
1Scientific RepoRts | 7: 455  | DOI:10.1038/s41598-017-00557-2

www.nature.com/scientificreports

Hydrogen sulfide ameliorates 
chronic renal failure in rats 
by inhibiting apoptosis and 
inflammation through ROS/MAPK 
and NF-κB signaling pathways
Dongdong Wu1, Ning Luo2, Lianqu Wang2, Zhijun Zhao3, Hongmin Bu2, Guoliang Xu2, Yongjun 
Yan2, Xinping Che2, Zhiling Jiao2, Tengfu Zhao2, Jingtao Chen2, Ailing Ji1, Yanzhang Li  1 & 
Garrick D. Lee2

Chronic renal failure (CRF) is a major public health problem worldwide. Hydrogen sulfide (H2S) plays 
important roles in renal physiological and pathophysiological processes. However, whether H2S could 
protect against CRF in rats remains unclear. In this study, we found that H2S alleviated gentamicin-
induced nephrotoxicity by reducing reactive oxygen species (ROS)-mediated apoptosis in normal rat 
kidney-52E cells. We demonstrated that H2S significantly improved the kidney structure and function 
of CRF rats. We found that H2S decreased the protein levels of Bax, Caspase-3, and Cleaved-caspase-3, 
but increased the expression of Bcl-2. Treatment with H2S reduced the levels of malondialdehyde and 
ROS and increased the activities of superoxide dismutase and glutathione peroxidase. H2S significantly 
abolished the phosphorylation of extracellular signal-regulated protein kinase 1/2, c-Jun N-terminal 
kinase, and p38 in the kidney of CRF rats. Furthermore, H2S decreased the expression levels of tumor 
necrosis factor-α, interleukin (IL)-6, IL-10, and monocyte chemoattractant protein-1, as well as the 
protein levels of p50, p65, and p-p65 in the kidney of CRF rats. In conclusion, H2S could ameliorate 
adenine-induced CRF in rats by inhibiting apoptosis and inflammation through ROS/mitogen-activated 
protein kinase and nuclear factor-kappa B signaling pathways.

As the incidence of chronic renal failure (CRF) increases at an alarming rate, CRF has been considered a major 
public health problem worldwide1. CRF is a syndrome characterized by progressive and irreversible deterioration 
of renal function2. In humans, CRF is mainly caused by hypertension, glomerulonephritis, and diabetes mellitus3, 4.  
This condition is made worse by a deterioration in nutrition level caused by accumulation of uremic toxins and 
reduced food intake, which could be attributed to many factors, such as gastrointestinal congestion, loss of appe-
tite, and reduced glomerular filtration rate4–6. Compared to patients with other chronic diseases, patients with 
CRF tend to require longer and more frequent hospitalizations which are associated with higher morbidity and 
mortality7. Therefore, it is urgent to develop alternative medicines and novel therapies for the treatment of CRF.

Hydrogen sulfide (H2S) has recently been identified as the third endogenous gaseous transmitter that is enzy-
matically synthesized by cystathionine γ-lyase (CSE), cystathionine β-synthase (CBS), and 3-mercaptopyruvate 
sulfurtransferase (3-MST) in mammalian tissues8, 9. These enzymes have been identified in the kidney and are 
responsible for endogenous renal H2S production10–12. An increasing number of studies indicate that H2S plays 
an important role in renal physiology and pathology11, 13, 14. The physiological level of H2S leads to vasodilation 
and increases glomerular filtration rate and renal blood flow, which causes an indirect increase of the urinary 
excretion of K+ and Na+ 13. Under pathological conditions, H2S exerts the protective role in a number of exper-
imental models of renal disease, including obstructive nephropathy11, renal ischemia-reperfusion injury15, and 
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diabetic nephropathy16. Recent studies demonstrated that H2S is significantly lower in plasma and tissues of ure-
mic patients and 5/6 nephrectomy rats17–19. Considering the beneficial effects of H2S in renal physiology and 
pathology, we hypothesize that the application of exogenous H2S may effectively protect against CRF.

Gentamicin (GEN), an aminoglycoside antibiotic, plays an important role in the treatment of a wide range of 
gram-negative bacterial infections. However, nephrotoxicity is considered as its major side effect, which seriously 
limits its clinical use20, 21. GEN has been widely used in in vitro models through inducing nephrotoxicity, such 
as normal rat kidney (NRK)-52E cells20–22. In this study, we investigated the effects of H2S on the nephrotoxicity 
induced by GEN in NRK-52E cells. The adenine-induced CRF model in rats is a standard method for induc-
ing metabolic abnormalities closely resembling those observed in uremic patients23, 24. Therefore, a rat model of 
adenine-induced CRF was used in the present study. We also investigated the effects and mechanisms of H2S on 
adenine-induced CRF in rats.

Materials and Methods
Cell culture. NRK-52E cells were obtained from iCell Bioscience Inc. (Shanghai, China) and maintained in 
Dulbecco’s modified Eagle’s medium (DMEM)/F12 medium supplemented with 10% fetal calf serum, 100 µg/ml 
streptomycin, and 100 U/ml penicillin. Cells were cultured in a humidified incubator with 5% CO2 and 95% air 
at 37 °C. Confluent NRK-52E cells were transferred to serum-free DMEM/F12 medium for overnight starvation 
before each experiment. NRK-52E cells were incubated with 3 mM GEN for 24 h to induce nephrotoxicity25. The 
cells were divided into three groups: Control group, GEN group, and GEN+H2S group. The control and GEN 
groups were treated with phosphate-buffered saline (PBS) and the GEN+H2S group was treated with 100 µM 
NaHS (an H2S donor, dissolved in PBS). Treatments with PBS and NaHS were concomitant to GEN-induced 
nephrotoxicity for 24 h.

Cell growth assay. For 5-ethynyl-2′-deoxyuridine (EdU) incorporation assay, the proliferating cells were 
examined using the Cell-Light EdU Apollo 567 In Vitro Imaging Kit (RiboBio, Guangzhou, Guangdong, China). 
Briefly, after incubation with 10 mM EdU for 2 h, NRK-52E cells were fixed with 4% paraformaldehyde, perme-
abilized with 0.3% Triton X-100 and stained with the fluorescent dyes. 4′,6-diamidino-2-phenylindole (DAPI) 
(5 mg/ml) was used to stain the cell nuclei for 10 min at room temperature. Then the cells were visualized under 
a fluorescent microscope (Eclipse Ti, Nikon, Melville, NY, USA) from five random fields. Cell proliferation 
rate = (EdU-positive cells)/(total number of cells) × 100%. Cell growth was also measured using the CellTiter 96 
AQueous One Solution Cell Proliferation Assay kit (MTS; Promega, Madison, WI, USA) according to the manu-
facturer’s protocols.

Detection of intracellular reactive oxygen species (ROS). Intracellular ROS generation was meas-
ured by using a 2′,7′-dichlorofluorescin diacetate (DCF-DA)-Cellular Reactive Oxygen Species Detection Assay 
Kit (Beyotime Institute of Biotechnology, Shanghai, China). Cells were incubated with 10 μM DCF-DA for 30 min 
at 37 °C and washed three times with PBS. The fluorescence was observed by a fluorescent microscope (Eclipse 
Ti, Nikon, Melville, NY, USA) from five random fields and measured by ImageJ software (National Institutes of 
Health, Bethesda, MD, USA).

Cellular apoptosis analysis. Cellular apoptosis was analyzed by performing a terminal deoxynucleotidyl 
transferase-mediated dUTP nick end labeling (TUNEL) assay using an in situ cell death detection kit (Beyotime 
Institute of Biotechnology, Shanghai, China) following the manufacturer’s instructions. After 4% paraformalde-
hyde fixation and 0.1% Triton X-100 permeabilization, cells were incubated with 50 μl TUNEL reaction mixture 
for 60 min at 37 °C in the dark and then rinsed with PBS three times. Then after a 10 min DAPI (5 mg/ml) coun-
terstain at room temperature, cells were photographed with a fluorescent microscope (Eclipse Ti, Nikon, Melville, 
NY, USA) from five random fields. The apoptotic index = (positively stained apoptotic cells)/(total number of 
cells) × 100%.

Ethics statement. Animal experiments were approved by the Committee of Medical Ethics and Welfare for 
Experimental Animals of Henan University School of Medicine in compliance with the Experimental Animal 
Regulations formulated by the National Science and Technology Commission, China. Animal experiments were 
conducted in accordance with the committee’s approved guidelines.

Animals. Twenty-four male Wistar rats (7–9 weeks old), initially weighing 180–220 g, were purchased from 
the Nanjing Biomedical Research Institute of Nanjing University (Jiangsu, China). Rats were housed in individ-
ual ventilated cages under standard temperature (22 ± 2 °C), humidity (50–60%), and light conditions (12-hour 
light/dark cycle) with food and water ad libitum. Rats were allowed to acclimatize to new surroundings for 1 
week before the experiment began. CRF was induced with 0.2% adenine mixed with powdered food for 4 weeks. 
A normal renal function control group was also allocated. The rats from control and CRF groups received an 
intraperitoneal (i.p.) injection of saline and the rats from the CRF+H2S group received an i.p. injection of NaHS 
(100 μmol/kg/day, dissolved in saline)26. Treatments with saline and NaHS were concomitant to adenine-induced 
CRF for 4 weeks. During the treatment periods, the rats were weighed weekly and the food intake, water intake, 
and urine volume were measured in 24 h. At the end of experiments, the rats were killed and the plasma was col-
lected. Tissues were rapidly removed, weighed and thoroughly washed with ice-cold saline. Then the tissues were 
frozen in liquid nitrogen or immersed in 4% neutral buffered formalin or embedded in FSC 22 frozen section 
compound (Leica, Buffalo Grove, IL, USA). Plasma samples and frozen tissues were stored at −80 °C.

Histological analysis. The renal tissues were fixed in formalin, embedded in paraffin, and cut into 
5-μm-thick sections which were then stained with hematoxylin and eosin (HE) and Masson’s trichrome (MT). 
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The histopathological score was obtained based on the loss of brush border, grading of tubular necrosis, tubular 
dilatation, and cast formation in six randomly chosen, non-overlapping fields as follows: 0 (none), 1 (≤10%), 2 
(11–25%), 3 (26–45%), 4 (46–75%), and 5 (≥76%)27. The extent of renal interstitial fibrosis (RIF) was scored from 
0 to 3 as follows: 0 = absent, 1 = less than 25% of the area, 2 = 25–50% of the area, and 3 = more than 50% of the 
area. The RIF index was obtained by the following formula: RIF index = (0 × n 0 + 1 × n 1 + 2 × n 2 + 3 × n 3)/(n 
0 + n 1 + n 2 + n 3) × 100%28. All specimens were anonymized and evaluated in a blinded manner. The sections 
were observed with an Olympus BX51 microscope (Olympus, Tokyo, Japan) and analyzed by ImageJ software 
(National Institutes of Health, Bethesda, MD, USA).

Biochemical analysis. Blood urea nitrogen (BUN), creatinine (Cre), and urinary protein (UP) were meas-
ured using Beckman Coulter AU5800 (Beckman Coulter Inc., Brea, CA, USA). The levels of white blood cell 
(WBC), red blood cell (RBC), hemoglobin (HGB), and hematocrit (HCT) were determined by Mindray BC-6900 

Figure 1. Effects of H2S on the viability and proliferation of the GEN-treated NRK-52E cells. (a) The cell 
proliferation was determined by EdU assay. The proliferative cell nuclei were stained by EdU assay with red, 
and all nuclei were stained by DAPI with blue (original magnification, ×100). (b) The cell proliferation rate 
was calculated. (c) The cell viability was detected by MTS assay. Values were presented as mean ± SEM (n = 6); 
*P < 0.05, **P < 0.01 compared with the control group; #P < 0.05, ##P < 0.01 compared with the GEN group.
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Figure 2. Effects of H2S on the intracellular ROS production and apoptosis in GEN-treated NRK-52E cells. 
(a) The intracellular ROS production was detected using the fluorescent probe DCF-DA (shown in green; 
original magnification, ×100). (b) The cell apoptosis was determined by TUNEL assay. Apoptotic cell nuclei 
were stained by TUNEL assay with red, and all nuclei were stained by DAPI with blue (original magnification, 
×100). (c) The intracellular ROS production was measured. (d) The apoptotic index was calculated. Values were 
presented as mean ± SEM (n = 6); *P < 0.05, **P < 0.01 compared with the control group; #P < 0.05, ##P < 0.01 
compared with the GEN group.
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auto hematology analyzer (Mindray, Shenzhen, Guangdong, China). Monocyte chemoattractant protein (MCP)-
1, tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-10 in kidney tissues were determined using commer-
cial ELISA kits (Elabscience, Wuhan, Hubei, China) according to the manufacturer’s protocols.

Western blot analysis. Renal tissues were homogenized in RIPA lysis buffer (Sigma, St. Louis, MO, 
USA). Protein concentrations of the homogenates were measured by the BCA protein assay kit (Beyotime 
Institute of Biotechnology, Shanghai, China). The extracted proteins (50 μg) were separated on SDS-PAGE gel 
and transferred to a PVDF-nitrocellulose membrane. After blocking, the membranes were incubated with pri-
mary antibodies to detect the target proteins. Anti-extracellular signal-regulated protein kinase 1/2 (ERK1/2), 
anti-phospho (p)-ERK1/2 (Thr202/Tyr204), anti-c-Jun N-terminal kinase (JNK), anti-p-JNK (Thr183/Tyr185), 
anti-p38, anti-p-p38 (Thr180/Tyr182), anti-p50, anti-p65, and anti-p-p65 (Ser536) antibodies were purchased 

Figure 3. Effects of H2S on the physiological parameters in CRF rats. (a) Food intake. (b) Water intake. (c) The 
body weight change of rats. (d) Relative kidney weight of rats. (e) Urine volume. (f) Urinary protein. Values 
were presented as mean ± SEM (n = 8); *P < 0.05, **P < 0.01 compared with the control group; #P < 0.05, 
##P < 0.01 compared with the CRF group.
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from Cell Signaling Technology (Danvers, MA, USA). Anti-Bax, anti-Bcl-2, anti-Caspase-3, anti-Cleaved 
Caspase-3, and anti-β-actin antibodies were purchased from ProteinTech (Chicago, IL, USA). The horseradish 
peroxidase-conjugated secondary antibody was purchased from Cell Signaling Technology. The reaction was vis-
ualized using an enhanced chemiluminescence system (Thermo Fisher Scientific, Rockford, IL, USA). The bands 
were quantified by densitometry using ImageJ software.

Measurement of oxidative stress products. The kidney tissues were placed in cold physiological saline, 
homogenized with a homogenizer machine (Scientz Biotechnology Co., Ltd., Ningbo, Zhejiang, China), and then 
centrifuged at 1000 g for 10 min to produce the supernatant fluid. The levels of malondialdehvde (MDA) and 
ROS, as well as the activities of glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) were meas-
ured using commercial kits (Nanjing Jiancheng Bioengineering Institute, Nanjing, Jiangsu, China) according to 
the manufacturer’s instructions.

Figure 4. Effects of H2S on the kidney function and blood routine parameters in CRF rats. (a) BUN. (b) Cre. 
(c) White blood cell. (d) Red blood cell. (e) Hemoglobin. (f) Hematocrit. Values were presented as mean ± SEM 
(n = 8); **P < 0.01 compared with the control group; #P < 0.05, ##P < 0.01 compared with the CRF group.
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Statistical analysis. All results were presented as the mean ± standard error of the mean (SEM). Statistical 
differences were analyzed by one-way analysis of variance (ANOVA) using SPSS 17.0 software, followed by LSD 
post hoc test. A P value of less than 0.05 was considered to be statistically significant.

Results
H2S relieves GEN-induced cytotoxicity in NRK-52E cells. As revealed by the EdU assay, the incuba-
tion of NRK-52E cells with GEN (3 mM) led to a significant reduction in cell proliferation (Fig. 1a,b). By contrast, 
administration of H2S induced a significant increase in cell viability, compared with the GEN group. Furthermore, 
as shown in Fig. 1c, GEN decreased the cell viability, while H2S treatment significantly increased the cell viability. 
Collectively, these data demonstrate that H2S could effectively relieve GEN-induced cytotoxicity in NRK-52E 
cells.

H2S protects NRK-52E cells from GEN-induced ROS production and apoptosis. Inducing apop-
tosis is a key nephrotoxic mechanism in GEN-treated NRK-52E cells22. ROS have been considered important 
mediators of GEN-induced apoptosis. ROS generation is often involved in the mitochondrion-mediated signaling 

Figure 5. Effects of H2S on morphological changes in the kidney of CRF rats. (a) The kidney pathological 
changes were detected by HE staining (original magnification, ×100). (b) The tubulointerstitial fibrosis was 
detected by Masson staining (original magnification, ×100). (c) The histopathological score was calculated. (d) 
The extent of the renal lesions was represented by the RIF index. Values were presented as mean ± SEM (n = 6); 
**P < 0.01 compared with the control group; #P < 0.05, ##P < 0.01 compared with the CRF group.
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pathway of apoptosis29. Compared with the control group, ROS generation increased 5.8- fold in GEN group, 
and H2S significantly reduced ROS generation by 3.8-fold compared with the GEN group (Fig. 2a,c). In addi-
tion, apoptotic index increased 21.8% in GEN group compared with the control group and decreased 13.4% in 
the GEN+H2S group compared with the GEN group (Fig. 2b,d). These results indicate that H2S could alleviate 
GEN-induced nephrotoxicity by reducing ROS production and apoptosis in NRK-52E cells.

Figure 6. Effects of H2S on the protein expression of Bax, Bcl-2, Caspase-3, and Cleaved Caspase-3 in the 
kidney of CRF rats were measured. (a) The expression levels of Bax, Bcl-2, Caspase-3, and Cleaved Caspase-3 
were detected by Western blot. β-actin was used as an internal control. Bar graphs showed the quantification 
of Bax (b), Bcl-2 (c), Caspase-3 (d), and Cleaved Caspase-3 (e). Values were presented as mean ± SEM (n = 3); 
*P < 0.05, **P < 0.01 compared with the control group; #P < 0.05, ##P < 0.01 compared with the CRF group.
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H2S improves general status of CRF rats. As shown in Fig. 3a,b, in comparison with the control group, 
CRF rats exhibited decreased food intake and increased water intake, H2S treatment significantly reversed 
these changes. A trend in the decrease of body weight in CRF rats, which was altered by H2S, has been observed 
(Fig. 3c). In addition, CRF rats showed increased relative kidney weight, urine volume, and urinary protein 
when compared with the control group, which were dramatically reversed by H2S treatment (Fig. 3d–f). In sum, 
these results show that H2S could significantly improve the general status of the rats with adenine-induced renal 
damage.

H2S enhances the kidney function of CRF rats. Plasma BUN and Cre are the most commonly used 
markers of kidney function in clinical practice30, 31. The concentrations of BUN and Cre and WBC count were sig-
nificantly increased whereas HGB, HCT, and RBC count were dramatically decreased in CRF group compared to 
the control group (Fig. 4). These results indicate that the rat model exhibited typical pathologic features associated 
with CRF. Compared with the CRF group, the CRF+H2S group showed remarkably lower Cre and BUN levels 
and WBC count and significantly higher HGB, HCT, and RBC count (Fig. 4). These results demonstrate that the 
kidney function of CRF rats could be effectively enhanced by administration of H2S.

H2S ameliorates renal injury in CRF rats. Figure 5 showed representative photomicrographs of the HE 
and MT stainings of the kidney tissues from the control, CRF, and CRF+H2S groups. There were no signs of dam-
age in the control group. The kidney tissues of CRF rats showed severe renal injury marked by severe interstitial 
inflammatory cell infiltration, tubular dilation and atrophy, as well as fibrosis. These results indicate that the rat 
model exhibited the typical pathological features associated with CRF, which were consistent with previous stud-
ies32, 33. The severity of renal injury in rats with CRF was significantly ameliorated by treatment with H2S.

H2S reduces apoptosis level in the kidney of CRF rats. Cell apoptosis can be widely detected in CRF 
patients and inhibition of apoptosis could delay the progress of CRF and reduce the occurrence of related compli-
cations7. Compared to the control group, the protein expression levels of Bax, Caspase-3, and Cleaved-caspase-3 
were dramatically increased in the kidney of CRF rats (Fig. 6a,b,d,e). In contrast, the protein expression of Bcl-2 
in CRF group was significantly lower than that in the control group (Fig. 6a,c). The protein expressions of Bax, 

Figure 7. Effects of H2S on the MDA level, SOD and GSH-Px activities, and the ROS generation in the kidney 
of CRF rats. (a) MDA level. (b) SOD activity. (c) GSH-Px activity. (d) ROS level. Values were presented as 
mean ± SEM (n = 8); *P < 0.05, **P < 0.01 compared with the control group; #P < 0.05, ##P < 0.01 compared 
with the CRF group.
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Figure 8. Effects of H2S on the MAPK pathway in the kidney of CRF rats. (a) The expression levels of p-ERK, 
ERK, p-p38, p38, p-JNK, and JNK were detected by Western blot. β-actin was used as an internal control. Bar 
graphs showed the quantification of p-ERK/ERK (b), p-p38/p38 (c), and p-JNK/JNK (d). Values were presented 
as mean ± SEM (n = 3); *P < 0.05, **P < 0.01 compared with the control group; #P < 0.05, ##P < 0.01 compared 
with the CRF group.
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Caspase-3, and Cleaved-caspase-3 were remarkably reduced in CRF+H2S group, in comparison with CRF group 
(Fig. 6a,b,d,e). In addition, the protein expression of Bcl-2 increased significantly in CRF+H2S group (Fig. 6a,c). 
These findings suggest that the apoptosis level is increased in the kidney of CRF rats, which could be reversed by 
administration of H2S.

H2S abates oxidative stress in the kidney of CRF rats. A recent study showed that adenine treatment 
significantly depressed total antioxidant capacity in the kidney of rats33. To observe the effect of H2S on oxidative 
stress induced by adenine, the activities of antioxidant enzymes, MDA generation, and ROS accumulation were 
determined. As shown in Fig. 7, the levels of MDA and ROS were markedly increased, and the activities of SOD 
and GSH-Px were significantly decreased compared with the control group, which were all reversed by treatment 
with H2S. These results indicate that H2S could abate adenine-induced oxidative stress in the kidney of CRF rats.

H2S abolishes the phosphorylation of mitogen-activated protein kinases (MAPKs) in the kidney 
of CRF rats. MAPK signaling pathway mediates a number of cellular activities in response to extracellular 
stimuli such as heat and stress34. ERK1/2, JNK, and p38 are three major components of MAPK which play impor-
tant roles in cell migration and apoptosis35, 36. As shown in Fig. 8, CRF triggered the phosphorylation of p38, 
JNK, ERK with distinct patterns. However, administration of H2S significantly abolished the increase of MAPKs 
phosphorylation induced by CRF, suggesting that H2S could reduce the apoptosis level in the kidney of CRF rats 
through MAPK signaling pathway.

H2S alleviates renal inflammation in CRF rats. Adenine treatment could induce a highly significant 
increase in plasma concentrations of some inflammatory cytokines, such as TNF–α and interleukin-1 beta (IL-
1β)33. Whether H2S could reduce renal inflammation in CRF rats remains unknown. In this study, the inflamma-
tory cytokine levels in the kidney were determined using ELISA techniques. Compared with the control group, 
the expression levels of TNF-α, IL-6, IL-10, and MCP-1 were significantly increased. Treatment with H2S remark-
ably decreased the levels of TNF-α, IL-6, IL-10, and MCP-1 (Fig. 9), suggesting that H2S could effectively alleviate 
renal inflammation in CRF rats.

Figure 9. Effects of H2S on the cytokine levels in the kidney of CRF rats were assayed using ELISA techniques. 
The expression levels of TNF-α (a), IL-6 (b), MCP-1 (c), and IL-10 (d) were measured. Values were presented as 
mean ± SEM (n = 8); *P < 0.05, **P < 0.01 compared with the control group; ##P < 0.01 compared with the CRF 
group.
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H2S decreases the expression of NF-κB in the kidney of CRF rats. NF-κB is a transcription factor 
that plays an important role in regulating the expression of cytokine genes involved in several inflammatory dis-
eases, including diabetes, atherosclerosis, and metabolic syndrome37. The most abundant form of NF-κB is the 
heterodimer composed of p50 and p6538, 39. In the present study, the protein expressions of p50, p65, and p-p65 
in the kidney of rats were measured to investigate the underlying mechanism of H2S on the cytokine regulation. 
Compared with the control group, the protein expressions of p50, p65, and p-p65 and the p-p65/p65 ratio were 
significantly increased (Fig. 10). Treatment with H2S remarkably decreased the expression levels of p50, p65, and 
p-p65, as well as the ratio of p-p65/p65 in the kidney of CRF rats (Fig. 10), indicating that H2S could reduce kid-
ney inflammation induced by CRF through the down-regulation of NF-κB expression.

Figure 10. Effects of H2S on the NF-κB pathway in the kidney of CRF rats. (a) The expression levels of p50, 
p65, and p-p65 were detected by Western blot. β-actin was used as an internal control. Bar graphs showed the 
quantification of p50 (b), p65 (c), p-p65 (d), and p-p65/p65 (e). Values were presented as mean ± SEM (n = 3); 
*P < 0.05, **P < 0.01 compared with the control group; #P < 0.05, ##P < 0.01 compared with the CRF group.
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Discussion
H2S has recently been recognized as an endogenous gaseous signaling molecule, along with nitric oxide and 
carbon monoxide8–10, 15, 28. A growing body of evidence indicates that H2S plays important and complex roles in 
renal physiological and pathophysiological processes11, 13, 14. The NRK-52E cell line has been widely used in in 
vitro models for studying GEN-induced nephrotoxicity20–22. Our results showed that H2S treatment significantly 
increased the viability and proliferation of the GEN-treated NRK-52E cells. Inducing apoptosis is an important 
nephrotoxic mechanism of GEN in NRK-52E cells22. The results indicated that H2S dramatically decreased the 
apoptotic index in GEN-treated NRK-52E cells. An increasing number of evidence indicates that ROS are impor-
tant mediators of GEN-induced apoptosis20. H2S treatment significantly reduced ROS generation in GEN-treated 
NRK-52E cells. These results together suggest that H2S could alleviate GEN-induced nephrotoxicity by reducing 
ROS-mediated apoptosis in NRK-52E cells.

Currently, there are two experimental animal models for CRF, namely the chemical model (using adenine in 
the food) and the surgical model (5/6 remnant kidney model, or renal mass reduction model)23. Adenine-induced 
CRF avoids the potential complications of alternative techniques that require surgery to induce chronic kidney 
disease40. In addition, this method produces more pronounced reductions in glomerular filtration rate compared 
with the model of 5/6 nephrectomy41. Thus, adenine-induced CRF in rats was adopted as a disease model for 
the evaluation of the effect of H2S on CRF. The results showed that the rats fed on the adenine diet for 4 weeks 
showed increased water intake, urine production, urinary protein, and relative kidney weight, which were similar 
to the signs and symptoms in rats with adenine-induced CRF41, 42. In addition, a previous study has reported a 
reduction in body weight in adenine-fed rats which could be attributed to the reduced food consumption43. Our 
results were in good accordance with the findings. Administration of H2S effectively ameliorated all the above 
adenine-induced changes.

BUN and Cre are the most commonly used markers for detecting nephrotoxicity in traditional clinical pathol-
ogy44. Treatment with H2S significantly decreased the levels of BUN and Cre, suggesting that H2S could reduce 
nephrotoxicity in CRF rats. Another common complication of CRF is anemia which often contributes to poor 
functional status and quality of life for CRF patients40. The RBC, HGB and HCT values of CRF rats were signifi-
cantly lower than those of the control group, confirming that anemia had developed in our animal model of CRF. 
Our results showed that H2S was able to reduce the extent of anemia observed in rats with CRF, which was in line 
with a recent study45.

Apoptosis is an intrinsic cell-suicide program that is critical for the normal development and maintenance 
of tissue homeostasis in multicellular organisms46. There are two main apoptotic signaling pathways: the death 
receptor-mediated extrinsic pathway and the mitochondria-mediated intrinsic pathway47. The proteins of the 

Figure 11. A schematic illustration of the role of H2S in ameliorating CRF. H2S could ameliorate CRF in rats by 
inhibiting apoptosis and inflammation through the ROS/MAPK and NF-κB signaling pathways. IKK, inhibitor 
kappa B kinase; IκBα, inhibitor kappa B-alpha.
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Bcl-2 family are key regulators of the mitochondrial pathway, including pro-apoptotic members (such as Bax) 
and anti-apoptotic members (such as Bcl-2), which can regulate the activation of caspases that cleave a number 
of cellular proteins, such as caspase-347, 48. Recent studies found that CRF rats had increased apoptosis levels, 
up-regulated Bax expression, and down-regulated Bcl-2 expression in renal tissues48, 49. In line with the above 
findings, our results showed that the expression levels of Bax, Caspase-3, and Cleaved Caspase-3 were signifi-
cantly increased and the expression level of Bcl-2 was dramatically decreased in CRF rats. Treatment with H2S 
remarkably decreased the levels of Bax, Caspase-3, and Cleaved Caspase-3, whereas it increased kidney Bcl-2 
expression in CRF rats, suggesting that H2S could effectively reduce the apoptotic levels induced by CRF in rats.

It is widely accepted that relatively high level of ROS causes redox imbalance, induces cell apoptosis or necro-
sis during a wide variety of physiological and pathological conditions47, 50, 51. Our results indicated that the levels 
of ROS and MDA were markedly increased, and the activities of anti-oxidative enzymes, SOD and GSH-Px, were 
significantly decreased compared with the control group, suggesting that ROS could induce apoptosis in the kid-
ney of CRF rats. All these changes were reversed by administration of H2S. Recent studies have proven that ROS 
can activate MAPKs and apoptotic cell death induced by ROS is mediated by MAPK pathway52–54. The present 
study identified that CRF increased the phosphorylation of p38, JNK, and ERK, whereas H2S treatment signifi-
cantly reversed the CRF-induced increase in MAPKs phosphorylation. These results demonstrated that H2S was 
able to reduce the apoptotic levels induced by CRF through ROS-mediated MAPK pathway.

Inflammatory cytokines play important roles in the development and progression of CRF55, 56. It is well doc-
umented that the levels of several inflammatory cytokines were higher in CRF patients compared with con-
trol subjects, such as TNF-α, IL-6, IL-10, and MCP-155–57. Similarly, our data indicated that the levels of these 
cytokines were significantly increased compared with the control group. High levels of TNF-α, IL-6, and MCP-1 
indicated activation and increased production of cytokines, which can lead to an inflammatory state in the kidney 
of CRF rats. High levels of IL-10 in the kidney could be suggestive of an aberration in the pro anti-inflammatory 
adjustment. Administration of H2S effectively alleviated renal inflammation in CRF rats. The NF-κB network is 
involved in a wide range of inflammatory, autoimmune, and malignant disorders37, 58, 59. The p50/p65 heterodi-
mer is considered the most important transcription factor of the NF-κB pathway and is specifically referred to as 
NF-κB59, 60. A recent study indicated that the expression of NF-κB was upregulated in the kidney of CRF rats61. 
Our results showed that CRF increased kidney p50, p65, and p-p65 protein expressions as well as the p-p65/p65 
ratio, suggesting that CRF induced an inflammatory state in the kidney of rats. However, treatment with H2S sig-
nificantly reversed the changes induced by CRF, suggesting that H2S could reduce kidney inflammation through 
the downregulation of NF-κB expression.

In conclusion, our results demonstrate that H2S is able to ameliorate CRF in rats by inhibiting apoptosis and 
inflammation through the ROS/MAPK and NF-κB signaling pathways (Fig. 11). Therefore, H2S or its releasing 
compounds may serve as a potential therapeutic molecule for CRF.
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