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Abstract

Cells need to allocate their limited resources to express a wide range of genes. To understand how Escherichia coli partitions
its transcriptional resources between its different promoters, we employ a robotic assay using a comprehensive reporter
strain library for E. coli to measure promoter activity on a genomic scale at high-temporal resolution and accuracy. This
allows continuous tracking of promoter activity as cells change their growth rate from exponential to stationary phase in
different media. We find a heavy-tailed distribution of promoter activities, with promoter activities spanning several orders
of magnitude. While the shape of the distribution is almost completely independent of the growth conditions, the identity
of the promoters expressed at different levels does depend on them. Translation machinery genes, however, keep the same
relative expression levels in the distribution across conditions, and their fractional promoter activity tracks growth rate
tightly. We present a simple optimization model for resource allocation which suggests that the observed invariant
distributions might maximize growth rate. These invariant features of the distribution of promoter activities may suggest
design constraints that shape the allocation of transcriptional resources.
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Introduction

Bacteria face an interesting optimization problem: How to

allocate limited transcriptional resources among thousands of

different promoters. Beginning with the pioneering work of the

Copenhagen school, several studies have measured the composition

of the bacterial cell at different growth rates. Precise measurements

were made of RNA, DNA, cell mass and size, as well as ribosome

content [1–4]. These studies were performed in a handful of

conditions at balanced growth (exponential phase), using methods

such as sucrose gradient centrifugation [1] and RNA pulse labeling

and hybridization [2]. It was found that growth rate is a key

parameter determining cellular composition [1,5–9]. Total DNA,

RNA and cell size were found to increase with growth rate, while

protein elongation rate and total protein concentration remain fairly

constant. One of the important findings of these studies was that the

ribosome fraction increases linearly with growth rate [3,4,10–14]. A

recent study also demonstrated that partition of RNA polymerases

dependes on growth rate as well [15]. To complement this work on

general cell composition, one needs to measure the activity of

individual promoters on a genome wide scale under diverse

conditions and at different growth rates and stages of growth.

Here we study the transcriptional resource allocation in E. coli

on a genomic scale. We used a robotic assay based on a recently

described approach [16] to measure the promoter activity at high

accuracy and temporal resolution in a variety of growth

conditions. This approach allows tracking the promoter activity

as a function of time as cells grow from exponential to stationary

phase in diverse conditions.

We find that the distribution of promoter activities at a given

growth rate is invariant to growth conditions. This distribution

shows a heavy-tail, with promoter activities that span nearly four

orders of magnitude. The distribution shape depends somewhat on

growth rate: The higher the growth rate the more skewed the

distribution. The distribution can be decomposed into at least two

distinct classes of promoters showing different behavior between

conditions: ribosomal promoters and metabolic promoters. The

class of ribosomal promoters is invariably highly expressed in a

correlated manner between conditions, while the promoters of

metabolic proteins are expressed at low-intermediate levels and

vary between different growth conditions. Fractional ribosomal

promoter activity closely follows growth rate in the non-balanced

growth conditions studied. We also study a simple optimization

model for resource allocation, which suggests that the observed

invariant distribution can maximize the growth rate.

Results

Dynamics of promoter activity on a genomic scale in E.
coli under various growth conditions

We sought to measure the activity of E. coli promoters as a

function of time in different conditions and phases of growth. To
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measure promoter activity we used a comprehensive library of

1,920 reporter strains, each of which contains a low-copy plasmid

with a rapidly folding GFP variant fused to a copy of one of the

cells’ promoters. The promoter region on the plasmid includes the

entire intergenic region. These cells turn green in proportion to

the rate of transcription from the promoter. Moreover, the GFP is

highly-stable and accumulates over time; Thus, promoter activities

can be easily extracted by following the derivative of the

fluorescent signal over time. Previous work indicated that this

library can serve as an accurate tool for measuring promoter

activities [16–18].

To obtain high-throughput measurements of the entire library

under different growth conditions, we developed a new method

using robotics. We used a robotic liquid handling system to

inoculate the cells in 384-well plates, grow them in an automated

incubator, and periodically transfer them to a multi-well

fluorimeter/photometer. Cell density and fluorescence were

measured at a 16 min resolution over 14 h of growth. In the

resulting dataset, each promoter was assayed at 52 time points

over the growth curve, which spanned exponential phase and

entrance into stationary phase. Reproducibility of fluorescence at a

given growth rate was high (coefficient of variance ,20%, Fig S1).

The experiment was performed under several growth conditions

(Table 1), that had different availability of carbon, nitrogen and

other nutrients. These conditions resulted in different growth rates

and final OD levels (Table 1). Note that these growth conditions

imposed the cells to undergo continuous transient growth rates as

opposed to steady-state balanced exponential growth (Fig 1A). In

each condition, we found that different sets of promoters were

expressed with differing intensities (Fig 1A). Each condition

yielded data on the promoter activities of the cells at different

stages of growth, from early exponential to deep stationary phases.

We find that the sum of all promoter activities increases with

growth rate but that at any given growth rate it is quite constant

between conditions (Fig S2). We extracted the promoter activities

corresponding to the different growth rates and plotted their

distribution in a rank-frequency manner for further analysis

(Fig 1B).

Invariant, heavy-tailed and scale rich distribution of
promoter activities

We studied the distribution of promoter activities under diverse

conditions and growth rates. We find that the distributions are

heavy-tailed and approximately follow a power law P(x),x22 over

two decades (Fig 2A–B). The higher the growth rate, the longer the

tail of the distribution. Interestingly, we find that at a given growth

rate the distributions of promoter activities are very similar under

different growth conditions (Fig 2A–B and Fig S3, S4). Potential

variability in translation rates and mRNA stability of GFP in the

different conditions suggests that the real variability in the promoter

activity distributions at a given growth rate between different

conditions may in fact be even smaller than the ones observed. We

find an almost identical heavy-tailed distribution when measuring

the promoter activities in balanced growth (Fig S6).

The observed power-law tail is similar to that found in

microarray studies that measured the distribution of gene

expression [19,20]. Note however, that the present results are

for promoter activities (rate of transcript initiation), whereas

microarrays measure mRNA levels which are a balance of

production and degradation. In addition, the present results focus

on the distribution at distinct growth rates throughout different

growth conditions and phases of growth.

To begin to analyze this distribution, we focused on the

distribution of promoter activities of two classes of genes:

Ribosomal and metabolic genes. We find that ribosomal

promoters are always at the high end of the distribution, whereas

metabolism-related promoters are found at the low to mid ranges

of the distribution (Fig 2). This suggests that the distributions are

‘scale rich’ [21–24] rather than ‘scale free’ [25,26] in the sense that

they have defined scales for the different functional classes of

promoters.

Distributions of additional functional classes of genes also

generally display defined scales at the low to mid ranges of the

distribution (Figs S7, S8, S9, S10, S11, S12, S13, S14, S15).

Interestingly, we find that a superposition of two log-normal

distributions of promoters, one with low and one with high

average intensities, gives rise to a combined distribution that

resembles a power-law in a log-log plot over two to three decades

(Fig 3). Thus the observed heavy-tail distribution might result from

the sum of two (or more) distributions with defined scales.

The relative positions of metabolic genes in the
distribution change between conditions

The finding that the distribution of promoter activities at a

given growth rate does not depend on growth conditions may be

Author Summary

Cells respond to a changing environment by regulating
the activity of genes. Here, we sought to understand how
E. coli cells distribute their limited transcriptional resources
among their target genes, and how this allocation varies
with growth rate and growth conditions. To achieve this,
we assayed the expression of a comprehensive library of
transcriptional reporter strains under different conditions.
High-temporal resolution measurements of promoter
activities were obtained for different growth rates
spanning recovery from stationary phase into exponential
phase and eventually deep stationary phase again. We find
that the genome-wide promoter activity follows a power-
law distribution, which depends solely on growth rate and
is independent of the specific growth conditions. More-
over, we find that the power-law distribution can be
decomposed into two log-normal distributions: metabolic
promoters that make up the low end of the distribution,
and ribosomal promoters that make up the high end of
the distribution. While distributions remained constant for
a given growth rate, the ranked expression of metabolic
promoters differed according to the specific condition.
Thus, the invariant distribution may suggest optimal
resource allocation under constrained resources. A math-
ematical theory is presented to explain these results.

Table 1. Maximal OD and growth rates in various conditions.

Conditions Maximal OD
Maximal growth rate
(cell divisions per hour)*

Glucose 0.343 (2) 0.92(1)

Glycerol 0.199(1) 0.76(1)

No amino-acids 0.145(1) 0.54(1)

Phosphate limitation 0.139(1) 0.76(1)

Nitrogen limitation 0.129(1) 0.65(1)

Ethanol 4% 0.137(1) 0.76(1)

Numbers in parentheses are standard errors in last digit.
*Maximal growth rate is the maximal growth rate which was reached by 90% of
the strains.

doi:10.1371/journal.pcbi.1000545.t001

Optimal Allocation of Transcriptional Resources
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counter-intuitive, because each condition is expected to require a

different set of genes to be expressed. Indeed, we find differences in

the relative compositions of expressed genes under the different

growth conditions (Figs 1, 2, 4).

Not only is the total distribution invariant, but also the distributions

of ribosomal and metabolic promoter activities are nearly invariant

across different conditions (Fig 2). However, there is a notable

difference between ribosomal promoters and promoters of metabolic

Figure 1. Genome-scale promoter activity assay at different growth rates. (A) Shown are the promoter activities of 1,920 promoters in E.
coli (bottom) and their average growth rate (top) under six different growth conditions measured along 14 hours. Red represents high activity, blue
represents low activity. Each expression pattern is normalized between zero and one where zero is the lowest expression level over all conditions and
time-points and one is the highest. (B) Distribution of promoter activities can be extracted for each growth rate. The figure highlights two genes, ilvL
and rpsL. Top-left curve is the growth rate of ilvL and top-right is the growth rate of rpsL. Bottom curves show the promoter activities of the two
genes – ilvL (red) and rpsL (green). The promoter activity at the point where growth rate was 0.8 divisions per hour is indicated by red and green
circles for ilvL and rpsL respectively. These values are shown on a rank-frequency plot of all promoter activities at the same growth rate, where the X-
axis shows the promoter activity levels at a given growth rate and the Y-axis shows the fraction of promoters with equal or higher promoter activity
levels at that growth rate. All plots are for the Glucose defined medium at 30uC.
doi:10.1371/journal.pcbi.1000545.g001

Figure 2. Invariant scale-rich distribution of promoter activities. (A,B) Rank-frequency plots of promoter activities for the six growth
conditions of Fig 1. Horizontal axis shows promoter activity levels at a given growth rate; Vertical axis shows the fraction of promoters with an equal
or higher promoter activity level. Black points – all genes; Empty green – ribosomal promoters; Solid red – metabolic proteins. X – glucose medium,
circles – ethanol, diamonds – glycerol, squares – no amino-acids, V – Phosphate limitation, triangles – Nitrogen limitation. (A) Data at a = 0.8 cell
divisions per hour. Black filled shapes: examples of an amino-acid biosynthesis promoter, aroL, the promoter activity levels of which vary widely
between conditions and of a ribosomal promoter rpsL, the promoter activity levels of which are quite constant between conditions. (B) Data at
a = 0.25 cell divisions per hour. Solid line is a fit to the distribution at 0.8 divisions per hour.
doi:10.1371/journal.pcbi.1000545.g002

Optimal Allocation of Transcriptional Resources
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Figure 3. Heavy-tailed distribution obtained by a mixture of two log-normal distributions. (A) Log-normal distributions with the
observed mean and standard deviation of ribosomal promoters (dashed) and metabolic promoters (solid line) at a = 0.8 divisions per hour in glucose
medium. The ribosomal function was multiplied by 5 for clarity. (B) Rank frequency plot for the resulting mixture of these two ‘scale rich’ classes.
doi:10.1371/journal.pcbi.1000545.g003

Figure 4. Promoter activities of ribosomal components are more correlated between conditions than metabolic promoters. Shown
are the rank-rank plots of ribosomal component genes (A,C) and metabolic genes (B,D) at two pairs of conditions– Glycerol vs. no amino acids (A,B)
and Glucose vs. Glycerol (C,D). Filled circles – genes for which the ranks differed by less than twofold between the two conditions. Open circles –
genes for which the rank ratio between the two conditions differed by more than twofold. Gene names for which the fold expression between
conditions changed the most are displayed. All data is at a growth rate of 0.5 cell divisions per hour.
doi:10.1371/journal.pcbi.1000545.g004

Optimal Allocation of Transcriptional Resources
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genes. The activities of ribosomal promoters are rather constant from

one condition to another (Fig 4A,C), whereas metabolic promoter

activities vary widely across conditions (Fig 4B,D). Overall, the rank

correlation across all conditions for ribosomal promoters is high

(0.92+/20.01) while metabolic promoters show significantly lower

rank correlation (0.71+/20.01) (Fig S16). In other words, the pool of

metabolic genes at a given growth rate is made up of different

proportions of mRNAs for each condition. For example, amino acid

biosynthesis genes, such as aroP, metE and trpL, rank high in expression

in the growth condition with no amino acids, but very low in

conditions with amino acid (Fig 4B). Despite the varying composition

of metabolic promoters, their summed expression seems to depend

only on growth rate and not on the specific conditions (Fig S2). They

are re-positioned in each condition but end up forming very similarly

shaped distributions.

Fraction of ribosomal expression grows linearly with
growth rate

Previous studies, conducted under balanced growth (deep exponen-

tial phase), demonstrated that total ribosomal fraction in bacteria cells

increases linearly with growth rate [3,4,10–14]. As our system allows

measuring promoter activities on a genome scale at different stages of

growth ranging form exponential to stationary phase, we analyzed the

fraction of total transcriptional resources allocated to ribosomal

promoters. We measured the sum of the promoter activities of all 19

promoters included in the library that drive ribosomal operons (these

operons contain 63 genes, making up ,70% of known ribosomal-

related promoters including ribosomal RNA and ribosomal proteins).

We find that the fraction of ribosomal promoter activity out of the

summed activity of all promoters increases linearly with growth rate

(R2 = 0.9760.03), from 7% at 0.1 cell divisions per hour to 30% at 0.7

divisions per hour (Fig 5).

Importantly, nearly the same linear curve is found for different

growth conditions and phases of growth (Fig 5). For example, the

ribosomal fraction of promoter activity for cells grown in the

absence of amino acids depends on growth rate in the same way as

cells grown with saturating levels of amino acids, despite the fact

that growth in the presence of amino acids is almost twice as fast as

that without amino acids (Table 1). The linear dependence applies

to cells in early, mid- and late-exponential phases as well as to cells

that slow growth as they enter stationary phase. Thus for a given

growth rate, the fraction of promoter activity allocated to

ribosomal promoters is relatively invariant to growth conditions.

The fact that the fraction of ribosomal promoter activities

increases linearly with increasing growth rates can explain the

more skewed distribution at higher growth rates (Fig 2). The linear

dependence on growth rate was observed not only for the sum of

all ribosomal components, but also when each of the components

(rRNA, ribosomal proteins) was considered separately (Fig S17).

Simple model for resource allocation suggests a linear
relation between growth rate and the fraction of
ribosome expression

We present a simple model that can explain the invariance of

the fractional ribosomal promoter activities under a framework of

optimal resource allocation. We follow the pioneering work of

Ehrenberg and Kurland [9], and pose resource allocation as an

optimization problem, where the cell maximizes its growth rate.

We find that this optimization problem has a surprisingly simple

solution that is independent of many details of the environment.

Figure 5. Fraction of ribosomal promoter activity increases linearly with growth rate. Shown is the sum of promoter activities of the 19
ribosomal promoters (corresponding to 63 ribosomal genes) divided by the total promoter activity of all 1,920 promoters in the library for six
different conditions at 30uC. Linear regression of the data is also shown (R2 = 0.9760.03). Note that at different environmental conditions the cells
reach different maximal growth rates (highest in the glucose condition and lowest in the condition with no amino acids). Standard errors are shown
for three representative growth rates for each condition.
doi:10.1371/journal.pcbi.1000545.g005

Optimal Allocation of Transcriptional Resources
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Consider a cell that has two types of proteins: ribosomal

proteins R that make the ribosomes that produce new proteins,

and metabolic proteins P that provide the building blocks needed

for cell growth and protein synthesis. We seek the optimal partition

between R and P that maximizes the cells’ growth rate.

To proceed, note that cell growth under most conditions is

limited by the rate of protein production. Thus one seeks to

increase R and P. This cannot be done without limit, because

one cannot increase the density of the cytoplasm beyond a

certain value. Experiments show that there is a fixed

concentration C of total protein [1,6] that is invariant to

conditions and growth rate. Thus, the concentrations of R and P

obey the conservation law

RzP~C ð1Þ

The ribosomes enhance the growth rate a by producing

proteins. For simplicity, we assume that they function as an

enzyme with Hill-type kinetics that acts on a substrate S, for

example amino acids needed for translation [9]:

a~vR
Sn

KnzSn
ð2Þ

In this equation, the rate of protein production is described as a

Hill-function of the resource S. The maximal growth rate per

ribosome at unlimited resources is v. This parameter incorpo-

rates the peptide elongation rate.

The resource S is provided by the metabolic proteins P. The

proteins in P are typically enzymes that are in much lower

concentrations than their small-molecule substrates. Hence, in this

simple case, the resource that P provides is proportional to the

concentration of P :

S~P:e ð3Þ

where the parameter e describes the availability of substrates in the

environment (the growth condition). The smaller the environ-

mental parameter e, the smaller S, and the lower the growth rate.

As we will see, this parameter will drop out of the equations and

will not play a role in the optimal solution.

The three equations can be united to a single equation for the

growth rate as a function of the fraction of ribosomal proteins,

w = R/C:

a

vC
~w

(1{w)n

Az(1{w)n ð4Þ

where the parameter A = (K/eC)n inversely depends on the richness

of the environment described by e. As shown in Fig 6, in a given

environment (given value of A), the growth rate is zero when w = 0,

because all proteins are non-ribosomal, R = 0. It is also zero at the

other extreme when w = 1, because the cell is full of ribosomes with

no P proteins to provide resources for the ribosomes to work with.

The growth rate has a maximum at intermediate w. Different

environments, represented by different values of A, give different

optimal values wopt.

Maximizing the growth rate with respect to w provides a

surprisingly simple solution. Differentiating Eq. 4 with respect to w
and equating to zero (the optimal solution) results in the following

relation:

A~
(1{wopt)

nz1

(nz1)wopt{1
ð5Þ

Substituting (5) in (4):

aopt

vC
~

nz1

n
wopt{

1

n
ð6Þ

Solving for the optimal fraction of ribosomes Ropt/C = wopt we

Figure 6. Model for resource allocation between ribosomal and metabolic proteins. Scaled growth rate (a/vC) as a function of the fraction
of ribosomal constituents w = R/C. Growth rate is maximal at intermediate levels of w (filled circles). Richer environments (lower parameter A in the
model) have higher optimal growth rates and a higher optimal w. The relation between the maximal growth rate and the ribosomal fraction at which
the maximum is obtained is linear (black line).
doi:10.1371/journal.pcbi.1000545.g006

Optimal Allocation of Transcriptional Resources
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obtain:

Ropt

C
~

1

nz1
z

n

(nza)vC
aopt ð7Þ

Thus the optimal fraction of ribosomes out of the total amount

of proteins (Ropt/C) = wopt increases linearly with growth rate.

Moreover, this relation is independent of the conditions. The same

slope and intercept are found regardless of, say, the availability

and nature of the sources of carbon, nitrogen, phosphate etc. in

the environment. Mathematically, the optimal ribosomal fraction

Ropt/C in Eq 7 does not depend on the parameters e or K. Note

that the linear relation obtained by solving the model is not a result

of the peptide-chain elongation rate being independent of growth

rate, but rather a result of the cell being in an optimal resource

allocation point.

The model can be extended to include, in addition to R and P,

general constitutively expressed housekeeping proteins E, whose

concentration does not depend on condition and growth rate. In

this case, the total concentration of proteins is made up of these

three groups R+P+E = C. The optimal resource allocation in such

a model is identical to that in Eq. 7, with a linear dependence of

the optimal ribosome fraction on the growth rate, except that the

intercept is multiplied by C9/C, where C9 = R+P.

Ropt

C
~

C
0
=C

nz1
z

n

(nz1)vC
aopt ð8Þ

To compare the model to the data, we first estimated the maximal

relative fraction of both metabolic and ribosomal promoters: C9/C

= 0.4+/20.05 (Fig S17). Using this and the observed intercept at

a= 0, R/C = 0.07 (Fig 5) we find that the Hill coefficient n which

best describes the data is n = 6.

Discussion

This study used a comprehensive library of reporter strains

together with a robotic assay to examine the effect of growth rate

on the genome-wide distribution of promoter activities in E. coli.

We find that the distribution is heavy-tailed showing a power-law

of p(x),x22, similar to that found by DNA microarrays in yeast

and fruit flies. Interestingly, we find that the distribution of

promoter activities seems to be invariant of growth conditions and

depends only on growth rate. This invariance is found under

diverse growth conditions with different limiting nutrients and

stresses, and under both exponential and post-exponential growth.

A similar heavy-tailed distribution of promoter activities is found

during exponential growth when cells are in balanced growth

(Methods and Figs S5, S6).

The finding that the distribution of promoter activities does not

change in different conditions is perhaps surprising, because one

might expect different sets of genes to be turned ON and OFF in

each condition. We find that indeed genes are differentially

expressed in each condition, but that their expression levels still fall

within the same distribution.

The distribution is scale-rich [21–24], containing a constant

high-end of ribosomal promoters, and low-mid intensity range of

metabolic promoters. The latter promoters change relative

expression levels between conditions, but adhere to the same

overall distribution. The two classes of promoters differ in the way

their relative composition varies between different growth

conditions. While the relative composition of ribosomal promoters

is quite constant across different growth conditions, the relative

composition of expressed metabolic promoters changes in a

correlated manner to the environment. The higher variability in

the relative activity of metabolic promoters may ensure that the

ribosomal machinery is fed with the necessary building blocks,

regardless of changes in the environment.

In the present study we use promoter activity measurements as

indicators for allocation of transcriptional resources, where high

transcription rates necessitate more transcriptional resources to be

allocated. Since our experimental approach is based on measuring

plasmid-based fluorescence, the copy number of virtually all of the

promoters is equal. This, however, is not the case when

considering ribosomal RNA genes which are clustered on the

chromosome in seven copies. Moreover, this cluster is in proximity

to the origin of replication which suggests that more than seven

copies are likely to be found during exponential growth. Thus,

when considering the multiple copy number of these genes, the

distribution observed in Fig 2 is expected to span a wider range.

To understand the invariance in the observed scale-rich

distribution we also studied the total fraction of promoter activities

allocated to ribosomal promoters. We find that the fraction of

ribosomal promoter activity in E. coli increases linearly with growth

rate regardless of the composition of the growth media. The linear

relation is nearly invariant to growth conditions. This can be used to

explain the shape of the promoter activity distribution in terms of

the sum of two (or more) gene class distribution, as shown in Fig 3.

While the linear relation between ribosomal fraction and growth

rate has been previously demonstrated for balanced growth [3,4,10–

14], here we find a similar linear relation in non-balanced growth at

the level of promoter activities.

We present a simple model that explains the invariance of the

promoter activity distributions by accounting for the invariant

fraction of resources allocated to the ribosomal components. The

model predicts that in order to maximize growth rate, resource

allocation at the optimal growth rates yields a linear relation

between the fraction of ribosome components and the optimal

growth rate, independently of the details of the environmental

conditions. It is important to note that the model considers protein

concentration units while our measurements are of promoter

activity levels. This is a simplification as promoter activities should

not correlate precisely with protein concentrations when consid-

ering possible post-transcriptional regulation.

Promoter activities were calculated based on measurements of

growth (od) and fluorescence (GFP). In particular, the usage of a

stable GFP enabled us to calculate the rate at which GFP

accumulates in the cells by taking the time derivative of the

fluorescence measurements. By doing so, we assumed that

regulatory processes downstream to transcription (e.g. mRNA

degradation, translation) are at a constant rate. While such

processes may vary when conditions change throughout growth,

the invariant distribution observed across all conditions suggests

that such variability is minimal. Moreover, the distributions

among the different conditions are always compared at a specific

growth rate; thus, possible variability due to different growth

conditions is probably negligible.

An interesting question is the origin of the invariant distribution

of promoter activities within the class of metabolic genes. It seems

that a fixed range of resources (in terms of total promoter activity)

is allocated to the metabolic class of promoters. Within this fixed

range of allocated resources, the relative rank of the promoters

varies according to the growth condition. A model by Furusawa et

al [19] suggests that this is a generic property of a class of large

chemical networks. It would be interesting to seek an explanation

for this invariant distribution in terms of optimal solutions of

resource allocation models similar to the one presented here.

Optimal Allocation of Transcriptional Resources
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The present experimental approach, using a robotic system to

assay a comprehensive library of reporter strains, opens the way

for large-scale measurements of promoter activities in E. coli in

diverse conditions and growth phases. It would be interesting to

extend this study to find the underlying molecular mechanisms

giving rise to the invariant distribution of promoter activities (e.g.,

measuring the distribution in mutant backgrounds, or using drugs

which prevent the cells from dividing). In particular, the

experimental setup presented here may be useful in characterizing

modulations in promoter activities following antibiotic treatments

which were recently shown to have profound effect on the cell’s

metabolic state as well as on it’s gene expression program [27,28].

The platform used in this study measures the averaged

promoter activity in a population of cells. An outstanding question

is how the distribution of single cells within a population of a given

reporter strain varies in different growth rates across different

conditions [29]. Furthermore, many genes, in particular ribosomal

proteins, are known to be regulated at the post transcriptional

level. It would be interesting to examine if the same distribution is

maintained when considering protein levels. More fundamentally,

it would be interesting to explore the design constraints that lead to

the observed invariant distribution shapes found in this study. The

possibility that the linear relation between fractional ribosomal

promoter activities and growth rate maximizes the possible growth

rate suggests that strong selection forces should optimize how

limited resources would be partitioned; however, the evolutionary

and molecular mechanisms underlying such a global design are yet

to be discovered.

Materials and Methods

Growth mediums
All media were based on M9 defined medium (0.6% Na2HPO4,

0.3% KH2PO4, 0.05% NaCl, 0.01% NH4Cl, 0.1 mM CaCl2,

1 mM MgSO4, 5?1024% Thiamin). The media used in this study

are: Gluocse (M9 minimal medium +0.5% glucose +0.1% Amino

Acids (AA, Casein peptone, Pronadisa Ltd) +50 mg/ml kanamy-

cin); Glycerol (M9 minimal medium +0.5% glycerol +0.1% AA

+50 mg/ml kanamycin); No amino-acids (M9 minimal medium

+0.5% glucose +50 mg/ml kanamycin); Phosphate limitation (M9

minimal medium diluted 1:5 into M9 minimal medium lacking

Na2HPO4 and KH2PO4 +0.5% glucose +0.1% AA +50 mg/ml

kanamycin. pH was corrected to 7 using MOPS); Nitrogen

limitation (M9 minimal medium diluted 1:5 into M9 minimal

medium lacking NH4Cl +0.5% glucose+50 mg/ml kanamycin);

Ethanol (Glucose medium +4% absolute ethanol +50 mg/ml

kanamycin). We chose the 4% ethanol condition since preliminary

assays showed that E. coli cells can grow in up to 6% ethanol

without compromising viability (although growth rate is consid-

erably reduced, Fig S18). Note that growth rates of individual

promoters exhibit a plateau during exponential growth (Fig S19).

Robotic assay for genome-wide promoter activity
The library of reporter strains, each bearing a low-copy plasmid

with a promoter of interest controlling fast-folding GFP (GFPmut2

[30]) was previously described [16]. Reporter strains were

inoculated from frozen stocks and grown over-night on glucose

medium for 16 hours in high-brim 96-well plates. The 96-well

plates were covered with breathable sealing films (Excel Scientific

Inc.). All steps from this point were carried out using a

programmable robotic system (Freedom Evo, Tecan Inc.).

Overnight cultures were first diluted 1:10 into the glucose medium

followed by a second 1:10 dilution into one of the growth media.

The second dilution was done into black non-coated 384-well

plates with optical flat bottom (Nunc), which were used for

continuous cells growth. The final volume of the cultures in each

well was 60 ml. A 20 ml layer of mineral oil (Sigma) was added on

top to avoid evaporation. The plates were inserted into a

temperature-controlled shaker station. A robotic arm moved the

384-well plates from the incubator-shaker to the plate reader

(Infinite F200, Tecan Inc.) and back. Optical density (600 nm) and

fluorescence (535 nm) were thus measured periodically at intervals

of 16 minutes over 14 h of growth. The temperature in the

incubator-shaker and in the reader was set to 30uC.

We note that anaerobic conditions may arise when growing cells

in small tubes (384-well plates). However, the fact that a power law

distribution, in which ribosomal genes make up the higher end, is

observed during well-aerated balanced growth as well (Fig S6),

suggests that this is probably a general design principle rather then

an experimental artifact. In addition, anaerobic conditions which

may affect GFP fluorescence are likely to develop in all cell

cultures in a given condition. Any such effect will equally affect the

different reporter strains and therefore will cancel out.

Although changes in growth rate affect the plasmid copy

number in the reporter strains [31], these modulations do not

affect our analysis since all library strains are based on the same

backbone-vector with the same origin of replication. Thus,

modulations of growth rates which lead to plasmid copy number

changes are likely to occur equally in all reporter strains. These

changes will eventually scale proportionally with the measured

expression levels in all reporter strains.

To ensure that reporter strains with high GFP expression do not

show slower growth rate we analyzed the correlation between

growth rate and GFP expression levels for individual strains. We

find no correlation between maximal growth rate and maximal

promoter activity of the strains (correlation coefficient = 20.007,

p = 0.75). Furthermore, rpsL, a ribosomal reporter strain (one of

strongest promoters in the library), and a promoterless strain

(which makes no GFP) grow in almost identical rate during

balanced growth as can be seen in Fig S5.

Data analysis
Data was automatically obtained from the robot software

(Evoware, Tecan) and processed using custom Matlab software.

All OD and GFP measurements were background subtracted

separately for each overnight 96-well plate cultures. Outlier

cultures in which OD curves deviated more than three standard

deviation of the mean OD curve for the plate, were discarded (less

than 5% of cultures). For each 96-well plate, a background GFP

curve was constructed by the mean of the 15% of the cultures with

lowest GFP readings. These bottom 15% usually included the two

strains with promoterless vector used as controls in each 96-well

plate. Strains whose GFP curve was below 2 standard deviations

above this background curve were considered to have undetect-

able promoter activity. Promoter activity was calculated as the

temporal derivative of the background subtracted GFP intensity

divided by the OD, PA = dGFP/dt/OD [16]. Growth rate was

calculated as the temporal derivative of the natural logarithm of

the OD curves, a= dln(OD)/dt. We considered only growth rates

which were reached by at least 90% of the cultures in a given

condition. Identities of ribosomal and metabolic proteins were

according to the physiological role annotations of Ecocyc version

8.5 [32]. Fig S20 presents the same data as shown in Fig 1 but the

order of the genes is sorted by the maximal level of the promoter

activities. All the data can be found in the Supporting Information

datasets S1, S2, S3. Promoter activities measured in this work are

averages over a population of cells. FACS measurements
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performed on each strain generally show a uni-modal distribution,

with no apparent sub-population structure (data not shown).

Error analysis. Error bars were estimated as follows – given

the standard error of 20%, estimated from the repeated strains(Fig

S1), we estimated the standard error of average ribosomal

promoter activity as sR~
0:2R

NR

� �
=
ffiffiffiffiffiffiffi
NR

p
where NR is the

number of ribosomal promoters, and the standard error of the

average total promoter activity as sC~
0:2C

NC

� �
=
ffiffiffiffiffiffiffi
NC

p
where NC

is the total number promoters. The standard error in the

estimation of R/C follows from the law of propagation of errors:

sR=C~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sR

2

C2
z

R2sC
2

C4

r
.

Measuring promoter activity during balanced growth
We chose a subset of reporter strains with different promoter

activities that together span the entire range of the power law

distribution as observed during non-balanced growth in 384-well

plates. This subset included 4 ribosomal genes and 28 metabolic

genes. We measured promoter activity in these strains under two

conditions: (1) glucose condition and (2) no amino acids condition, as

described for the assays done with 384-well plates. To achieve well-

aerated balanced growth, over night cultures were diluted 1:400 and

grown in wide-mouth glass tubes (15 mm width) with vigorous shake

(250 rpm, 30uC). Growth was monitored by OD (600 nm) and both

OD and GFP (485/535 nm) measurements were taken during

exponential growth. OD and GFP were measured by removing

150 ml from the batch culture and placing in 96-well plates (Nunc)

which were then assayed using Victor3 plate reader (Perkin Elmer).

Promoter activity was measured by taking the time derivative of the

GFP divided by OD PA = dGFP/dt/OD [16].

Supporting Information

Figure S1 Reproducibility of promoter activity measurements.

Shown are the Promoter activities of 21 identical repeats of two

control strains - wrbA and serA, each run on a different plate

(average is shown in black). The bottom plots show all pairwise

comparisons between these sets.

Found at: doi:10.1371/journal.pcbi.1000545.s001 (0.19 MB TIF)

Figure S2 Total promoter activity is relatively constant between

growth conditions but strongly dependent on growth rate. Shown

is the average over all growth conditions of the sum of the

promoter activities at different growth rates. (a) All promoters. (b)

Metabolism related promoters. Standard errors are over the

different growth conditions.

Found at: doi:10.1371/journal.pcbi.1000545.s002 (0.04 MB TIF)

Figure S3 Rank-frequency plots of promoter activities for the six

growth conditions of Fig 1. Horizontal axis is the promoter activity

levels at a given growth rate; Vertical axis is the fraction of

promoters with equal or higher promoter activity level. Black

points - all genes; Empty green - ribosomal promoters; Solid red -

metabolic proteins. X - glucose medium, Circles - ethanol,

diamonds - glycerol, squares - no amino-acids, V -Phosphate

limitation, triangles - Nitrogen limitation. (a) Data at a= 0.8 cell

divisions per hour. (b) Data at a= 0.25 cell divisions per hour.

Dashed line is a fit to the distribution at 0.8 cell divisions per hour.

Found at: doi:10.1371/journal.pcbi.1000545.s003 (0.11 MB TIF)

Figure S4 Rank-frequency plots of promoter activities for the six

growth conditions of Fig 1. Horizontal axis is the promoter activity

levels at a given growth rate; Vertical axis is the fraction of promoters

with equal or higher promoter activity level. Blue - glucose medium,

green - ethanol, red - glycerol, cyan - no amino-acids, magenta -

Phosphate limitation, black - Nitrogen limitation. (a) Data at a= 0.8

cell divisions per hour. (b) Data at a= 0.25 cell divisions per hour.

Dashed line is a fit to the distribution at 0.8 cell divisions per hour.

Found at: doi:10.1371/journal.pcbi.1000545.s004 (0.11 MB TIF)

Figure S5 Growth rate of two representative reporter strains

during balanced growth (a) in GLU condition (b) in no amino

acids condition. Blue, promoterless strain; Red, rpsL.

Found at: doi:10.1371/journal.pcbi.1000545.s005 (0.10 MB TIF)

Figure S6 Rank-frequency plots of promoter activities for 32

reporter strains in two conditions (a) GLU conditions (b) in no

amino acids condition. The strains were grown in well-aerated

glass tubes so that balanced growth was reached. The distributions

were fitted to a power law distribution and the best fit results in the

following exponents: (a) GLU condition; a= 21.87. (b) No amino

acids condition; a= 22.2. These values are very similar to the

values that best fit the distribution observed during non-balanced

growth using 384-well plates (a,22).

Found at: doi:10.1371/journal.pcbi.1000545.s006 (0.03 MB TIF)

Figure S7 Rank frequency plot of motility, chemotaxis,

energytaxis genes. Blue - glucose medium, green - ethanol, red -

glycerol, cyan - no amino-acids, magenta - Phosphate limitation,

black - Nitrogen limitation.

Found at: doi:10.1371/journal.pcbi.1000545.s007 (0.11 MB TIF)

Figure S8 Rank frequency plot of SOS response genes. Blue -

glucose medium, green - ethanol, red - glycerol, cyan - no amino-

acids, magenta -Phosphate limitation, black - Nitrogen limitation.

Found at: doi:10.1371/journal.pcbi.1000545.s008 (0.10 MB TIF)

Figure S9 Rank frequency plot of TCA cycle genes. Blue -

glucose medium, green - ethanol, red - glycerol, cyan - no amino-

acids, magenta -Phosphate limitation, black - Nitrogen limitation.

Found at: doi:10.1371/journal.pcbi.1000545.s009 (0.10 MB TIF)

Figure S10 Rank frequency plot of drug response/sensitivity

genes. Blue - glucose medium, green - ethanol, red - glycerol, cyan

- no amino-acids, magenta -Phosphate limitation, black - Nitrogen

limitation.

Found at: doi:10.1371/journal.pcbi.1000545.s010 (0.10 MB TIF)

Figure S11 Rank frequency plot of cell division genes. Blue -

glucose medium, green - ethanol, red - glycerol, cyan - no amino-

acids, magenta -Phosphate limitation, black - Nitrogen limitation.

Found at: doi:10.1371/journal.pcbi.1000545.s011 (0.10 MB TIF)

Figure S12 Rank frequency plot of house keeping genes. These

are genes that had an expression level above background in all six

conditions studied (ribosomal components were excluded). Blue -

glucose medium, green - ethanol, red - glycerol, cyan - no amino-

acids, magenta -Phosphate limitation, black - Nitrogen limitation.

Found at: doi:10.1371/journal.pcbi.1000545.s012 (0.10 MB TIF)

Figure S13 Rank frequency plot of anaerobic respiration genes.

Blue - glucose medium, green - ethanol, red - glycerol, cyan - no

amino-acids, magenta -Phosphate limitation, black - Nitrogen

limitation.

Found at: doi:10.1371/journal.pcbi.1000545.s013 (0.10 MB TIF)

Figure S14 Rank frequency plot of aerobic respiration genes. Blue -

glucose medium, green - ethanol, red - glycerol, cyan - no amino-acids,

magenta -Phosphate limitation, black - Nitrogen limitation.

Found at: doi:10.1371/journal.pcbi.1000545.s014 (0.10 MB TIF)

Figure S15 Rank frequency plot of transport genes. Blue -

glucose medium, green - ethanol, red - glycerol, cyan - no amino-

acids, magenta -Phosphate limitation, black - Nitrogen limitation.
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Found at: doi:10.1371/journal.pcbi.1000545.s015 (0.10 MB TIF)

Figure S16 Promoter activities of ribosomal components are

more correlated between conditions than metabolic promoters.

Average over all pairs of conditions between the correlation

coefficient of ranks for metabolic promoters (814 promoters) and

ribosomal and tRNA promoters (19 promoters constituting 63

genes, making up ,70% of known ribosomal-related promoters

including ribosomal RNA and ribosomal proteins).

Found at: doi:10.1371/journal.pcbi.1000545.s016 (0.06 MB TIF)

Figure S17 Fractional promoter activity vs. growth rate of (a) the

sum C9 of ribosomal promoters R and promoters of metabolic

proteins P (as defined in Ecocyc [4]). Metabolic promoters which

were expressed under all conditions were excluded, since they may

be considered as constitutive housekeeping proteins (included in

the protein class denoted E in the model). (b) ribosomal protein

promoters (c) ribosomal RNA promoters and (d) tRNA promoters.

Experiments were at 30C. Blue filled circles - glucose medium,

black filled squares - glycerol, red filled diamonds - no amino acids,

green empty circles - phosphate limited, empty cyan squares -

nitrogen limited, empty black diamonds - 4% ethanol.

Found at: doi:10.1371/journal.pcbi.1000545.s017 (0.13 MB TIF)

Figure S18 Growth curves of E. coli cells in the presence of

different concentrations of ethanol. The cells were grown

overnight in M9 minimal medium +0.5% glucose +0.1% amino

acids and diluted 1:100 on the day of the assay into the same

medium into which ethanol was added (1%, 3% and 6%). The

assay was performed using flat-bottom black optical 384-well

plates. Note that in this study we chose to use 4% ethanol in the

growth medium.

Found at: doi:10.1371/journal.pcbi.1000545.s018 (0.04 MB TIF)

Figure S19 Examples of OD measurements and calculated

growth rates for six representative genes, demonstrating a plateau

during exponential phase.

Found at: doi:10.1371/journal.pcbi.1000545.s019 (1.26 MB TIF)

Figure S20 Normalized promoter activities sorted according to

maximal level. Each row holds the promoter activities of one

promoter (normalized between 0 and 1) as in Figure 1, sorted from

low (top) to high (bottom) activities.

Found at: doi:10.1371/journal.pcbi.1000545.s020 (0.84 MB TIF)

Dataset S1 All promoter activities and OD at each condition.

Found at: doi:10.1371/journal.pcbi.1000545.s021 (21.49 MB

XLS)

Dataset S2 All of the data at a= 0.8 and a= 0.25 divisions per

hour, including mean, standard deviation and CV for all values

greater than zero.

Found at: doi:10.1371/journal.pcbi.1000545.s022 (0.39 MB XLS)

Dataset S3 Annotation classes of each gene.

Found at: doi:10.1371/journal.pcbi.1000545.s023 (2.98 MB XLS)
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