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Background: Recent evidence shows that CHD4 is involved in a variety of biological events of tumors. 
Our aim was to investigate the correlation between CHD4 and oral squamous cell carcinoma (OSCC).
Methods: After CHD4 was screened as a differentially expressed gene in The Cancer Genome Atlas (TGCA) 
database, the correlations of its expression level with the clinical parameters and prognosis of patients with 
OSCC were analyzed. The outcomes of the multivariate analysis were used to construct a nomogram, 
and the accuracy of the model was evaluated with the calibration curve. The GeneMANIA and STRING 
databases were used to generate network diagrams depicting interactions of genes with CHD4, and heat 
maps of genes co-expressed with CHD4 were generated using the TCGA database. TargetScan was then 
used to look into the miRNAs that interact with the 3' untranslated region of CHD4 mRNA. Finally, GSEA 
enrichment analysis was used to explore the possible mechanism.
Results: The differentially expressed molecule CHD4 was screened by TCGA database for OSCC. CHD4 
was overexpressed in OSCC tumor tissues, and OSCC patients with low expression of CHD4 have better OS 
and DSS. The nomogram had a C-index of 0.575 (0.548–0.602), which indicated some degree of predictive 
reliability. CHD4 has certain correlation with exons of OSCC related genes, including TP53, NOTCH1, 
CASP8, PTEN, TP63, ANXA1, CDH1, CTNNB1, GDF15 and EGFR. According to the TargetScan database, 
hsa-miR-194-5p is the miRNA that regulates CHD4 upstream the most. GSEA analysis showed that CHD4 
may participate in the poor prognosis of OSCC by participating in PI3K/AKT pathway, protein adhesion 
regulation, MAPK pathway, cytokine and inflammatory response regulation, angiogenesis and platelet 
regulation.
Conclusions: The decreased expression of CHD4 may indicate a better prognosis in OSCC patients and 
could serve as a novel predictive biomarker for OSCC. Also, hsa-miR-194-5p was found to contribute to 
the poor prognosis of OSCC by regulating CHD4 and enhancing tumor anoikis resistance via the PI3K/
AKT signaling pathway. These findings suggest that CHD4 might be a therapeutic target for the effective 
treatment of OSCC.
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Introduction

Oral squamous cell carcinoma (OSCC) refers to squamous 
cell carcinoma originating in the oral cavity, including the 
cheeks, lips, mouth floor, tongue, and palate. It is one of the 
common head and neck malignant tumors worldwide (1,2). 
There are almost 300,000 new cases of OSCC each year, 
and about 170,000 related deaths (3). The delayed diagnosis 
of oral cancer is strongly linked to its high fatality rate (4).

Despite advancements in treatment, the 5-year survival 
rate of oral cancer is still less than 50%, making the disease 
a severe health concern. At present, the treatment of 
patients with advanced or lymph node metastasis mainly 
depends on surgery combined with radiotherapy and 
chemotherapy, but these treatments often lead to serious 
side effects. At present, it has been found that a variety of 
“oncogenes”, “tumor suppressor genes” and multiple signal 
pathways are related to the occurrence and development of 
OSCC. For example, Sun et al. found that procyanidin B2 
could inhibit cell growth and angiogenesis in OSCC via the 
vascular endothelial growth factor (VEGF)/VEGF receptor 
2 (VEGFR2) pathway (5). Snail and Slug cooperate in 
EMT and tumor metastasis in oral tongue squamous cell 

carcinoma through MiR-101 mediated EZH2 axis (6). 
Carnosic acid inhibits the development of OSCC through 
mitochondrial mediated apoptosis (7). Commonly used 
diagnostic methods, such as serum tumor markers and 
imaging, are not ideal for OSCC and do not meet all clinical 
needs. For example, CYFRA21-1 as a serum tumor marker 
for follow-up patients with squamous cell lung cancer and 
oropharyngeal squamous cell carcinoma (8). GDF 15 as 
an anti apoptosis, diagnostic and prognostic marker of  
OSCC (9). Hyperion imaging system can reveal heterogeneous 
tumor microenvironment of T1N0M0 OSCC patients (10).  
Indocyanine green fluorescent navigation technology can 
determine the safe boundary of advanced OSCC (11). But 
these technologies have certain limitations. Therefore, 
screening of markers associated with the early diagnosis 
and poor prognosis of OSCC is crucial for improving 
the therapeutic effect and prognosis of patients with this 
disease.

The human chromodomain helicase DNA-binding 
(CHD) protein family is a class of chromatin remodeling 
complexes. Six members of the family have been discovered 
to date: CHD1, CHD2, CHD3, CHD4, CHD5, and 
CHD6. All CHD proteins are members of the SWI2/
SNF2-related ATPase superfamily. Among them, CHD4 
and CHD5 together form the second subfamily of this 
family according to the conservation of the coding protein 
sequence (12,13). CHD proteins have a DNA-binding 
domain at their C termini, opposite a chromatin regulatory 
domain at their N termini. Different components of the 
SWI/SNF complex (brahma-related gene 1) and RET 
finger protein are bound at the N- and C-termini of CHD4, 
respectively, and each has its own transcriptional activity. 
Sequence analysis of the fluoroenzyme reporter gene 
showed that the N-terminal of CHD4 had strong trans 
activation ability, while its C-terminal had transcriptional 
inhibition activity. On the one hand, CHD4 and BRG1 
are interrelated, and the bromo domain of BRG1 strongly 
inhibits the trans activation of the N-terminal of CHD4. 
On the other hand, CHD4 and RET finger proteins play a 
common role in transcriptional inhibition. CHD4 interacts 
with both trans-activators and repressors, and is directly 
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Highlight box

Key findings
• CHD4 plays an important role in the occurrence and development 

of various tumors. Our study found that hsa-miR-194-5p can 
regulate CHD4 and enhance the tumor resistance to apoptosis 
through PI3K/AKT signaling pathway, thus participating in the 
poor prognosis of oral squamous cell carcinoma. 

What is known and what is new? 
• The mortality of oral cancer is high. It is important to screen the 

markers related to OSCC diagnosis and treatment.
• The decreased expression of CHD4 can improve the prognosis of 

OSCC patients and provide a therapeutic target for the treatment 
of OSCC.

What is the implication, and what should change now?
• In the future, more in vitro and in vivo experiments are needed to 

further determine the relevant mechanism of action.
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related to chromatin remodeling proteins, thus providing 
a new perspective on the form of multiprotein super 
complexes involved in transcriptional regulation (14).

Our study mainly aimed to explore the expression of 
CHD4 in The Cancer Genome Atlas (TCGA) database 
and its role in predicting survival in patients with OSCC. 
A bioinformatics analysis was also performed to predict 
upstream regulatory genes of CHD4 in OSCC to 
investigate its effect on the behavior of tumor cells and the 
underlying mechanisms. We present the following article in 
accordance with the TRIPOD reporting checklist (available 
at https://atm.amegroups.com/article/view/10.21037/atm-
22-6332/rc).

Methods

Analysis of CHD4 expression in the TCGA database

The expression of CHD4 was analyzed in pan-cancer 
and in OSCC tumor and adjacent tissues in the TCGA 
database. The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013).

Analysis of the relationship between CHD4 and clinical 
parameters of patients with OSCC in the TCGA database

Data of clinical parameters of patients with OSCC 
were retrieved from the TCGA database, and then the 
correlations between CHD4 expression and these clinical 
parameters and patient prognosis were analyzed.

Construction and evaluation of a nomogram

A nomogram was constructed using the data from the 
multivariate analysis. A calibration curve was generated to 
determine the predictive value of the nomogram.

Construction of a protein-gene interaction network map

GeneMANIA was used to construct a gene-gene interaction 
network for CHD4 and the altered adjacent genes. At 
the same time, the STRING database was employed to 
generate the protein-protein interaction network of CHD4. 
Finally, the two interaction networks were compared.

Screening of the co-expressed genes of CHD4

Genes that were positively or negatively co-expressed with 

CHD4 were identified through data mining of the TCGA 
database.

Prediction of upstream regulatory miRNAs of CHD4

To further identify the upstream genes that regulate 
CHD4., miRNAs that may bind to the 3'UTR of CHD4 
mRNA were explored through the TargetScan database.

Gene set enrichment analysis (GSEA)

Online functional analysis of differentially expressed genes 
was carried out using Metascape. The cellular mechanisms 
in which CHD4 possibly plays a role in OSCC were 
investigated via GSEA.

Statistical analysis

The R (version 3.6.3) software was used for statistical 
analysis and visualization. Kaplan-Meier analysis was used 
to determine the survival time of patients with OSCC, 
and the log-rank test was employed to test for statistical 
significance. Spearman’s correlation coefficient was used for 
correlation analysis. When comparing means, a significant 
difference was indicated by P<0.05.

Results

CHD4 expression is upregulated in OSCC

We used the TCGA database to identify CHD4 as our 
target research molecule. The expression of CHD4 was 
upregulated in the vast majority of tumors in the pan-cancer 
analysis (Figure 1A). Moreover, the expression of CHD4 in 
matched and unmatched tumor tissues of OSCC is higher 
than that in adjacent cancer tissues. It is found that AUC 
is 0.814 by constructing ROC curve, so CHD4 has good 
prediction research value (Figure 1B-1D).

Correlation between CHD4 expression and the prognosis of 
patients with OSCC

In the TCGA database, we found that patients with OSCC 
who had reduced CHD4 expression had superior overall 
survival (OS) and disease-specific survival (DSS) (Figure 2A).  
Further stratified analysis revealed that patients with low 
CHD4 expression had a better prognosis in patients with 
T2, N0, M0, Stage II, Stage III, male and female, older 

https://atm.amegroups.com/article/view/10.21037/atm-22-6332/rc
https://atm.amegroups.com/article/view/10.21037/atm-22-6332/rc
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than 60 years, G2, G3, and whether or not they had smoked 
or consumed alcohol in the past (Figure 2B).

The relationships between CHD4 expression and clinical 
data of patients with OSCC

In comparison with the clinical data of OSCC patients, 
we can find that patients with higher expression of CHD4 
have higher TNM stage, clinical stage and pathological 
stage, which is consistent with the previous research results  
(Figure 3).

Construction of a nomogram

The nomogram constructed using the TCGA database 
and the findings of our multivariate analysis had a C-index 

of 0.575 (0.548–0.602) for predicting 1-, 3-, and 5-year 
survival in patients with OSCC (Figure 4A). The calibration 
curve of the nomogram also demonstrated that it had some 
predictive power (Figure 4B).

Identification of genes and protein that interact with CHD4

Using GeneMANIA, we mapped out the gene-gene 
interaction network of CHD4 and its modified neighboring 
genes (Figure 5A). Using the STRING database, the 
protein-protein interaction network of CHD4 was constructed 
(Figure 5B).

Screening of co-expressed genes of CHD4

The OSCC data in the TCGA database were used to 

Figure 1 CHD4 expression is upregulated in oral squamous cell carcinoma. (A) The CHD4 expression level in pan-cancer. (B) Expression 
levels of CHD4 in paracancerous tissues (n=32) and unpaired OSCC tissues (n=329) in The Cancer Genome Atlas database. (C) Expression 
levels of CHD4 in paracancerous tissues (n=32) and matched OSCC tissues (n=329). (D) Receiver-operating characteristic curve analysis 
demonstrating the strong capacity of CHD4 to distinguish between tumor and normal tissues. Statistically significant difference: *, P<0.05; 
**, P<0.01; ***, P<0.001. ns, no significance; TPM, transcripts per million; TPR, true positive rate; AUC, area under the curve; FPR, false 
positive rate; OSCC, oral squamous cell carcinoma.
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identify the genes that are positively or negatively co-
expressed with CHD4, and heat maps of the top 50 
positively (Figure 6A) and negatively (Figure 6B) co-
expressed genes were constructed.

Due to the impact gene mutations have on clinical 
diagnosis and treatment of OSCC, we next investigated the 
association between CHD4 and OSCC-related gene exons 
from the TCGA database, including TP53, NOTCH1, 
CASP8, PTEN, TP63, ANXA1, CDH1, CTNNB1, GDF15, 

and EGFR (Figure 7).

Predicted upstream regulatory miRNAs of CHD4 in the 
TargetScan database

To further identify the upstream genes that regulate CHD4 
we further investigated the miRNAs that may bind to the 
3'UTR of CHD4 mRNA through the TargetScan database. 
The analysis showed that hsa-miR-194-5p was the most 

Figure 2 The relationship between CHD4 expression in The Cancer Genome Atlas database and patient prognosis in oral squamous cell 
carcinoma. (A) The association of CHD4 expression with overall survival and disease-specific survival in patients with OSCC. (B) The 
association of CHD4 expression with patient prognosis of OSCC in stratified subgroup analysis. Statistically significant difference: P<0.05. 
OSCC, oral squamous cell carcinoma.
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Figure 4 A nomogram to predict the survival of patients with OSCC and its calibration plot. (A) The nomogram to predict the 1-, 3-, and 
5-year survival of patients with OSCC, and (B) the calibration plot for the nomogram. OSCC, oral squamous cell carcinoma.

Figure 3 The relationships between CHD4 expression and clinical data of patients with oral squamous cell carcinoma. *, P<0.05; **, P<0.01; 
***, P<0.001. TPM, transcripts per million.
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likely upstream regulatory miRNA of CHD4. Details of the 
predicted miRNAs are shown in Table 1.

GSEA analysis results

Kyoto Encyclopedia of Genes and Genomes functional 
analysis was performed online using Metascape. We found 
8 statistically significant possible related pathways: (I) 
REACTOME PI3K AKT SIGNALING IN CANCER; 
(II) NABA ECM GLYCOPROTEINS; (III) REACTOME 
ADHERENS JUNCTIONS INTERACTIONS; (IV) 
KEGG TGF BETA SIGNALING PATHWAY; (V) KEGG 
MAPK SIGNALING PATHWAY; (VI) WP CYTOKINES 
AND INFLAMMATORY RESPONSE; (VII)  WP 
ANGIOGENESIS; (VIII) REACTOME PLATELET 
CALCIUM HOMEOSTASIS (Figure 8).

Discussion

Squamous cell carcinoma, which accounts for over 90% of 
all oral malignancies, is notorious for its persistence and 
rapid rate of metastasis (15). At present, although OSCC 
has made progress in systematic treatment, the survival rate 
of patients is still very low due to late diagnosis and multiple 
potential recurrence factors. Biomarkers have evolved into 
highly effective diagnostic, prognostic, and therapeutic tools 

through the use of multi-omics technology (16).
In this study, we employed bioinformatics analysis to 

investigate the potential roles of CHD4 in the etiology 
and progression of OSCC. Through analysis of TGCA 
data, we found that CHD4 expression was elevated in 
OSCC and that patients with low CHD4 expression 
had a better prognosis than those with high expression. 
In our correlation analysis of CHD4 expression with 
clinical parameters of patients with OSCC, we found that 
patients with higher CHD4 expression tended to have 
more advanced TNM, clinical, and pathological stages. 
The nomogram we constructed based on the multivariate 
analysis results also adds clinical value to our research 
findings. We also constructed network maps of genes 
interacting with CHD4 in the GeneMANIA and STRING 
databases, as well as a heat map of genes co-expressed with 
CHD4 in the TCGA database. These results provide some 
insights for future cytological basic experiments.

With the recurrence and progression of cancer, gene 
mutations are particularly important in the selection of 
last-line treatment plans, and many guidelines emphasize 
the importance of genetic testing in diagnosis and  
treatment (17). The whole genome exon sequencing results 
showed that TP53, NOTCH1 and CDKN2A were the 
most common mutation genes in head and neck squamous 
cell carcinoma. In addition, research has shown that CASP8, 

Figure 5 Identification of CHD4-interacting genes and proteins. (A) Gene-gene interaction network of CHD4 in GeneMANIA database. (B) 
The protein-protein interaction network of CHD4 in the STRING database.
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PTEN and TP63 have important regulatory functions in 
the differentiation of squamous cells, and that mutations in 
these genes are the main driving factors for the occurrence 
and development of head and neck squamous cell carcinoma 
(17-19). The expression of each of these genes is essential 
for the proper development of squamous cells. Head and 
neck squamous cell carcinoma has many key biomarkers, 
including ANXAJ, CDH1, CTNNB1, and TGFB1, which 
are expressed as proteins (17). This study focused on the 
mutation of the above hot spot genes in OSCC. We found 
that CHD4 had good correlation with TP53, NOTCH1, 
CASP8, PTEN, TP63, ANXA1, CDH1, CTNNB1, 
GDF15 and EGFR. We then used the TargetScan database 
to search for additional relevant miRNAs that could bind to 
the 3'UTR of CHD4 mRNA. Our analysis determined that 
hsa-miR-194-5p was the most plausible upstream regulatory 
miRNA of CHD4. At present, there have been some studies 

on this miRNA in tumors, such as PCED1B-AS1, which 
can induce immunosuppression in hepatocellular carcinoma 
by double targeting PD-L1 and PD-L2 with spongy hsa-
miR-194-5p (20). Zhang et al. found that miR-194-5p 
also mediates GDNF-induced glioma cell proliferation 
and migration (21). A study on laryngeal cancer showed 
that hsa_circ_0023028 knockdown inhibits cell migration, 
proliferation, and invasion (22). Vajen et al. reported that 
miRNA-192-5p inhibits the migration of triple-negative 
breast cancer cells and directly regulates Rho GTPase-
activating protein 19 (23). However, hsa-miR-194-5p has 
not been the subject of any studies on OSCC.

In the f inal  part  of  our study,  we performed a 
GSEA analysis and found eight statistically significant 
potentially relevant pathways: (I) REACTOME PI3K 
AKT SIGNALING IN CANCER; (II) NABA ECM 
GLYCOPROTEINS; (III) REACTOME ADHERENS 
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Figure 6 Heat maps of genes co-expressed with CHD4 in oral squamous cell carcinoma. (A) Positively correlated genes co-expressed with 
CHD4 in OSCC; (B) negatively correlated genes co-expressed with CHD4 in OSCC. FPKM, fragments per kilobase of exon model per 
million mapped fragments; OSCC, oral squamous cell carcinoma.
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Table 1 The best miRNAs predicted to bind to the 3'UTR of CHD4 in the TargetScan database

Position 273-280 
of CHD4 3' UTR

Predicted consequential pairing of target 
region (top) and miRNA (bottom)

Site 
type

Context++ 
score

Context++ 
score 
percentile

Weighted 
context++ 
score

Conserved 
branch 
length

PCT
Predicted 
relative 
KD

Hsa-miR-194-5p 5' UCCCCACUGUAACGCCUGUUACA;  
3' AGGUGUACCUCAACGACAAUGU

8mer −0.13 83 −0.13 4.030 0.42 −4.539

KD, k-dimensional; PCT, percentage.

JUNCTIONS INTERACTIONS; (IV) KEGG TGF 
BETA SIGNALING PATHWAY; (V) KEGG MAPK 
SIGNALING PATHWAY; (VI) WP CYTOKINES 
AND INFLAMMATORY RESPONSE; (VII)  WP 
ANGIOGENESIS; (VIII) REACTOME PLATELET 
CALCIUM HOMEOSTASIS.

As a tumor research hotspot, anoikis has recently become 

the focus of more scientists. When normal epithelial cells 
lose touch with the surrounding extracellular matrix, a 
process known as anoikis occurs and cell death rapidly 
follows. Anoikis is a special type of programmed cell death 
that plays a critical role in normal morphogenesis, tissue 
homeostasis, disease development, and tumor metastasis. 
When cells lose their attachment to ECM, the pro 

Figure 7 Correlation between CHD4 and oral squamous cell carcinoma-related gene exons. P<0.05 indicates a statistically significant 
difference. FPKM, fragments per kilobase of exon model per million mapped fragments.
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apoptotic protein Bmf, which remains on the cytoskeleton, 
dissociates from dynein light chain 2 and translocates to 
mitochondria, thus promoting the occurrence of nesting 
apoptosis (24). However, a common feature of tumor 
development and growth is the viability of transformed cells 
under “independent” growth conditions. This resistance 
to nestless apoptosis has been proved to be related to the 
loss of homeostasis in the cellular environment, cancer 
growth and metastasis, and this acquired ability is called 
the resistance to anoikis apoptosis (25). Cancer cells with 
anti anoikis apoptosis can spread to distant tissues or 
organs through the peripheral circulation system and cause 
cancer metastasis. To study the molecular mechanism of 
anti anoikis apoptosis will be helpful to explore effective 
therapies for human malignant tumors.

Combined with the results of our GSEA analysis, 
we also found that in previous studies, these predicted 
signal pathways have also shown the correlation with 
tumor anoikis apoptosis. For example, celecoxib enhances 
the anticancer effect of cisplatin and induces homing 
apoptosis in osteosarcoma through PI3K/Akt pathway (26).  
CEMIP overexpression triggered by AMPK/GSK3β/beta-
catenin cascade promotes the migration and invasion of 
apoptotic prostate cancer cells by enhancing metabolic 
reprogramming (27). Small-molecule RGD integrin 

antagonists can inhibit cell adhesion and cell migration, 
and induce anoikis in glioblastoma cells (28). Stereospecific 
effect of ginsenoside 20-Rg3 on TGF inhibition- β Induces 
epithelial mesenchymal transformation and inhibits lung 
cancer migration, invasion and anti nesting apoptosis (29). 
Silencing of tetramethylthioacetic acid and transthyroxine 
protein inhibits the metastasis of L-thyroxine in apoptotic 
prostate cancer cells by regulating MAPK/ERK pathway (27). 
The loss of p120 catenin induces metastatic progression 
of breast cancer by inducing the resistance to apoptosis 
and enhancing the signal transduction of growth factor  
receptor (30). Anti nesting apoptotic gastric cancer cells 
pass C/EBP β mediated autocrine and paracrine signals of 
PDGFB promote angiogenesis and peritoneal metastasis (31). 
Overexpression of multiple epidermal growth factors such 
as domain 11 saves the survival of apoptosis through tumor 
cell platelet interaction in triple negative breast cancer 
cells (32). Therefore, our research results in this project 
combined with previous research results, our findings 
suggest that hsa-miR-194-5p regulates CHD4 via the PI3K/
AKT signaling pathway, which in turn increases tumor 
anoikis resistance and contributes to the poor prognosis 
of OSCC. These findings provide a more reliable baseline 
against which to gauge future improvements to cytological 
and other in vitro and in vivo experiments.
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Figure 8 The eight statistically significant Kyoto Encyclopedia of Genes and Genomes pathways. MSigDB utilizes a set of biological 
process genes called gene ear biology. P<0.05; NES, normalized enrichment score; FDR, false discovery rate.
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Conclusions

This study adds to the growing body of data that CHD4 
plays an important role in the emergence of OSCC and has 
the potential to serve as a biomarker for the progression of 
the disease. Our results provide a potential target for the 
development of OSCC anti-cancer strategies
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