indicate activation of the pain
matrix (PM) [5]. By using an original rule extraction event-
related potential (ERP) test, Faugeras et al. detected neural sig-
natures of consciousness in patients whomet clinical criteria for
UWS [1]. Taken together, these findings suggest that patients
with DOC exhibit preservation of unequivocal signs of con-
sciousness. Additionally, these findings are indicative of the
effectiveness of neurophysiological tools for covert residual
consciousness detection in this specific patient population.

However, there is evidence to suggest that patients with
DOC may not exhibit detectable cerebral responses at rest,
or upon the application of simple brain stimulation paradigms,
as such patients cannot cross the threshold for plasticity mod-
ifications; thus, they exhibit no detectable response [6].
Emotion is a key aspect involved in individuals’ experiences
of their external environment and can persist in subjects with
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severe brain damage [7]. Emotional stimuli are likely to pref-
erentially capture an individual’s attention and be processed
by integration of primitive neural processes. Consequently,
affective consciousness is the simplest and most fundamental
variant of consciousness to study, regarded as Bfirst-order
consciousness,^whichmight persist in patients with DOC [5].

Previous neuroimaging studies have shown that DOC com-
prises a disconnection syndrome [8]. Reduced functional con-
nectivity of the default mode network (DMN), frontoparietal
network, and auditory network has been associated with im-
paired consciousness [8, 9]. Functional magnetic resonance
imaging (fMRI) studies used block designs to localize re-
sponses to a diffuse network of brain regions, as fMRI relies
upon the hemodynamic response, which can be followed on a
per-second basis. Nevertheless, affective processes occur in
the order of milliseconds; thus, neuroimaging data might lack
the temporal resolution needed to capture the earliest emotion-
al processes. However, electroencephalography (EEG), be-
cause of its millisecond-level resolution, is a particularly valu-
able method for measurement of rapid temporal brain
dynamics.

In this study, we aimed to probe affective consciousness in
patients with DOC using a new EEG-derived functional net-
work analysis, and to identify a candidate marker to facilitate
differential diagnosis of DOC.

Experimental procedures

Subjects

Fifteen patients with hypoxic-ischemic brain damage were
recruited from the Department of Rehabilitation at
Hangzhou Wujing Hospital. Of these 15 patients, seven met
the diagnostic criteria for UWS; the remaining eight were
diagnosed withminimally conscious state (MCS). All subjects
met the following study inclusion criteria: (1) no centrally
acting drugs, (2) no neuromuscular function blockers and no
sedation within the 24 h prior to the study, (3) periods of
spontaneous eye opening, and (4) with non-traumatic brain
injury [10–12]. Demographic and clinical characteristics of
the enrolled patients are shown in Table 1.

The study also recruited 15 age- and gender-matched
healthy controls (HC). None of the controls had a history of
brain injuries or neurological or psychiatric illnesses. Written
informed consent was provided by the legal representative of
each patient prior to the experiment. This study was approved
by the Ethics Committee of the First Affiliated Hospital,
School of Medicine, Zhejiang University and Hangzhou
Wujing Hospital.

Paradigm design

In the auditory oddball paradigm, four acoustic stimuli
were produced at maximum 90-dB intensity; each was
accompanied by an angry, happy, or neutral prosody.
The standard stimulus (neutral voice) was a meaningless
neutral sound (namely, the interjection Bah^), while the
deviant stimulus (emotional voice) was the same sound
with positive or negative affective prosody. These stim-
uli were chosen from a validated battery of vocal emo-
tional expressions [13]. Trials proceeded as follows:
first, a fixation-cross appeared in the center of the
screen, followed by the sound stimuli after 1500 ms.
Each sound sample had a duration of 700 ms, with an
interstimulus interval of 1500 ms. The stimuli were pre-
sented to the patients in a block design; each block
consisted of a total of 110 stimuli with 86 neutral stan-
dards, 12 happy deviants, and 12 angry deviants. All
deviant sounds were presented in a randomly permuted
order, ensuring that the same word was not presented in
quick succession.

EEG recordings and processing

EEGwas performed using a 32-channel BrainCap (BrainAmp
32 MR, Brain Products GmbH, Munich, Germany) with the
standard 10–20 system. All EEG electrodes were referenced
online to FCz and re-referenced offline to the average of the
left and right mastoids. A vertical electro-oculogram (EOG)
was recorded supra-orbitally from the left eye, and a horizon-
tal EOG was recorded from the right orbital rim. The imped-
ance in all electrodes was maintained below 10 kΩ, and a 50-
Hz notch filter was used. The EEG and EOG signals were
amplified using a DC 1000-Hz bandpass filter and were con-
tinuously digitized at a sampling rate of 500 Hz.

EEGLAB was used for continuous EEG preprocessing.
After offline referencing, the EEG signal was high-pass fil-
tered at 0.1 Hz and subsequently low-pass filtered at 30 Hz.
The EEG was then segmented into [− 200, 1000]-ms epochs.
Artifact-free periods underwent independent component anal-
ysis (ICA) using the runica function; bad channels were inter-
polated using planar gradiometers incorporated in EEGLAB.

Table 1 General data comparison of DOC patients

MCS UWS P

Age (years) 59 ± 15 53 ± 13 0.359

Gender (male/female) 5/3 4/3 0.833

Etiology (hemorrhage/anoxia) 7/1 6/1 0.919

Months since injury 4.2 ± 2.9 2.8 ± 2.1 0.292

CRS-R total scores 10 ± 4 5 ± 2 0.013
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Event-related potentials

To detect reliable differences with improved temporal and
spatial resolution, massive univariate analysis was performed
at each time point using parametric tests within the EEGLAB
study framework.Multiple comparisons were corrected by the
Benjamini and Yekutieli (2001) procedure, which ensured that
the false discovery rate (FDR) would be < 5%. The regions
with significant differences between conditions were marked
with black bars at the bottom (P < 0.05, paired t test with 1000
permutations with FDR correction).

Network connectivity

Phase locking value (PLV) was used to construct the corre-
sponding brain networks. PLV is widely used for measure-
ment of phase-synchronization among pairs of electrodes
[14]; higher PLV value represents increased strength of
phase-synchronization. The details of network construction
and properties calculations, i.e., clustering coefficient (C),
characteristic path length (L), global efficiency (Ge), and local
efficiency (Le), are provided in the supplementary materials.

Statistical analysis

Independent samples test and Fisher’s chi-square test were
used to compare the continuous and categorical variables be-
tween MCS and UWS, respectively. Repeated measures anal-
ysis of variance (ANOVA) with group (HC, MCS, and UWS)
as the between-subject factor and condition (neutral and emo-
tional) as the within-subject factor was performed. When sta-
tistically significant differences were found, post hoc
Bonferroni correction for multiple comparisons was conduct-
ed. When the interaction of group and condition was signifi-
cant, simple effects tests were performed.

The sphericity assumption was assessed using Mauchly’s
test prior to conducting repeatedmeasures ANOVA.When the
assumption was rejected, the Greenhouse-Geisser correction
was used to adjust the degrees of freedom. Statistical analysis
was performed using SPSS version 22.0 software.

Results

ERP results

Figure 1a shows the grand average ERPs at three midline elec-
trode sites (Fz, Pz, and Oz), calculated for emotional and neutral
stimuli in HCs. The N1 waveforms (with a negative dip between
100 and 200 ms) at Fz electrodes were more prominent for
emotional stimuli. Figure 1a also shows the typical late positive
potential (LPP) complex at the electrode Pz and Oz sites, ranging
from 400 to 1000 ms with the stimulation of affective prosody in

the HC group. Inspection of the scalp distribution of the wave-
form showed that the LPP was highest over central parietal-
occipital sites (shown in top-right panel of Fig. 1).

However, only early auditory ERP components (e.g., N1,
P3a) could be observed in either patients with UWS or those
with MCS (Fig. 1b, c). An emotional effect was detected by
P3a in patients with MCS, while the N1 effect was detected in
patients with UWS. In contrast, no emotional evoked LPPwas
detected in the group with DOC.

Network connectivity in neutral and emotional
condition

Regarding network properties, there were no significant dif-
ferences in any of the network properties between neutral and
emotional sound stimuli (Fig. 2, P > 0.05); repeated measures
ANOVA revealed no significant main effect of the stimulation
condition (shown in Table 2). Functional networks in both
conditions had similar clustering coefficient, characteristic
path length, global efficiency, and local efficiency values.
Remarkably, individual differences in MCS and UWS groups
were larger, as matrix data exhibited a discrete distribution. In
contrast, in healthy volunteers, all network properties were
more consistent (Fig. 2).

In the next step, we further explored brain topology differ-
ences in the two contrasting conditions. As shown in Fig. 3a,
emotional sound evoked significantly stronger network link-
ages inHCs (P < 0.05), particularly with regard to connections
between frontal-occipital and parietal-occipital lobes. In pa-
tients with MCS, there were several increased linkages in
temporal areas and decreased linkages in the occipital cortex
(Fig. 3b); patients with UWS also showed increased informa-
tion flow in temporal lobes (P < 0.05, uncorrected).
Nonetheless, an improved network connection was not pres-
ent after Bonferroni correction (Fig. 3c). Moreover, both
healthy subjects and patients with MCS exhibited multiple
network connection changes with both increased and de-
creased linkages, while alternation in patients with UWS
was simpler: Only irregularly increased activation was detect-
ed, as shown in the top panel of Fig. 3c.

Network connectivity among levels of consciousness

Surprisingly, all network properties showed no significant dif-
ferences among the levels of consciousness, since there was no
significant main effect of group, nor an interaction between
group and stimulation condition (Table 2). Functional networks
in all three groups also showed similar global efficiency and
clustering coefficient values (Fig. 2). Hence, all showed con-
servation of global properties of small-world networks [15].
Thus, despite marked differences in states of consciousness
between patients with DOC and healthy subjects, their brain
networks showed conservation of global properties of
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small-worldness. Finally, by performing further spatial
information analysis, we detected brain topology differ-
ences among the three groups and described detailed
network connectivity distinctions, both in neutral and
emotional settings. Compared with HCs, patients with
MCS frequently showed abnormally reduced hubness
of nodes in the frontal-parietal cortex and abnormally
increased hubness of nodes in the frontal-occipital and
temporal-occipital cortexes (Figs. 4a and 5a). Figures 4b
and 5b depict distinct differentiated network linkages
between patients with UWS and HCs for neutral and
emotional conditions, respectively. Patients with UWS
exhibited widespread impaired cortical connectivity;
however, when these patients were exposed to emotion-
al acoustic stimulation, the gradual reduction in connec-
tivity was significantly relieved (Fig. 5b). In a compar-
ison between patients with MCS and those with UWS,
the patients with UWS showed impaired connectivity,

particularly in the right frontal-parietal cerebral cortex
(Fig. 4c); surprisingly, this difference diminished with
emotional stimulation (Fig. 5c).

Discussion

A considerable amount of recent evidence indicates that some
patients with DOC might show preservation of covert aware-
ness, detectable with fMRI and EEG. These findings are illu-
minating and support further studies into neural mechanisms
regarding the existence of consciousness in such patients.
However, to minimize semantic processing, emotion was
portrayed through meaningless interjection in our study; fur-
ther, neural mechanisms were explored by conventional EPR
and functional network connectivity.

LPP has been shown to be specifically sensitive to the
regulation of emotional responses [16]. In the current study,

a

b

c

Fig. 1 The ERP components underlying the presented emotional and
neutral stimuli. Black bars in the bottom panel indicate regions of
significant difference between conditions (P < 0.05, FDR correction). a
The ERP waveforms at electrode Fz, Pz, and Oz in healthy controls. An

obvious LPP was evoked by emotional sound. b ERP waveforms for
MCS. A significant larger P3a shown at Fz. c ERP waveforms for
UWS. Emotional sound evoked a significant larger N1 at Fz
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the typical LPP in the HCs demonstrated existing emotional
sound processing and served as an index of cognitive de-
mands, representing allocation of attention resources, as well
as an index of downstream processes resulting from increased
activation of amygdala linkage to memory encoding and stor-
age [16, 17]. Hence, it seems reasonable to speculate that
emotional regulation and memory encoding are greatly atten-
uated in patients with DOC. However, an intriguing phenom-
enon was that of prominent frontal P3a in patients with MCS,
including a larger amplitude underlying emotional stimula-
tion. Hence, involuntary attentional orientation might be pre-
served in patients with MCS, since P3a has been suggested to
serve as a biomarker of exogenous attention [18]. Discrepant
N1 between neutral and emotional conditions in patients with
UWS merely suggested the existence of early automatic sen-
sory identification for patients with DOC, as N1 indexes pre-
emotional perception of physical parameters [19].

Next, we focus on discussion of functional network con-
nectivity regarding emotion processing in all subjects. All
network properties failed to reveal emotional effects, both in

Fig. 2 Boxplots of network properties estimated with neutral and
emotional stimulation both in the healthy volunteer group (HC) and
DOC groups. No emotional effect was detected in all three groups (re-
peated measures ANOVA, P > 0.05). And, the differences of network

matrixes among hierarchical levels of consciousness were not significant
(P > 0.05). (a) Clustering coefficient. (b) Characteristic path length. (c)
Global efficiency. (d) Local efficiency

Table 2 Differences of network properties between neutral and
emotional stimulation in three groups (HC, MCS, and UWS)

Network properties Statistics

F values P values

C
Group 0.365 0.697
Stimulation 2.647 0.115
Group × stimulation 2.080 0.143

L
Group 0.485 0.621
Stimulation 2.496 0.126
Group × stimulation 1.953 0.161

Ge
Group 0.448 0.643
Stimulation 2.020 0.167
Group × stimulation 1.857 0.176

Le
Group 0.387 0.683
Stimulation 2.503 0.125
Group × stimulation 2.033 0.150

C clustering coefficient, L characteristic path length,Ge global efficiency,
Le local efficiency, HC healthy controls,MCSminimally conscious state,
UWS unresponsive wakefulness syndrome
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HCs and in patients with DOC. Nevertheless, spatial topology
visually represented contrasting network connectivity, for sev-
eral reasons addressed below. Network properties, which
serve as direct statistical descriptions of network connectivity,
result from average calculations of both increased and de-
creased functional connectivity across all parts of the brain;
thus, they might fail to encompass all information content
related to the network [20]. However, the complete spatial
information of a network is considerably more complex than
its representative statistical measurements.

Consistent with ERP findings that emotional stimuli
increased the amplitude of the specific ERP components
(LPP) linked to stimulus salience, the brain topology of
healthy people has shown sustained increased information
flow [16]. Generally, LPP comprises a broad parietal-
occipital positivity [21]. Collectively, in our study, emo-
tional stimuli prompted prominent network connectivity
in parietal-occipital lobes. In addition, imaging studies
of cross-modal stimuli revealed that affective sound pro-
cessing might lead to activation of the visual cortex in the

occipital area [22, 23]; these results coincided with our
finding that remarkable activation in the occipital lobe
was evoked by emotionally deviant sound.

For patients with DOC, only slight temporal activation was
detected. Although these positive findings might demonstrate
the ability of a brain to discriminate the presence of a given
target feature, such as the affective tone in our study, it remains
unclear whether emotional conscious experience can be detect-
ed in patients with DOC. Current theory states that the
frontoparietal network is critical for conscious perception
[24]; however, Demertzi et al. highlighted the contribution of
temporal auditory cortex to the level of consciousness [25].
Thus, it may be reasonable to speculate on the existence of
signs of consciousness in patients with MCS: evidence from
increased functional network connectivity. Additionally, a fur-
ther validation study with larger samples should be conducted.

Third, we discuss the significant gain in discrimination
obtained by network comparison among hierarchical levels
of consciousness. Our results concurred with and
complemented previous fMRI studies [15], which

Fig. 3 Functional connectivity in three groups for neutral and emotional
auditory stimulation. a–c mean comparisons of brain connectivity with
different auditory conditions in healthy controls, MCS, and UWS,
respectively. The red lines denote significantly increased linkage

strength with emotional stimulation than with neutral stimulation, while
the blue lines denote significantly decreased linkage strength (P < 0.05,
uncorrected, on the upper; P < 0.05, Bonferroni corrected, at the bottom).
(Color figure online)
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demonstrated that brain network properties were unlikely to
be useful biomarkers for stratified levels of consciousness. In
a study by Sinitsyn, only subtle differences were captured
between UWS and MCS in a whole-brain analysis [9].
Moreover, Achard indicated that global network properties
of functional connection were homeostatically conserved in
comatose patients and showed no significant differences from
properties of HCs [15]. Additionally, the present study dem-
onstrated conservation of fundamental network properties,
such as small-worldness, across a wide range of clinical cases
of DOC. Indeed, additional data have confirmed the existence
of Bsmall-world^ properties inmost clinical disorders [26, 27].
This suggests that global topological properties are insuffi-
cient to describe the brain network organization required for
normal consciousness [28, 29].

However, when we separately examined network topology
analysis in emotional and neutral situations, we found evi-
dence of highly significant abnormalities in patients with
DOC. First, in patients with MCS, abnormally increased acti-
vation in the occipital lobe could be ascribed to the loss of a

top-down (frontoparietal network) inhibitory gating mecha-
nism [30]. Regarding connectivity in patients with UWS,
our report was in accordance with prior findings, which sug-
gested that UWS was associated with a massive disruption of
complex brain functional networks [31, 32]. Another notable
finding was obvious right frontoparietal network activation in
patients with MCS, compared with those with UWS, during
neutral sound stimulation. Current reports indicate that
frontoparietal activation is present in subliminal stimulus pro-
cessing and is associated with high-level cortical perception
[33]. Hence, disruption of top-down processes of higher-order
associative cortices is implicated in consciousness and may
clearly differentiate UWS from MCS.

Strikingly, the contrast between patients with MCS and
those with UWS disappeared upon emotional stimulation.
Two hypotheses may explain these surprising findings. First,
the emotional target was regarded as an infrequent stimulus
and required increased attention allocation [16]. HCs, with
normally functioning feedback and regulation systems, may
have attenuated the allocation of attention and awareness with

Fig. 4 Functional connectivity comparisons among the levels of
consciousness underlying neutral sound stimulation. a Differences of
network connectivity between MCS and healthy controls. b
Significantly decreased network connectivity in UWS than in the

healthy volunteers. c The network difference between MCS and UWS.
Red lines mean significantly increased connectivity, and blue lines mean
significant decreased connectivity (P < 0.05, uncorrected, on the upper;
P < 0.05, Bonferroni corrected, at the bottom). (Color figure online)
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regard to deviant stimuli [34]. Since the deviant sound always
followed neutral prosody, it was predictable. Similarly, pa-
tients with MCS also exhibited partial preservation of feed-
back processing [33]. Moreover, there was additional evi-
dence from network changes induced by pleasant or unpleas-
ant musical stimuli. A subset of UWS patients showed in-
creased connectivity during the unpleasant stimulus, while
healthy subjects exhibited no changes [35]; nevertheless, the
neural mechanisms remained elusive.

To the best of our knowledge, there have been few
studies regarding whether etiological heterogeneity con-
tributed to differences in brain responses to emotionally
laden auditory stimuli; in the present study, we consid-
ered etiology and only enrolled nontraumatic patients. A
voxel-based morphometry study compared structural as-
pects between traumatic and non-traumatic brain injury;
notably, patients with traumatic brain injury exhibited
wider network injury, but no structural differences were
observed between patients with UWS and those with

MCS [16]. We hypothesize that the difference in
emotion-induced brain activation is related to the etiol-
ogy of the brain injury. However, our study involved a
limited number of patients; hence, further studies are
needed to better characterize these differences.

Comparatively speaking, there were limitations in our
study. The diversity of injury sites might confound the results.
Nonetheless, to avoid the intense mechanical damage in-
volved in traumatic brain injury, our study solely involved
patients with non-traumatic DOC. Another limitation is the
limited sample size; however, it may still be illuminating as
a starting point to probe emotional consciousness with EEG
network analysis, and further studies with larger samples are
needed in the next phase. Moreover, pleasant and unpleasant
conditions were not analyzed separately, although there is in-
creasing evidence that cerebral responses to positive and neg-
ative affective valence may be unequal. Our present study
provides a preliminary characterization of emotional process-
ing ability in patients with DOC, without valence

Fig. 5 Spatial topology differences of the PLV network among the levels
of consciousness underlying emotional sound stimulation. a Differences
of network connectivity between MCS and healthy controls. b Network
connectivity difference between UWS and healthy volunteers. c The
subtle brain network difference between MCS and UWS. Red lines

denote significantly increased linkage strength, while the blue lines
denote significantly decreased linkage strength (P < 0.05, uncorrected,
on the upper; P < 0.05, Bonferroni corrected, at the bottom). (Color
figure online)
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discrimination. Therefore, further studies are likely to more
deeply explore differences among various valence
stimulations.
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