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Prostate cancer (PCa) is the second most frequently diagnosed malignancy and the
second leading cause of death in men worldwide, after adjusting for age. According to the
International Agency for Research on Cancer, continents such as North America and
Europe report higher incidence of PCa; however, mortality rates are highest amongmen of
African ancestry in the western, southern, and central regions of Africa and the Caribbean.
The American Cancer Society reports, African Americans (AAs), in the United States, have
a 1.7 increased incidence and 2.4 times higher mortality rate, compared to European
American’s (EAs). Hence, early population history in west Africa and the subsequent
African Diaspora may play an important role in understanding the global disproportionate
burden of PCa shared among Africans and other men of African descent. Nonetheless,
disparities involved in diagnosis, treatment, and survival of PCa patients has also been
correlated to socioeconomic status, education and access to healthcare. Although recent
studies suggest equal PCa treatments yield equal outcomes among patients, data
illuminates an unsettling reality of disparities in treatment and care in both, developed
and developing countries, especially for men of African descent. Yet, even after adjusting
for the effects of the aforementioned factors; racial disparities in mortality rates remain
significant. This suggests that molecular and genomic factors may account for much of
PCa disparities.

Keywords: genetics, prostate cancer genetics, prostate cancer disparities, GWAS, Vitamin D, prostate cancer
screening, socioeconomic status, precision medicine
INTRODUCTION

It is estimated that 1 in 9 men in the United States (U.S.) will be diagnosed with prostate cancer
(PCa) in their lifetime (1). However, the estimation rate for African American (AA) men is 1 in 7,
and this rate may be higher in AAs as less cases have been detected in recent years due to
fluctuations in screening guidelines (2). In a recent cross-sectional study, it was reported that 1 in 3
AA men living in Southern California and New York City had elevated circulating prostate-specific
antigen (PSA) (3). Not surprisingly, this elevated rate of PCa diagnosis in AA men also correlates
with the highest disease-specific mortality rates for this population (1). The factors contributing to
the glaring disparities in incidence and outcome are multifaceted and include sociocultural (e.g.,
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behavioral), socio-political (e.g., racism and discrimination), and
biological (e.g., genetic risk, biomarkers, genetic ancestry) (4).
Yet, even after adjusting for the effects of the non-biological
determinant factors; racial disparities in mortality rates remain
significant. This suggests biological determinants (e.g., molecular
and genomic factors) may contribute greatly to PCa disparities
(5–7). Further exacerbating the confounding variables, blanket
screening recommendations for PCa have fluctuated over the
past decade. Controversy remains regarding the pros and cons of
modified screening guidelines specific to race or family history.
Numerous studies highlight the advantage of earlier and annual
screening for AA men, however these findings have yet to
translate into clinical application (8, 9). In fact, as described in
the aforementioned study, more than half of AA male study
participants reported that their physicians had never discussed
the pros and cons of PCa screening with them. Of concern, one-
third of the same men had elevated PSA levels at the time of the
study (3).

In addition to the lower rates of screening and higher rates of
diagnosis experienced by AA men, the biological characteristics
of prostate tumors are worse at clinical presentation for this
population (10). Delayed diagnosis limits treatment options and
reduces the efficacy of those treatments which contributes to
worse overall survival. While cutting-edge treatment options are
on the horizon for currently incurable advanced PCa, AAs are
less likely to participate in clinical trials for a multitude of reasons
including reduced study-initiated recruitment efforts and
Frontiers in Oncology | www.frontiersin.org 2
medical mistrust within this population (11). This review will
address the complex interplay of factors which drive the
continued disparities experienced by AA men with PCa as well
as provide future direction on how to potentially reverse these
troubling trends.
PROSTATE CANCER INCIDENCE AND
MORTALITY RATES

PCa is the most common non-cutaneous malignancy in men
worldwide. Rates of PCa incidence and mortality vary between
population, and developed nations tend to have higher incidence
while developing nations tend to have higher mortality rates (12)
(Figure 1). Lower mortality rates in developed nations are
attributed to increased PSA testing, greater health literacy, and
better access to health care. In developing nations, advanced PCa
disease and worse prognosis are due to lack of access to screening
which is proportionate to increased detection of late stage
prostate carcinoma (13). In 2020, Africa (South, East, Middle
and West) and the Caribbean suffered the highest PCa mortality
in the world with rates ranging from 16.3-27.9 deaths per
100,000 (12). Interestingly, although North America has a low
mortality rate, when stratified by race and adjusted for age, AAs
had a similarly high mortality rate of 37.4 per 100,000 in the
period of 2014-2018. This number is significantly higher than
non-Hispanic whites (19.3 per 100,000), Hispanics (15.6 per
FIGURE 1 | Global prostate cancer incidence and mortality by World Areas. Graph indicates age standardized incidence (Blue) and mortality rates (Orange), per
100,000. Mortality rates were sorted from highest to lowest (12).
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100,000), American Indian (18.5 per 100,000), and Asian/Pacific
Islanders (8.8 per 100,000) (14).

Prostate Cancer Screening
Recommendations: One Size
Does Not Fit All
Prostate cancer is often indolent or slow growing and
preventable if diagnosed and treated early. However, if left
untreated, can lead to severe disease progression (i.e. bony
osteopathic metastasis) and often time poor prognosis. Digital
Rectal Exams (DRE), which may identify hard nodules on and
around the prostate gland and elevated Prostate Specific Antigen
(PSA) values, are often used to screen for potential prostate
cancer. Confirmation of the diagnosis of prostate cancer is made
by histologic and biopsy assessment of biopsy tissue using a
Gleason grading and TMN staging system (15).

Since the early 1990s, the measurement of total circulating
prostate-specific antigen (PSA) along with a digital rectum exam
(DRE) have been mainstay tools for PCa screening. Common
screening practices use a higher-than-normal PSA cutoff of >4.0
ng/mL to recommend a follow-up biopsy. However, in 2004 the
Prostate Cancer Prevention Trial (PCPT) challenged this
standard by reporting that PCa diagnosed with a Gleason score
7 or higher was detected in 15% of men with PSA <4.0 ng/mL. In
addition, PCa was detected in men whose PSA ranged between
3.0–4.0 ng/mL (16). Therefore, data suggests PSA levels should
be measured and interpreted as continuous risk; as PSA levels
increase, the likelihood of PCa diagnosis increases. However,
although there is a correlation between increased PSA levels and
presence of PCa, it must be noted that PSA levels >4.0 ng/mL are
not diagnostic for PCa. In fact, there are several factors that
impact PSA level fluctuation in men including an enlarged
prostate (benign prostatic hyperplasia (BPH)), age, prostatitis,
ejaculation, certain urologic procedures, and certain
medications (17).

As a result of multiple factors stimulating total PSA
fluctuation and confounding interpretations of what PSA levels
may imply, screening for PCa has been a challenge. In 2012, the
United States Preventive Services Task Force (USPSTF) issued
concerns about the risk of possible untoward side effects due to
unnecessary biopsies, overdiagnosis, and overtreatment of
screen-detected, indolent tumors which led to a Grade D
recommendation against blanket PSA-based screening for PCa
(18). The stance of the USPSTF was later amended in 2018 to a
Grade C recommendation for men between 55-69 to be offered
the opportunity to discuss the potential benefits and harms of
screening with their clinicians (19). In response, the American
Urological Association (AUA) commended the USPSTF
recommendations and acknowledged that AA men are at
increased risk of developing the disease. The American Cancer
Society took a more proactive stance regarding earlier screening
in AA men and subsequently recommended screening at age 45
for AA men, and age 40 for AA men with extensive family
history, with repeat annual PSA testing for any man whose levels
exceed 2.5 ng/mL (20). The Prostate Cancer Foundation also
erred on the side of caution and recommended screening for all
Frontiers in Oncology | www.frontiersin.org 3
men at age 45, and age 40 for AA men as well as any man with
family history (21). Given the amended guidelines debating the
effectiveness of measuring total PSA, as a biomarker for PCa,
additional metrics have also been implemented to enhance the
specificity and sensitivity of PSA. PSA screening enhancements
include PSA velocity, PSA density, free vs. bound PSA,
proenzyme PSA (ProPSA), prostate health index (PHI), and
the 4K (Four-Kallikrein) score test (15).

Widespread PSA screening has had a profound effect on
identifying PCa at earlier stages before incurable metastasis
occurs (22). This is supported by the decrease in mortality rate
by greater than 53% during the PSA screening era (1991-2008),
once adjusted for age (23). Cancer Intervention and Surveillance
Modeling Network (CISNET) estimated that 45-70% of this
decrease was attributed to PSA screening (22). It is plausible
that, although PCa disparity may be impacted by socioeconomic
circumstances and lifestyle decisions, intensive PSA screening and
comprehensive PCa edificationmaymitigate PCa disparities in the
U.S. and throughout the African diaspora (24, 25). In African
populations, where minimal PSA screening is available, Burkina
Faso, Ghana and Port Harcourt Nigeria, men with high serum
PSA levels and poorly differentiated tumors are major
characteristics reported at the time of diagnosis (13). Likewise,
Gueye and colleagues found increased median and mean PSA
levels and worse tumor stage among Senegalese men compared to
EA and AA men (26). Numerous PCa studies focused on the
African diaspora and in the U.S. suggest the need for updated PCa
screening protocols. Yet, the benefits of PSA screening and the
direct implications it may have in mitigating the PCa disparity gap
in the U.S. remain controversial. In 2018, the USPSTF PCa
screening guidelines stated there was inadequate evidence to
assess whether the benefits for high-risk AAs were different than
the benefits for average-risk populations. The guidelines also
emphasized inadequate evidence to assess whether screening
benefits high-risk groups younger than 55 years of age.
Noticeably, the USPSTF stance is contrary to compelling
evidence of the increased burden of PCa morbidity and
mortality in these populations (27). Several studies have shown
higher serum PSA levels and higher PSA density in AAs than EA’s.
Preston and colleagues reported that young AAs, ages 20-45 years,
presented with higher baseline serum PSA levels than young EA
men (28). Taken together, the USPSTF recommendation
engenders major complications and a hazard to men of African
descent. This is largely due to the recommendation being
predicated on results from the Prostate, Lung, Colorectal and
Ovarian Cancer Screening Trial (PLCO) and the European
Randomized Study of Screening for Prostate Cancer (ERSPC).
The PLCO reported only 4% of enrolled men were non-Hispanic
Black, while the ERSPC did not report demographic statistics.
Thus, the low sample sizes of men of African descent in the PLCO
and ERSPC study lends deserving cynicism to the USPSTF
recommendations for these high-risk populations (25). Overall,
although the USPSTF recommendation of decreasing PSA testing
in 2012 may have been of cost benefit in avoiding unnecessary
biopsies, not making specialized considerations for AA men that
are twice as likely to be diagnosed and three times as likely to die
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from PCa, is harmful and irresponsible. Hence, after the 2012
recommendation for PSA screening to decrease, incidence of
distant tumors or aggressive presentation for AA men
significantly increased (Figure 2) (29, 30).
SOCIOECONOMIC FACTORS: BARRIERS
THAT IMPACT EQUITY OF PCA
TREATMENT FOR AFRICAN AMERICANS

Elucidating the complexities that underpin the PCa continuum
(i.e. risk, progression and aggressive presentation), has
emphasized the importance of non-biological determinants
(i.e. socioeconomic status) role in PCa disparity. Compelling
evidence has also implicated the role of socioeconomic status,
which is a composition of: social environment constructs (i.e.
resident population, crime, community support, social capital,
racial segregation, presence of trash and graffiti) and man-made
physical environmental attributes (i.e. structural conditions
that affect access and availability to health promoting
resources and influence individual health behaviors), to be
associated with PCa risk and advanced presentation in AA
men (31, 32). Though, AA men tend to have lower SES
(socioeconomic status) (i.e. education, income, (29) wealth
and neighborhood socioeconomic status) than EA men (29,
33, 34) differences in SES may present as barriers that impact
PCa treatment and overall outcomes (35). For example, Watson
and colleagues designed a cross-sectional analysis of AA and
Non-Hispanic White (NHW) men (n=2,386) sampled from the
Frontiers in Oncology | www.frontiersin.org 4
Pennsylvania Cancer Registry combined with neighborhood
census data (P2 Access study), to investigate the role of SES on
PCa treatment. The authors concluded that men living in
neighborhoods with higher SES (i.e. wealth, education, access
to healthcare) were more than likely to receive definitive
treatment (OR 1.57, 95% CI 1.01, 2.42), compared to those
living in less advantaged neighborhoods (36). To not
oversimplify the results of the study, it is plausible to infer
higher education led to more informed decisions and increased
wealth led to increased access to options and treatment.
DeRouen and colleagues reported similar findings in a
population-based case-control study from the San Francisco
Bay Area Prostate Cancer study. Authors performed a multi-
level data analysis (including education and known PCa risk
factors) to investigate the unique interplay between the socio
and man-made physical environment on (37) localized and
advanced PCa presentation, between AA and NHW.
Interestingly, education was not associated with localized
PCa, but greater education was associated with lower risk of
advanced disease. Higher education was also protective for
advanced PCa for men living in low SES neighborhoods but
not for men living in high SES neighborhoods. Lastly, lower
neighborhood SES association with greater localized disease
was explained by known PCa risk factors as well as
neighborhood environmental factors (i.e. population density,
crowding, and residential mobility) (37). In contrast, previous
studies have reported higher neighborhood SES being
associated with higher PCa incidence (38). Suggesting greater
access to healthcare and more regular PSA screenings,
FIGURE 2 | Percent of men aged 55-69 years who had a Prostate- Specific Antigen (PSA) test and Observed SEER Incidence Rate (All Ages), Distant, by race/
ethnicity, 2005-2018. Orange, Yellow and Green lines represent Black, NHW (non-Hispanic white) and Hispanic incident of distant tumors per 100,000 persons in
the U.S, respectively. Burgundy, Brown, and Blue lines represent Black, NHW (non-Hispanic white) and Hispanic PSA testing percent of adults in the U.S. Data
adapted from Centers for Disease Control and Prevention, National Center for Health Statistics, National Health Interview Survey, 2005-2018 and SEER 21 areas
estimates for a specific stage at diagnosis (Localized, Regional, Distant or Unknown/Unstaged) (29, 30).
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contributed to higher rates of PCa incidence in those living in
populated urban areas.

Nonetheless, historically, the PCa disparity gap has been
attributed to the fact that AA men are less likely to be
screened for PCa (24). However, many reasons have been
proposed to explain why AA men receive less screening,
including but not limited to: poor communication between
physicians and minority patients, lack of access to health care,
stigmatization/fear and deficiency of knowledge about screening
(25, 39, 40). Although there is increasing awareness, many AA
men remain uninformed of the current early detection methods
available for PCa (e.g., PSA testing), which is accounted for in the
aforementioned studies regarding lower education being
correlated to increased advanced PCa. Other barriers such as
cost and transportation may additionally hinder some AA men
from being screened (41). Minimizing differences in quality
healthcare availability may be a potentially important pathway
to minimizing disparities in PCa outcomes. Moreover, the
relationships between socioeconomic factors and PCa are
complex; but AA men have high PCa mortality in all
socioeconomic groups or accounting for socioeconomic factors
suggesting that genetic and biologic factors contribute to the
disparities in PCa mortality (32, 42, 43).
GENOME-WIDE ASSOCIATION STUDIES
AND ADMIXTURE MAPPING

Genome wide association studies (GWAS) have revolutionized the
field of cancer genetics over the past decade. Specifically, the field
of PCa genetics has benefited immensely from GWAS
methodologies. This improved understanding is largely due to
the elucidation of key genes and gene variants involved in a myriad
of molecular and biological mechanisms that propel PCa etiology.
Although men of African descent have increased PCa incidence
and mortality rates, most large scale GWAS have been conducted
in European populations (44). This trend engendered the need to
conduct original GWAS for African men and other men of
African descent as well as replicate and validate PCa risk loci
and variants previously identified in GWAS of men of African
descent. According to the National Human Genome Research
Institute-European Bioinformatic Institute GWAS catalogue
database (45), only 10 of 65 (15%) of GWAS prostate carcinoma
studies included African men and/or men of African descent.
Fortunately, the few studies that included African men and men of
African descent in the initial or replicate samples has allowed the
detection of PCa susceptibility variants associated with African
ancestry (46–48) West African ancestry (WAA).

In addition to GWAS, admixture mapping has also been used
to identify genomic loci associated with PCa. One of the benefits
of genetic studies with participants from admixed populations is
the ability to leverage the heterogeneity of their ancestral
chromosomal segments in the study of biomarkers and disease
(49, 50). Admixture mapping is a statistical analysis that
leverages the local genomic ancestry in admixed populations to
identify genomic regions associated with disease - granted the
Frontiers in Oncology | www.frontiersin.org 5
disease prevalence varies in at least two of the ancestral groups
that contribute to the genetic makeup of the admixed group
under study. It has been used to identify genes and loci involved
in several phenotypes and diseases, including white blood cell
count and breast cancer (51, 52).

As previously stated, PCa has increased risk for incidence,
aggressiveness, and mortality in African and African descent
populations when compared to European descent populations,
thus making PCa an optimal disease model for Admixture
mapping analysis. There is evidence suggesting WAA is
informative in predicting PCa diagnosis and aggressiveness.
However, the complex relationships between genetic ancestry
and social factors make the use of global genetic ancestry
estimation, using ancestry informative markers located across
the genome, difficult when we assess the contributions of
ancestry-related genetic factors to PCa disparities (9, 53–55).
The admixture mapping approach has been more successful
and studies using admixture mapping have identified
chromosomal segments of WAA in the 8q24 associated with
PCa risk (56, 57). Enrichment of WAA in this region was
significantly associated with elevated PCa risk, and each
African-derived chromosomal segment in the region
increased about 1.5-fold risk. Another admixture mapping
study in AA men identified an additional locus at 5q35
region showing a significant association between WAA and
PCa risk (5). In these studies, the associations were stronger in
the younger age group suggesting ancestry-related factors
contributing to early age onset of PCa in men of WAA. In
the order AA men, enrichment of WAA on 3q13 region was
associated with PCa risk (5). While admixture mapping is a
statically powerful approach to identify candidate regions, it
does not allow for identifications of specific variants
contributing to disease risk.

Fine mappings through GWAS, on the other hand, allow us to
identify PCa risk loci, and GWAS mainly conducted in European
descent identified many PCa risk loci (48, 58–60). However,
replications of GWAS findings in AA men has been challenging
due to difference in linkage and risk allele frequency. Many
GWAS identified PCa risk variants have greater allele frequency
differences than expected from genome-wide average across
Human populations. Thus, many studies are successful in
replicating only a subset of GWAS identified variants (61, 62).
We have analyzed the genome of 755 unrelated self-reported AA
men (454 cases and 301 controls) and validated five single
nucleotide polymorphisms (SNPs) (rs10896449 on NUDT11
(Nudix Hydrolase) 11q13.2 (p=.0009); rs2735839 on KLK2/3
19q33.33 region (p=.04); rs443076 on HNF1B/TCF2
(Hepatocyte Nuclear Factor-1 Beta) 17q12 (p=.008); rs5945572
on Xp11.22 (p=.05)) and a rare variant specific to WAA
(bd11934905 in region 2 of 8q24 (p=1x10-4)) that were
reported in previous GWAS. Although we were able to
replicate a few of the previous GWAS variants, most were not
able to be confirmed (63). The genetic variants that better
capture PCa risk are located close by (64). Thus, supporting
the premise, more GWAS and additional fine mapping in AAs
are necessary to identify and confirm novel susceptibility loci.
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Despite these challenges in replication studies, multiple
studies have replicated the associations between the 8q24
variants and PCa risk in West African and West African
descent populations. West African genetic ancestry has been
found to be overrepresented in the 8q24 region in AA men with
PCa (46). In the 8q24 regions, there are multiple variants and
regions that are independently contributing to elevated PCa risk
(65–67). Strong associations between the 8q24 and PCa have
been shown not only in African Americans, but also in African
descent men in Caribbean nations and West Africans (68–70).
Risk allele frequencies in this region are higher in African descent
populations compared to non-African populations. With WAA
estimated for the 8q24 region, both the likelihood of having
multiple 8q24 variant risk alleles and the odds of PCa diagnosis
increase (54). In a GWAS meta-analysis, Conti and colleagues
identified a low frequency variant in the 8q24, rs72725854,
associated with more than 2-fold increased risk of PCa (71).
The risk variant, rs72725854 T allele, has been found only in
African descent populations with allele frequency ranging
between 6% and 11%. Further evidence of African descent
populations and genetic susceptibility to PCa development is
supported by Du Z and colleagues who conducted an association
study of >100 previously reported PCa risk alleles among 1,061
Ugandan men (571 cases and 485 controls) and tested
associations of 17,125,421 genotyped and imputed markers
genome wide for PCa risk. Data showed approximately 100
known PCa risk variants were associated with 10 percent of
Ugandan men having >4-fold increased PCa risk. In addition, the
8q24 risk region was found to be a major contributor to PCa risk
in Ugandan men (72). The African specific variant, rs72725854 T
allele, was associated with more than 3-fold elevated odds. This
variant also shows stronger associations in men of WAA with
family history and diagnosed before the age of 60 years or
younger (73). No gene has been identified with PCa in the
8q24 region, as this locus is a gene desert. However,
subsequent fine mapping of this region has identified several
long non-coding RNAs. The African specific variant rs72725854
is located at the enhancer region, and the risk allele is associated
with higher expression of non-coding RNAs and MYC gene (74).
Han and colleagues conducted fine mapping of the 8q24 risk
region to identify novel associations with common and rare
variation in 9,531 (4853 cases and 4678 controls) men of African
descent. They identified three independent variants (r2<0.0018),
all located near PCa long noncoding RNAs (lncRNAs), including
PRNCR1 (Prostate Cancer Associated non-coding RNA 1), PCAT1
(Prostate Cancer Associated Transcript 1) and PCAT2 (Prostate
Cancer Associated transcript 2) (75). These areWAA-specific risk
variants that exists only in WAA populations. Although these
genes are non-coding, numerous studies have implicated
dysfunction of lncRNAs in PCa etiology and progression
(76–78).

Despite the challenges in replication of GWAS findings, studies
have shown that GWAS identified PCa risk variants, particularly
variants replicated in AA men and high odds ratios, are higher risk
allele frequency in WAA populations (54, 79, 80). As observed for
8q24 variants, both likelihood of having multiple risk alleles and
odds of PCa diagnosis and aggressive PCa increase with estimated
Frontiers in Oncology | www.frontiersin.org 6
WAA (54). Unlike many other PCa genetic susceptibility loci that
lack replicative analysis, genetic variation in 8q24 has been
consistently associated with PCa risk across populations and is
highly prevalent in men of African descent. Taken together, genetic
contribution of PCa risk, such as the 8q24 region, may play a critical
role in PCa etiology in men of African descent. A complete list of
GWAS and genetic PCa susceptibility loci, in African and men of
African descent, can be found in (Table 1). Some of the novel risk
variants other than 8q24 regions identified in a recent large scale
GWAS meta-analysis are African ancestry specific risk variants.
However, only a few studies conducted genome scan to identify PCa
risk loci specifically in African populations (72, 81–83). Africa has
great genetic diversity (84). Including more African men in GWAS
and fine-mapping studies may identify additional WAA-specific
risk variants.
HEREDITARY PROSTATE
CANCER GENES

Among all common cancer types, PCa has the highest
heritability. Hereditary PCa has been defined as 1) a cluster
of ≥3 first-degree relatives with PCa, 2) PCa in each of 3
generations, or 3) 2 relatives with PCa diagnosed before age 55
(85). Hereditary PCa accounts for approximately 10% of PCas
and is generally associated with early onset disease (86). Linkage
studies have been used to identify genes associated with
hereditary PCa in families. Specifically, linkage analyses scan
the genome using genetic variants or markers to identify regions
that are co-segregating with affected family members. Most
hereditary PCa family linkage studies have focused on
European descent populations (59). Utilizing positional cloning
with linkage analysis successfully linked hereditary prostate
cancer gene 1 (HPC1) at 1q24-25, HPCX (Hereditary Prostate
Cancer gene X) at Xq27-28, linkage at 8p22-23, HPC20
(Hereditary Prostate Cancer gene 20) at 20q13, HOXB13
(Homeobox B13) and others. Studies later identified linked
hereditary PCa regions for the following candidate familial
PCa susceptibility genes: hereditary prostate cancer gene 1
(HPC1) as RNASEL (Ribonuclease L), HPC2 (Hereditary
Prostate Cancer gene 2) as ELAC2 (ElaC Ribonuclease Z 2) and
8p22-23 as MSR1 (Macrophage Scavenger Receptor 1) (87).

Since the advent of Virchows’ hypothesis, carcinogenesis has
been observed as unresolved inflammation and innate immunity
has been implicated in not only antiviral defense but also in
prostate carcinogenesis (88). As a result of genetic ancestry,
differences in innate immune response has led to investigation of
essential genes, such as OAS1 (OligoAdenylate Synthetase gene
1)/RNASEL, that may play a role in response to pathogens and
prostate cancer disparity (89, 90). Constitutively latent,
endoribonuclease RNase L is activated upon binding to 2-5A
molecules, produced by interferon induced OAS genes (91). If a
cell is infected by a virus or affected by other stress factors (e.g.
inflammation), activated RNase L will degrade self-RNA (rRNA,
tRNA, mRNA) and non-self RNA (viral dsRNA). Degradation of
RNA in the cell, by RNase L, results in stress mediated apoptosis,
November 2021 | Volume 11 | Article 770500
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TABLE 1 | PCa associated genes reported from GWAS in African and men of African descent throughout the African Diaspora.
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Haiman CA et al. (47) GCST001078 17:49359387 ZNF652 rs7210100-A/2C

Cook MB et al. (81) GCST002264 1:18900554 PAX7 rs114799364-T

1:57769516 DAB1 rs12057381-A
2:14603290 NCRNA00276 and FAM84A rs2056150-A
2:6085200 LOC150622 (AC073479.1) rs13432692-T

2:121081260 AC012363.13 and INHBB rs12477565-T
3:6935066 GRM7-AS2 (AC066606.1) rs114246623-A

5:140166953 PCDHA1 rs34575154-G
5:140177075 PCDHA1 rs116776862-A
5:140213805 PCDHA1, PCDHA2, PCDHA3, PCDHA4,

PCDHA5, PCDHA6
rs4151685-C

5:140711097 PCDHGA1 rs17097185-G
5:140711954 PCDHGA1 rs116679801-G
5:140718552 PCDHGA1 and PCDHGA2 rs6878145-G

5:140718750 PCDHGA1 and PCDHGA2 rs61749035-T

6:32655508 AL662789.1 and HLA-DQB1 rs115850745-G
6:40084864 RP11-552E20.1 and MOCS1 rs115899206-G
6:47663326 GPR111 rs1329536-T
7:67865802 RP5-945F2.3 and STAG3L4 rs73146440-G
8:3247408 CSMD1 rs147739031-G
9:15111573 U6.1033 and TTC39B rs10961884-C

10:8462439 GATA3 and RP11-543F8.2 rs2993385-C
10:8474595 GATA3 and RP11-543F8.2 rs7918885-G
10:8479257 GATA3 and RP11-543F8.2 rs12251624-C
10:8479868 GATA3 and RP11-543F8.2 rs7090925-G
10:8480044 GATA3 and RP11-543F8.2 rs10905371-G
10:8481486 GATA3 and RP11-543F8.2 rs10905374-A
10:8484113 GATA3 and RP11-543F8.2 rs7096374-T
10:8486161 GATA3 and RP11-543F8.2 rs7896254-A
13:30562130 LOC440131 (RP11-90M5.1) rs75404762-C
20:42364734 GTSF1L and MYBL2 rs285198-A
20:42371095 GTSF1L rs370971-A
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TABLE 1 | Continued

Discovery Sample Number
and Ancestry

Replication Sample
Number and Ancestry

Context

221 Greater Middle Eastern
(Middle Eastern,

North African or Persian)

438 Greater Middle Eastern
(Middle Eastern,

North African or Persian)

Intron

Intron
Intron
Intron
Intron
Intron
Intron
Intron
Intron
Intron
Intron

67,543 European; 2,080
Hispanic or Latin American;
6,954 East Asian; 10,463

Sub-Saharan African, African
American or Afro-Caribbean

NR NR

Intron
NR

Intron
Intron
NR

Intron
3,226 East Asian;

2,251 African American or
Afro-Caribbean; 3,629

Hispanic or Latin American;
37,272 European

4,679 African American or
Afro-Caribbean;
7,539 European

NR

3’ UTR
8,298 African unspecified,

African American or
Afro-Caribbean; 932

Sub-Saharan African; 11,782
African American or
Afro-Caribbean

NR NR

Intron and 3’ UTR
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Shan J et al. (82) GCST002024 9 SMARCA2 rs7045455-C

9 SMARCA2 rs12686439-A
9 SMARCA2 rs10810919-C
9 SMARCA2 rs10963533-C
9 SMARCA2 rs10963540-A
17 STAT5A rs12601982-G
17 STAT3 rs8078731-T
22 LOC646851 rs5750627-T
22 LOC646852 rs6001173-T
22 SUN2 and GTPBP1 rs138702-A
22 SUN2 rs138712-G

Al Olama AA et al. (48) GCST002606 1:205788696 AC119673.1 and SLC41A1 rs1775148-C

6:75786165 MYO6 rs9443189-G
14:60655808 SIX1 rs7153648-C
16:71657426 PHLPP2 and AC009097.1 rs12051443-A
20:50911385 ADNP rs12480328-T
21:41529494 TMPRSS2 rs1041449-G
22:19770369 TBX1 rs2238776-G

Hoffmann TJ et al. (83) GCST002944 19:50851341 KLK3 and AC011523.1 rs2659124-T

6:160160512 AL645733.1 and SLC22A1 rs4646284-TG
Conti DV et al. (71) GCST004982 13:109708437 AL163541.1 rs75823044-T

22:27978955 TTC28-AS1 and TTC28 rs78554043-C
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TABLE 1 | Continued

ene(s) Variant and
Risk Allele

Discovery Sample Number
and Ancestry

Replication Sample
Number and Ancestry

Context

AC092809.2 rs61005944-CT 1,040 Sub-Saharan African NR Indel/Upstream
1.1 rs1340678-T NR
LRRC8B rs12095604-C NR

rs6431219-C Intron
NRNPA1P57 rs148184576-A NR
36 rs58488929-C NR
2P rs5855014-GC Intron
AC093534.1 rs76861935-C Intron
4.1 rs17060512-T Intron

rs79774606-G Intron
rs6979813-C Intron

1 rs72725854-T NR
ASC19 rs76784613-G Non Coding
AKAP8P1 rs2151715-G NR

AL589678.1 rs4741206-G NR
JKAMPP1 rs73408421-A NR
AL365496.1 rs11003686-A NR
ATP11AUN rs7325069-G NR
9 rs140971918-G Intron
L158800.1 rs234439-G NR
1 rs112896149-G Intron
C090227.2 rs8093567-T Intron
8.1 rs2571082-G NR
ZIM2-AS1 rs7258285-G Intron

ent sample (45).
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Du Z et al. (72) GCST005786 1:224217786 AC092809.4 and
1:79987113 AC09967
1:89431556 GBP1P1 and
2:127104557 BIN1
2:41094221 LINC01794 and H
2:97135631 ANKRD
3:184083406 HTR3C
5:116942357 AC010267.1 and
5:162565392 AC11341
6:4905041 CDYL
7:29103463 CPVL
8:127062570 PCAT
8:127164718 PCAT1 and C
9:11130398 AL451129.1 and
9:12079333 AL353595.1 and
9:12184024 AL589678.1 and
10:53578095 RNA5SP318 and
13:112620498 AL139384.2 and
13:36861531 SMAD
14:97356528 LINC02325 and
16:7552979 RBFOX
18:49679976 SMUG1P1 and A
19:44371829 AC24574
19:56687205 AC006115.2 and

Associations reported are statistically significant at p<10-8 and validated in at least one independ
A
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Johnson et al. Genetic Contributions to PCa Disparities
and this mechanism has been proposed to contribute to the
tumor suppressor activity of this gene/pathway.

RNASEL is an endoribonuclease enzyme activated by innate
immunity pathways via cellular stress induced by viruses,
chemotherapeutics, oxidative stress, and inflammation.
Following the establishment of RNASEL as HPC1, several
studies began to report that RNASEL genetic variants may also
be associated with sporadic PCa risk across the following
population sample sets: Finnish (92), Swedish (93), Jewish (94),
German (95), European American (87), and AA (96). The most
common RNASEL variants studied are R462Q and D541E, which
have shown significant association with PCa risk (96–98).
Though many stud ies support RNASEL as a PCa
predisposition gene, some studies report inconsistent
association of RNASEL variants with PCa risk (59, 93, 99). It is
important to note, small sample sizes of high-risk populations,
especially Africans and men of African descent, contributed
greatly to these inconsistencies.

Positive association between common RNASEL variants, such
as rs486907 (R462Q), rs627928 (D541E) and intronic
rs11807829, with increased PCa risk and or inflammation
(100), prompted the need to investigate the potential impact of
RNase L dysfunction in in-vitro models. Xiang and colleagues
demonstrated the presence of RNASEL SNP, R462Q, led to
decreased dimerization in the activation of RNase L, thus
leading to decreased RNA degradation, up-regulation of
inflammatory genes and evasion of apoptosis (101).
Unfortunately, Caucasian PCa cell lines were used in these
functional studies (e.g. PC3, Du145, and LnCAp) (101). Taken
together, data suggest, rs627928 (D541E), rs486907 (R462Q) and
rs1187829 (Intron) may impact function of RNase L by alteration
of apoptotic and inflammatory gene regulation leading to
evasion of apoptosis and increasing risk of PCa development
in EAmen. Conversely, the impact of common RNASEL variants
and RNase L dysfunction, in the AA population, remains
controversial. Therefore, investigating possible impact of
common RNASEL SNPs, i.e rs486907 (R462Q), in high risk
groups, such as AAs, may have important clinical significance.

MSR1 binds to many chemically modified molecules ranging
from bacteria to modified lipoproteins and ELAC2 was predicted
to have encoded for an evolutionary conserved, metal dependent
hydrolase, hence leading to postulations of environmental effects
on prostatic tissue and differentiation that occurs after exposure
(87, 102). The exact mechanisms of MSR1 and ELAC2 have not
fully been elucidated for the underlying associated causation with
PCa. However, a meta-analysis of 8 studies evaluating common
MSR1 variants, stratified by race, concludedMSR1 gene does not
confer overall major PCa risk but may confer moderate risk in
AA men (103). Later, Rennert and colleagues conducted an
association study evaluating the role of 16 variants in ELAC2,
MSR1, RNASEL with PCa risk using 1361 EA (888 cases and 473
controls) and 294 AA (131 cases and 163 controls) (87). Data
revealed significant differences in the 3 hereditary PCa
disposition genes’ allele frequencies by race. AA men
homozygous for MSR1 IVS7delTTA with negative family
history of PCa were more likely to have low grade (OR (odds
Frontiers in Oncology | www.frontiersin.org 10
ratio), 2.9; 95% CI (confidence interval), 1.2-7.2) or late stage
disease (OR, 5.2; 95% CI, 1.1-25.7). RNASEL Arg462Gln was
associated with positive family history of high stage disease (OR,
14.8; 95% CI, 1.6-135.7) in AA men. Interestingly, ELAC2
showed no significant association with PCa predisposition in
AA men (87).

In recent studies, highly penetrant variants were identified
in PCa genes critical for molecular and biological processes
including HOXB13 (Homeobox related transcription factor
13), BRCA1 (Breast Cancer Gene 1), BRCA2 (Breast Cancer
gene 2), and DNA mismatch repair (MMR) genes. HOXB13, is
a critical developmental gene that regulates prostate cell
differentiation, cell growth, and functions as a tumor
suppressor (104). Studies revealed novel HOXB13 variant
G84E was mostly found in families of Nordic descent from
Finland and Sweden. Interestingly, the novel variant was
observed in one AA case. Further analysis revealed both of his
chromosomes were of EA ancestry at the site of the gene
(105). Thus, more robust association studies are necessary to
identify novel significant variants in AA men, who are a
heterogeneous population.

BRCA1 and BRCA2 are tumor suppressor genes responsible
for repairing damage to DNA and play an important role in
cellular integrity. The BRCA genes are most notable for their
essential roles in increased hereditary cancer risk of the breast
and ovary. However, studies have also implicated these genes in
PCa etiology (106, 107). Similar to the effect of BRCA1/2
mutations in hereditary breast and ovarian cancer, BRCA1/2
variants have been shown to be moderately elevated to increase
PCa risk across populations (108). In the Ashkenazi Jewish
population, the association of BRCA1 variants (185delAG and
5382insC) and BRCA2 variant (6174delT) and PCa risk were
evaluated. The BRCA2 variant was shown to confer a 3-fold
increased risk of developing high grade PCa, while BRCA1
variants conferred moderate elevated risk (109). In a separate
study, Petrovics and colleagues sequenced DNA from 1240 PCa
patients (Stage T2 (N=935); advanced PCa (50% T3-4 (N=189);
and metastatic PCa (N=116)), of whom 30% of the cohort were
AA. Results revealed AA patients more frequently carried
BRCA1/2 variants when compared to EA patients (4.6 vs. 1.6%,
respectively). The study concluded that men harboring BRCA2
pathogenic variants were more likely to progress to
metastasis (110).

There is mounting evidence implicating germline mutated
MMR genes with increased PCa risk (111). Mutations in MMR
genes including MSH2 (MutS Homolog 2), MLH1 (MutL
homolog 1), PMS1 (PMS1 homolog 1), PMS2 (PMS homolog 2)
or MSH6 (MutS Homolog 6) subsequently give rise to a highly
penetrant autosomal dominant predisposition cancer known as
Lynch syndrome that increase risk for colon, endometrial,
prostate, and other cancers. Several studies have shown
deleterious mutations in these genes are causal of cancer
development across populations (112). Matejcic and colleagues
performed targeted gene sequencing, using a panel composed of
19 MMR precancer disposition genes, in 2,453 AA and 1,151
Ugandan Cases and Controls with prostate cancer. With OR’s
November 2021 | Volume 11 | Article 770500
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(Odds ratio) ranging from 4 to 15 in the combined study sample
of AA and Ugandan men, rare pathogenic variants within ATM
(ATM Serine/Threonine Kinase gene), BRCA2, PALB2 (Partner
and Localizer of BRCA2) and NBN (Nibrin) genes were observed
to be associated with increased risk of aggressive disease (113).
Interestingly, this study is the first to investigate contribution of
rare pathogenic and non-pathogenic variants in MMR genes
associated with aggressive disease in men of African descent.
Positive association with rare pathogenic variants in men of
African descent supports possible clinical importance of rare
pathogenic variants in DNA MMR genes involved in PCa
development. Taken together, further investigation of large
indels, rare pathogenic and nonpathogenic germline variants in
these or other DNA repair genes may ultimately identify high
risk groups, who may benefit from increased screening, targeted
prevention and or therapeutic approaches.
SOMATIC MUTATIONAL LANDSCAPE

In addition to the strong evidence of heritable genes that increase
PCa risk across populations, acquired mutations to germline DNA
have also been implicated (114, 115). While 10-20% of cancer cases
are hereditary, 80-90% are sporadic. Therefore, comprehensive
analysis of somatic mutations is essential to elucidate key genes
and gene variations that induce PCa development and exacerbate
PCa incidence and mortality disparities. Given the strong
association of certain somatic mutations with PCa progression
and metastasis, many candidate genes, such as AR (Androgen
Receptor) CAG/CGN repeats, TMPRSS2-ERG (Transmembrane
Protease, Serine 2- ETS related gene) fusion, LSAMP (Limbic
System Associated Membrane Protein), APC (Adenomatous
Polyposis Coli), ATM, BRCA2, KDM6A (Lysine Demethylase 6A),
KMT2C (Lysine Methyltransferase 2C), KMT2D (Lysine
Methyltransferase 2D), MED12 (Mediator Complex subunit 12),
ZFHX3 (Zinc finger Homeobox 3), and ZMYM3 (Zinc Finger
MYM-type Containing 3) have been identified. Studies have
shown somatic mutations, in these candidate genes, present with
significant differences in frequency in men of WAA compared to
men of European Ancestry.

Recent studies have investigated the consequences of CAG
and CGN repeats, in the first exon of the AR, on androgen
transcription activity as it relates to PCa risk (116). AA men
often have shorter CAG and CGN repeats than EA men, and
Zeegers and colleagues showed men with CGN repeats less than
16 have an increased PCa risk (117). However, in a cohort of
Nigerian men, Akinloye and colleagues showed no correlation of
CGN repeats and PCa risk (118).

Other studies have investigated the ERG oncogene fusion
with the TMPRSS2 gene which has been shown to be a pervasive
variant in 40%-70% of PCa cases (119). Evidence suggest higher
frequencies of TMPRSS2-ERG gene fusion in PCa tumors of EA
men compared to AA men (120); although ERG-negative status
in AA men shows association with higher-grade tumor indices
and a less favorable clinical outcome (121). In addition,
TEMPRSS-ERG acquisition appears to be inversely associated
Frontiers in Oncology | www.frontiersin.org 11
with aggressive PCa in tumors of Black South Africans (122).
Taken together, data supports a link between TMPRSS2‐
ERG status and PCa racial health disparity, beyond the borders
of the United States.

Petrovics and colleagues conducted a comprehensive analysis
of 435 genomic profiles of prostate tumors between AA and EA
men. This study utilized whole genome sequencing (7 AA men
and 7 EAmen), FISH evaluations (101 men), and SNP array (320
men). Data confirmed previously recurring somatic variants
detected in coding sequences of SPOP (Speckle-type POZ
protein), MED12, TP53 (Tumor Protein 53), KMT2C, ATM,
CTNNB1 (Catenin Beta 1) and PIK3CB (Phosphatidylinositol-
4,5-Bisphosphate 3-Kinase Catalytic subunit Beta). In addition,
PTEN (Phosphatase and Tensin Homolog) and ERG alterations
were significantly lower in AA men than EA men while
frequency of inter-chromosomal rearrangements were higher
in AA men compared to EA men. Interestingly, in addition to
identifying the presence of recurrent deletion in CHD1
(Chromodomain Helicase DNA-binding protein 1), recurrent
deletions in the LSAMP region (3q13.31) was more prevalent in
AA men than EA men (123). LSAMP deletions have been
associated with aggressive disease (124).

To further elucidate biological determinants that may play a
role in PCa disparities, recent studies have investigated genomic
alterations in prostate tumors derived from AA compared to EA
men (125). Liu and colleagues performed targeted deep NGS
(next generation sequencing) in 81 AA matched tumor-normal
pairs, to analyze somatic mutations in 39 carcinogenic driver
genes. In addition, performed a genome wide OncoScan for CNA
(copy number alterations) in 171 AA tumors. Data showed >35%
of AA men harbor damaging mutations in APC, ATM, BRCA2,
KDM6A, KMT2C, KMT2D, MED12, ZFHX3, and ZMYM3, each
with >1% of mutated copies. Also, more frequent deletions in
specific regions of the genome such as: of 2p22.2, 4q34.3, 2q22.1–
2, 15q15.1, 6q15, 8p21.2, 13q14.2, and 8q24.21 may lead to more
aggressive prostate cancer characteristics in AA compared to EA.
These frequent deletions include the genes THADA (Thada
Armadillo Repeat Containing) (9.8% vs. 3.9%), and NEIL3 (Nei
Like DNA Glycosylase 3) (9.8% vs. 3.7%), in Gleason 7 Tumors,
LRP1B (LDL Receptor Related Protein 1B) (44.4% vs. 10.2%) and
BUB1B (Bub1 Mitotic Checkpoint Serine/Threonine Kinase B)
(33.3% vs. 4.1%) in Gleason 8 Tumors, and MAP3K7 (Mitogen-
Activated Protein Kinase Kinase Kinase 7) (73.1% vs. 40.6%),
BNIP3L (BCL2 Interacting Protein 3 Like) (65.4% vs. 35.1%), and
RB1 (Retinoblastoma gene 1) (73.1% vs. 50.9%) in Gleason 9
Tumors. Interestingly, AA harbored more frequent deletions,
compared to EA, in MYC (MYC Proto-Oncogene, BHLH
Transcription) with 22.8% versus 12.9% in Gleason 7 tumors,
and 55.6% versus 18.4% in Gleason 8 tumors. Taken together, Liu
and colleagues show deletion of MAP3K7, BNIP3L, NEIL3 or
RB1, or gain of MYC significantly associates with both higher
Gleason grade and advanced pathologic stage in AA men (125).

So far, many studies characterizing somatic mutational
landscape in African descent populations have been conducted
in AAs, but there is limited number of studies in African
populations. Blackburn and colleagues assessed frequency of
November 2021 | Volume 11 | Article 770500
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TMPRSS2-ERG fusions in Black patients with various ethnicity
from South Africa and reported that TMPRSS2-ERG fusions
were found much less frequently in Black patients (12.8%) than
AAs or Europeans (122). Another study found a higher tumor
mutational burden in tumors from South African Black patients
than tumor from European patients (126). These studies provide
support for tumor molecular differences in AA men compared to
European men. Considering genomic and biologic diversity in
Africa, a great tumor molecular variation may also exist, and
there are critical needs for more tumor genomics studies in
Africa to further examine tumor molecular variation.
TUMOR MICROENVIRONMENT (TME)
AND INFLAMMATION

The normal prostate gland microenvironment consists of
epithelium (basal, stem, secretory luminal and neuroendocrine
cells); stroma, consisting of the following: smooth muscle cells,
fibroblasts, endothelial cells, and nerve cells; and the extra
cellular matrix (ECM), a stromal component consisting of
insoluble matrix and soluble factors (127). Studies have shown
that insult to the prostate—either infectious or non-infectious—
induces cellular stress and repeated genomic damage leading to
immune upregulation and inflammation which prompts
carcinogenesis (128). Both histological and clinical data
confirm that chronic inflammation contributes to the onset
and progression of cancer by altering the stromal phenotype
leading to increased ECM remodeling and initiating epithelial
mesenchymal transition (EMT) (129).

The latest reviews and meta-analyses demonstrate a strong
correlation between a history of clinical chronic prostatitis and
future PCa development in the general population (130).
Conversely, Rybicki and colleagues purported clinical
prostatitis was associated with a slightly decreased risk for
prostate cancer in AA men; however, the number of samples
are not sufficient to substantiate the claim (131). Therefore, there
is an imperative need to increase the number of studies
investigating immunity and inflammatory regulation in
prostate tumor and adjacent TMEs for high risk under-
represented populations. Kinseth and colleagues investigated
differential gene expression associated with tumor tissue and
adjacent ECM and observed 35% of significant pathways were
associated with EMT as well as 25% associated with immune
response pathways in AA men (132). Interestingly, most
differentially expressed genes were associated with stromal
tissue rather than tumor-specific tissue. ECM, Integrin family,
and signaling mediators of EMT were all downregulated in AA
compared to EA men. Gene expression differences in tissue
reveal potential identification of PCa biomarkers such as PSPH
(Phosphoserine Phosphotase) and CRYBBY2 (Crystallin Beta
B2) and highlight the importance of tumor-adjacent ECM and
stromal influence in prostate carcinogenesis for AA men (132).

While the identification of novel differential genes may
elucidate essential mechanisms involved in chronic prostatitis
leading to carcinogenesis, the elucidation of novel gene
Frontiers in Oncology | www.frontiersin.org 12
biomarkers for primary PCa diagnosis and prognosis is equally
important. Panigrahi and colleagues performed exosome
proteomics on serum extracted from AA men with PCa and
identified 10 upregulated and 10 downregulated genes involved
in inflammation and immune regulation. In addition, the study
highlighted significant essential pathways for AA men with PCa.
The top canonical pathways included Acute-phase response
signaling (Rapid inflammatory regulated pathways),
Compliment System (Immune regulated pathways), LXR (Liver
X Receptor)/RXR (Retinoid X Receptor) activation (Numerous
pathways including lipid, bile, and inflammation), FXR
(Farsenoid X Receptor)/RXR activation (numerous pathways
including lipid, bile, and inflammation), and Hematopoiesis
from Pluripotent Stem Cells (133). Further investigation and
validation of these results are needed since the E006AA-hT
cell line was used and erroneously misclassified by race and
disease type. Hooker and colleagues reported that E006AA-hT is
neither a Black nor PCa cell line, but rather it is a renal cell
carcinoma derived from a patient with 91% European descent
(134). Taken together, amelioration of PCa treatment and
diagnosis, is contingent upon proper investigation of high-risk
underrepresented populations.
VITAMIN D DEFICIENCY AND PROSTATE
CANCER DISPARITIES

Vitamin D is a steroid hormone essential for normal
physiological development, regulation of calcium homeostasis,
and bone health (135). The synthesis of vitamin D involves a
complex series of steps which begins with ultraviolet light (UV)
initiating the conversion of precursor cholesterol molecule (7-
dehydrocholesterol) into the vitamin D hormone precursor,
cholecalciferol (vitamin D3). Subsequent conversion, via
hydroxylation, takes place in the liver yielding 25(OH)D3. 25
(OH)D3 hydroxylation in the kidney gives rise to the most active
form of the vitamin D compounds, 1,25-dihydroxycholecalciferol
or calcitriol. Vitamin D compounds are then transported in
circulation after enzymatic binding to vitamin D binding
protein (DBP) or multifunctional protein in the albumin family
(Gc-MAF) (136). The synthesis of vitamin D initiates activation
of Vitamin D Receptors (VDR), which form heterodimers with
retinoid X receptors. Together, the heterodimer (VDR-RXR)
complex recognizes vitamin D response elements (VDRE) in
target genes and activation or represses numerous genes
throughout the genome. This unique complex pathway
synthesis of vitamin D synthesizes metabolites that are not only
associated with calcium-related conditions, including
osteoporosis (137), but also with non-calcium related
conditions such as Covid-19 (138), breast, colon, and prostate
cancers (139).

The anti-cancerous effects of vitamin D metabolites on tissue
have been extensively studied. In vivo and in vitro functional
studies have established vitamin D metabolites as exerting anti-
proliferative, anti-inflammatory, pro-apoptotic, and pro-
differentiating properties in a myriad of cell types (140).
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Meeker and colleagues showed that increased concentrations of
vitamin D in Smad3 knockout mice was beneficial in preventing
inflammation-associated bacterially driven colon cancer and
inflammatory bowel disease (IBD). Data suggest that the anti-
inflammatory properties of vitamin D are due to the suppression
of inflammatory markers, such as NFkB (Nuclear Factor Kappa
Beta 1) and MAPK (Mitogen Activated Protein Kinase), during
the initiation of neoplasia in the colon (141). In breast cancer
cells, Calcitriol initiates transcriptional repression of aromatase
via promoter II in breast cancer cells and surrounding adipose
tissue (142). In PCa cells, androgens elicit cellular growth via
androgen receptor-mediated reactions. There is substantial
evidence that establishes a crosstalk between calcitriol and
androgen signaling of some PCa cells. Calcitriol seems to
regulate the expression of androgen receptor which impacts
cellular differentiation and growth inhibition (143).
Epidemiological studies have shown that PCa patients with low
serum vitamin D levels are likely to suffer higher PCa stage,
grade, and mortality (144). Concurrently, vitamin D deficiency is
common among AAs (145). This deficiency may largely be
attributed to the presence of increased melanin inhibiting the
skin from absorbing UV light from the sun, subsequently
inhibiting conversion of free cholesterol into vitamin D3 in the
body. While vitamin D deficiency is associated with increased
PCa risk in men of African descent, functionally altering SNPs in
the VDR may exacerbate the link to PCa risk and aggression.
Jingwi and colleagues conducted an association study on 446 AA
men from the AA Sporadic PCa study (AAPCA) and the vitamin
D and PCa Risk in AAMen study including participants aged 35-
93 years from the metropolitan area in Washington D.C. Data
revealed VDR SNPs, rs731236 and rs7975232, to be significantly
associated with PCa risk. VDR SNPs, rs731236, rs1544410, and
rs3782905 were strongly associated with high PSA levels while
VDR SNPs, rs1544410 and rs2239185, were associated with high
Gleason score (146). Although the sample size was too small to
confidently establish causal relationship between VDR SNPs,
PCa risk and clinicopathological features (such as Gleason and
PSA levels) in AA men, data suggests higher prevalence of select
SNPs, in AA compared to EA men, may also contribute to the
PCa disparity. Taken together, vitamin D metabolites have vast
anti-carcinogenic properties. Given the innate vitamin D
deficiency and concomitant burden of AAs suffering
disproportionately from PCa risk and mortality, it is plausible
to suggest increasing vitamin D levels in AAs, could mitigate the
PCa disparity gap and elucidate novel pathways for
therapeutic intervention.
THE ILLUSION OF INCLUSION IN
PROSTATE CANCER CLINICAL TRIALS

AA men diagnosed with PCa are more likely to suffer delayed
treatment administration (4, 147) and less likely to receive
definitive treatment (148). This delay contributes to worse
outcomes. While co-morbidities such as obesity, diabetes, and
hypertension occur more frequently in AA men and may alter
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the efficacy of optimal treatment (149), there is evidence to
suggest that timely exposure to treatments can reverse this trend
of poorer prognosis. In fact, recent studies report that AA men
respond better than other men to several treatment options for
advanced PCa. For example, the PROCEED study which treated
over 1900 metastatic castration-resistant PCa (mCRPC) patients
with sipuleucel-T reported longer median overall survival in AA
vs. EA patients (150). In a separate meta-analysis comparing
overall survival in 8,820 mCRPC patients treated with docetaxel
plus prednisone, AA men fared better (151). This increased
overall survival reported in AA men occurred despite younger
age, worse performance status, higher testosterone, higher PSA,
and lower hemoglobin described within this population. In a
prospective, multicenter study of 100 mCRPC patients treated
with abiraterone acetate and prednisone entitled ABI RACE, AA
patients experiences greater median PSA progression-free
survival rates as well as increased rates of PSA decline (152).
While adverse events were similar in all patients, fatigue was
notably lower in AA men.

While these reported results are certainly encouraging, there
remains a tremendous opportunity to fully elucidate the
mechanisms driving the racial differences in treatment
outcomes for AA men with PCa. Without race-stratified
clinical trials inclusive of an adequate amount of AA study
participants, these improved therapeutic responses would
remain elusive. AAs are less likely to be enrolled in clinical
trials which limits opportunities to access cutting-edge treatment
options (153). The barriers to clinical trial enrollment are many
and include trust, access to healthcare, education, and
communication gaps (39). Given the history of targeted
medical victimization of AAs throughout U.S. history, it is easy
to comprehend the widespread medical mistrust that continues
to exist. Many examples of medical abuse in clinical research
exist for this population, however the Tuskegee Syphilis Study
may be the most prominent. From 1932-1972, the U.S. Public
Health Service passively monitored the deliberate withholding of
curative penicillin from approximately 400 AA men who had
syphilis (154). The purpose of the modified experimental design
was to observe the complete physiological demise incurred from
the disease. The result was the unnecessary suffering of these men
and the spread of syphilis in their families and communities. The
impact of the Tuskegee experiment cannot be understated, and
the psychological influence continues to trickle down to the
decision-making process for many AA patients seeking
medical care.

While the history of clinical trial enrollment and experience
has been bleak for AAs in the U.S., there is hope for
improvement. The recent spotlight on health disparities in
COVID-19 outcomes and limited enrollment of study
participants of African ancestry in associated vaccine clinical
trials has brought this issue to the forefront (155). For
researchers focused on tackling the overall problem of health
disparities, this topic is not new. Therefore, there are several
strategies in motion to actively address the need for increased
participation by minority individuals. Tactics include increased
funding to encourage health disparities research as well as
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financial incentives to cover the direct and indirect costs of trial
participation for enrolled patients. In addition, concerned
medical institutions are reducing travel concerns by expanding
community sites to neighborhoods that are inclusive of
individuals at high-risk of disease disparities (39).

The potential of improved survival outcomes in AA men with
PCa is directly linked to increased efforts to design and
implement race-stratified clinical trials. By including an
adequate number of AA study participants, an immediate
benefit will be provided to the high-risk patients receiving
novel therapies. As an example, a current clinical trial
combining talazoparib—an inhibitor of PARP (Poly (ADP-
Ribose) Polymerase 1)—with androgen deprivation therapy and
abiraterone acetate to treat patients with metastatic castration-
sensitive PCa seeks to determine the effect of androgen receptor
genetic variations on PSA nadir as a secondary outcome measure
(156). Special attention and effort have been incorporated into
the study protocol by the trial co-investigators (R.A.K. and
L.W.B.) to ensure substantial accrual of AA men as well as
men from other racial/ethnic groups to observe potential
differential treatment responses associated with genetic
variations. As inclusive trials such as these are completed,
optimized plans of treatment based on observed and
documented variations in treatment response will transition
into standard clinical practice. Thorough assessments of
modifiable and non-modifiable risk factors in race-stratified
clinical trials will catapult the full potential for efficacious
target treatments and advance precision medicine.
FULFILLING THE PROMISE OF
PRECISION MEDICINE

Since most GWAS-identified SNPs have not been replicated
in AAs, there is a pressing need to identify these risk alleles in
African descent populations. Elucidation of PCa genetics in
African descent populations will provide improved insight on
Polygenic risk scores (PRS), risk assessment and stratification,
improved prognosis and ultimately improved outcomes in the
population (157). However, heterogeneous associations due to
differences in linkage patterns, population specific risk variants,
differences in risk allele frequency, and many other factors affect
transferability of the PRS, and the PRS developed based on
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GWAS in European populations is less accurate predicting
disease risk (158, 159). Nonetheless, a multi-ancestry GWAS
meta-analysis showed that African ancestry men have more than
2-fold higher mean PRS than European ancestry men illustrating
overall increased genetic risk in men of African ancestry.
Development and application of African ancestry specific PRS
combined with PSA screening will help identify high-risk men
who are likely to develop clinically significant PCa, while
reducing overdiagnosis and overtreatment.

These current challenge in biomedical research is securing
that the benefits of Precision Medicine are equitable across all
populations. While recognizing that social/cultural, behavioral,
and health care access factors are important causes of health
disparities, many believe that genomic research can play
important roles in reducing health disparities by understanding
population differences in genetic risk factors, treatment response,
and also interactions between gene and environment (social/
cultural and lifestyle factors) and epigenomic variation. At the
same time, some raised concerns about how genomics study
findings may re-enforce the common misconception about race
as a biological classification, as our understanding of
genetic basis of health disparities increases. However,
underrepresentation in research studies and the lack of
genomic technology availability in racial/ethnic minority
groups (e.g., lack of appropriate genetic testing for racial/ethnic
minority groups) may widen health disparities.
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