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Abstract: This paper describes a novel sounding system for which the functions of the medium
frequency (MF) radar and the ionosonde are integrated on the same hardware platform and antenna
structure, namely the middle atmosphere-ionosphere (MAI) system. Unlike the common MF radar,
MAI system adopts the pseudo-random (PRN) phase-coded modulation technology, which breaks
the limitation of the traditional monopulse mode. Through the pulse compression, only a small peak
power is needed to achieve the signal-to-noise ratio (SNR) requirement. The excellent anti-jamming
performance is also very suitable for the ionospheric sounding. One transmitting and six receiving
modes are adopted for the MF sounding. While neglecting the structure of the T/R switches,
the coupling interference between the transmitter and the receiver may also be avoided. Moreover,
by employing a miniaturized antenna array composed of progressive-wave antennas for the MF
receiving and ionospheric sounding, the MAI system takes account of the requirements of the
inversion algorithms of MF radar and the large bandwidth need for the ionospheric sounding
concurrently. Such an antenna structure can also greatly simplify the system structure and minimize
the difficulty of deployment. The experiments verified the availability of the system scheme and its
engineering application significance. Through further analysis of the sounding data, the wind field
of the mesosphere, the electron density of D layer and electron density profile from layers E to F
were obtained at the identical location. The capability of MAI system can play an important role in
studying the interaction and coupling mechanism between the mesosphere and ionosphere.

Keywords: mesospheric sounding; ionospheric sounding; pseudo-random phase-code;
miniaturized antennas

1. Introduction

The mesosphere and ionosphere are both important transitional regions of the Earth’s atmosphere.
Among them, the mesosphere is defined by temperature gradients, located at 50–85 km, while the
ionosphere is defined by the degree of atmospheric ionization, embedded in the middle of the
thermosphere, generally referring to the partial ionization area above 60 km. Although they are defined
in different ways, they are overlapped and coupled in height. As soon as the mesosphere is illuminated
and ionized, it is also denoted as lower ionosphere. However, for the purpose of distinction, it is
still referred to as “mesosphere” in subsequent statements of wind filed calculation in this article.
Thus, it is very meaningful to promote the comprehensive, in-depth study of the structure and coupling
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mechanism between them by conducting these overlapped regions sounding compatibly [1]. However,
current experiments are usually carried out separately with the equipment of different types.

For the sounding of the mesosphere, space-based sounding depended on the satellites, land-based
ones like mesosphere-stratosphere-troposphere (MST) radar and medium frequency (MF) radar are
the most commonly used devices. Among them, MF radar is the most widely used one, which can
detect the atmospheric wind field and electronic density in the range of 60−100 km of the adjacent
space, especially the mesosphere. The research on MF radar can be traced back to the work of Gardner
and Pawsey [2]. In 1950s, the differential absorption experimental (DAE) algorithm was employed
by them on MF radars to calculate the electron density of lower ionosphere [3]. Based on the spaced
antenna (SA) technology and the full correlation analysis (FCA) algorithms proposed by Mitra and
Briggs [4,5], MF radars were also beginning to be used for the estimation of the regional wind field of the
mesosphere [6–11]. Compared to the space-based methods and MST radars, the structure of MF radar is
relatively simple and easier to implement with comparatively less cost. Up to now, numerous MF radars
have been built and put into routine operation around the world. The performance is also improving
with the progress of the hardware and software technology. In 1975, Manson and Meek leaded to
develop the advanced MF radar receivers and data processing methods for atmospheric dynamics
studies in the mesosphere and lower thermosphere (MLT) region [12,13]. In 1994, the Yamagawa
Radar was built in Japan and, based on the sounding data, Igarashi and Murayama et al. reported
their coordinated observations of the dynamics and coupling processes of the mesosphere and lower
thermosphere winds at the middle-high latitude in 1995 [14]. In 1995 the team led by Vincent and Reid
built in Australia the world’s largest MF radar at Buckland Park, whose total transmitting power reaches
135 kW [15]. Saura radar, located in Northern Norway, is also very powerful and flexible. Relying on
the large antenna array and larger transmitting power, Saura radar can be used for wind estimation,
deriving electron denstity and the measurements of gravity wave momentum fluxes [16,17]. Although
MF radar has many advantages, but at a lower operation frequency, the large mechanical dimensions of
the commonly used standing-wave antennas also means a greater difficulty for construction. Moreover,
due to the prevalent monopulse working mode, a quietly large transmission peak power is required,
which makes the cost and power consumption huge. For instance, the length of the dipole antenna
employed by Wuhan MF radar built in 2000 reach 75 m, with a peak power as high as 64 kW [18].

As a special type of radar, the development of ionospheric sounder has a long history and
many mature devices have been developed [19]. Through continuous hardware improvements and
the upgrades of the software, Dynasonde, developed by the National Oceanic and Atmospheric
Administration (NOAA), and Digisonde, developed by University of Massachusetts Lowell,
have become the currently most advanced ionosonde systems [20,21]. As early as the 1990s,
the Ionospheric Laboratory of Wuhan University also began work on the development of the Wuhan
Ionospheric Oblique Backscattering Sounding System (WIOBSS) to research the large region of the
ionosphere in real-time [22]. By now, it has become a highly integrated, multi-functional platform with
the abilities of the vertical, oblique, backscattering sounding and multi-station networking [23–25].
When some spaceborne methods are employed to probe the atmosphere, ionospheric observations
can also be carried out using satellite networks. Masato Furuya detected midlatitude Sporadic-E
(Es) relaying on the interferometric synthetic aperture radar (InSAR) in 2017, which clarified the
spatial structure with unprecedented resolution [26]. Nina et al. also investigated the influence of
the perturbed (by a solar X-ray flare) ionospheric D-region on the global navigation satellite systems
(GNSS) and synthetic aperture radar (SAR) signals in 2019 [27]. Although the observation range is
large in this way, the establishment of satellite networks is difficult. And mainly from the perspective
of the total electron content (TEC), it is not easy to obtain the real-time ionospheric electron density
profile of a specific location. Some other networks such as automatic packet reporting system (APRS)
and automatic dependent surveillance broadcast (ADS-B) can also be used for ionospheric studies [28].
However, the same problems still remain. At present, the ionosondes are still difficult to replace for
ionospheric sounding. Compared with MF radar, the ionosonde’s transmitting power and the size
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of the antennas are rather small. However, usually working in high frequency (HF) band, the vast
majority of the existing ionosondes can only study the ionosphere above the E layer, which is usually
higher than 100 km. This makes it applicable only to a relatively narrow mission scope, which may
lead the observation and research to be unilateral.

In this paper, we propose a novel multi-functional system to satisfy the sounding of the mesosphere
and ionosphere simultaneously, which is referred to as the middle atmosphere-ionosphere (MAI)
system in this paper. The functions of MF radar and ionosonde are integrated on the same hardware
platform and antenna array to achieve the complementarity with each other. Different from the
traditional MF radars, the pseudo-random (PRN) phase-coded modulation technology is employed.
Due to the extra gain generated by the pulse compression, the peak power required for transmission
is greatly reduced. The excellent anti-jamming performance is also very suitable for ionospheric
sounding. For the mesospheric sounding MAI system adopts a one-transmitting-and-six-receiving
mode, which is unusual. While omitting the transceiver switches, the possible coupling interference
may also be avoided. Moreover, innovatively, miniaturized two-wire progressive-wave antennas
are employed on the MAI system to achieve the functions of MF echoes’ receiving and ionospheric
sounding simultaneously [29]. The mesospheric parameter inversion algorithms and the wide band
requirements for ionospheric sounding are taken into account concurrently. In addition to verify the
feasibility of this antenna solution, it also greatly reduces the volume of the system and the difficulty
of construction. Through the flexible switch between the working modes of the mesospheric and
ionospheric sounding, the wind field of the mesosphere, the electron density distribution of the lower
ionosphere, the ionogram and its inversion profile at the same location can be obtained. The acquisition
of these parameters may have important value to the study of the interaction and coupling mechanism
between the mesosphere and ionosphere.

2. System Description

The overall structure of the MAI system is mainly composed of the transmission channel,
the multichannel receiver and the antenna array. Among them, the transmission channel generates
the sounding waveform. The sequence of the pseudo-random phase code is employed to modulate
the transmitting waveform, which breaks through the monopulse working mode of the traditional
MF radar. With the pulse compression of the complementary code and the gains of the coherent
accumulation (pulse accumulation), the MAI system has strong anti-jamming and clutter suppression
abilities, both of the mesospheric and ionospheric soundings. The multichannel receiver is responsible
for analog processing and digital down-conversion (DDC) of the echo signals. In order to calibrate the
amplitude and phase consistency between the receiving channels, an additional reference source is
introduced into the device. The electrical length of the feeders connected to the receiver and antennas
are strictly measured and adjusted to be equal. The method of these independent transceiver channels
does not require high-performance transceiver switches, but also avoids the possible interference.
A miniaturized designed antenna array is employed to meet the sounding and the analysis algorithms’
requirements, which has the advantages of small size and low cost. In order to adapt to the large
bandwidth required for ionospheric sounding, progressive-wave antennas are used as the elements of
the array. The system structure diagrams and the main technical indicators of MAI system are shown
in Figure 1 and Table 1, respectively.
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Figure 1. The overall structure of the MAI system, which is mainly divided into three parts:
the transmitting channel, multi-channel receiver and receiving antenna array.

Table 1. The main technical indicators of MAI system.

Technical Indicators Values

System function Mesospheric/Ionospheric sounding
Working frequency Mesospheric: 1.98 MHz/ Ionospheric: 2−20 MHz

Sounding range Mesospheric: 70−100 km/ Ionospheric: 100−800 km
Peak power Mesospheric: 6 Kw/ Ionospheric: ≤1 Kw
Waveform Interpulse coding waveform
Duty cycle 5%

Height resolution 1.98 km
Time resolution Mesospheric: ≤2 min/ Ionospheric: ≤4 min
Sounding mode Mesospheric: Fixed Frequency/Ionospheric: Frequency sweeping

Sounding Direction Vertical upward

2.1. Transmission Channel

The transmission channel of MAI system is a single channel subsystem, as shown in Figure 2,
which can be roughly divided into two parts: the excitation source and the power amplifier. Firstly,
the baseband signal of pseudo-random coded modulation is generated by the waveform generation
module according to the transmitting parameters. Then, after up-conversion by the direct digital
synthesizer (DDS) device, the signals of about 1 mW are fed into three 2 kW broadband power
amplifier (AMP) units. Finally, through a three-in-one combiner, the total power of 6 kW is fed into the
transmitting antenna.

The 2 kW broadband power amplifier unit adopts the all-solid-state structure, which is shown
in Figure 3. It mainly consists of pre-driver, power divider, 4 × 600 W linear amplifier, and power
combiner, directional coupler, monitoring unit and power supply apparatus. The monitoring unit
monitors the output power and voltage standing wave ratio (VSWR) at all times. Once the singular
changes occur, such as the over-voltage, over-current or the over-power events, the transmitter will be
issued a turn-off command. When the fault is eliminated, the transmission channel resumes to work.
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Figure 3. The block diagram of the power amplifier unit. 4 × 600 W linear amplifier can provide 2 kW
transmission power.

2.2. Sounding Waveform

Breaking the limitation of the traditional monopulse mode, the interpulse coding waveform is
applied to the MF sounding in MAI system. 16-bit bi-phase complementary sequences are selected
as the pseudo-random modulation code for MAI system. The specific waveform of the transmitting
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Figure 4. The specific waveform of the radar transmitting signal. Driven by the system clock clk,
the transmitting waveform W(t) is generated according to the code sequence U(t) and transmitting
pulse A(t). The positive and complement codes are transmitted alternately.

In Figure 4, clk is the synchronized clock, with the period Tclk. U(t) represents the code sequence.
The positive and the complement sequences are shown in Table 2. Further, 0 and 1, respectively,
represent the phase 0 andπ. The duration of each code bit is Tp = 12.8 µs. A(t) shows the time-sequence
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of the transmitting and the receiving. During the sounding period Tr = 320× 12.8 µs , the sounding
signal is transmitted firstly (when A(t) is in high level), while the remaining time is used to receive the
echo signals (when A(t) is at low). W(t) is the actual sounding signal waveform.

Table 2. The code sequences of 16-bit bi-phase complementary code.

Sequence Values

The positive sequence A (a1 · · · aL, L = 16) 1101_0001_0111_1011

The complement sequence B (b1 · · · bL, L = 16) 0010_1110_0111_1011

The concept of complement code is first proposed by Golay [30]. By using the feature of the zero
autocorrelation sidelobe of a pair of complementary sequences, the complementary code can effectively
eliminate the sidelobe interference in the sounding. Figure 5 is from the reference [25], showing the
normalized ambiguity function graphs of the 16-bits sequences employed in MAI system. Figure 5a is
the three-dimensional ambiguity function graph, Figure 5b shows the sections of zero Doppler and
zero shift. Especially, the characteristics of its zero autocorrelation sidelobe intuitively. Obviously, as
a kind of PRN sequence, the complementary code has a “pushpin type” ambiguity function, which
means a high resolution in distance and speed and good sounding accuracy. It is very suitable for
soft target sounding applications such as the mesospheric and ionospheric soundings investigated in
this paper.
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According to the waveform system, some specific radar parameters are determined. As the range
resolution of bi-phase coded modulation waveform is determined by the duration of each code bit,
this parameter of MAI system can be expressed as Equation (1) [31]:

Rmin =
cTp

2
= 1.92 km (1)

where c is the speed of light.
The maximum sounding range Ru and the pulse repetition frequency (PRF) can be determined by

Equations (2) and (3) [31]:

Ru =
cTr

2
= 614.4 km (2)
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PRF =
1

2Tr
= 122 Hz (3)

Due to the strong near-field coupling of the transmitting signal, there is a certain fade zone Rd.
When L is defined as the bit length of the code sequences, Rd can be determined by Equation (4) [31].

Rd = L·
cTp

2
= 30.72 km (4)

By considering that the height range of the mesosphere or the lower ionosphere visualized by
MAI system in the mesospheric sounding model is 70–100 km, and the concerned height range of the
ionosphere is even higher, this interference of the fade zone will not cause any seriously adverse effects.

In addition, except for the Adelaide MF Rada and Saura radar with a large cross antenna array,
whose average power are 240 W and 600 W [16,17,32], the average transmitting power of most MF
radars is only about 100 W. However, in the case of MAI system, even though the peak transmitted
power Ppeak is only 6 kW, the pulse coded waveform can generate a larger duty ratio D, and the average
power Paver can reach 300 W, as Equation (5) shows [31].

D =
LTp

Tr
= 5%, Paver = PpeakD = 300 W (5)

Also because of the monopulse mode and small duty ratio, for the traditional MF radars, despite
the coherent accumulation, it is still quite difficult to obtain enough processing gains. Therefore,
a large peak power is often required to ensure the signal-to-noise ratio (SNR) of the received echoes.
Comparatively, complementary code can provide an additional correlation compression gain benefits
from its good correlation characteristic. For L-bit complementary code sequences A = {an},B ={bn},
the correlation function RA(τ), RB(τ) can be determined as Equation (6)

RA(τ) =
L∑

k=1
akak+τ, RB(τ) =

L∑
k=1

bkbk+τ

RA(τ) + RB(τ) =

{
2L, τ = 0

0, else

(6)

Therefore, a pair of 16-bit sequences will bring compression gain of 12 dB. After a certain
number of coherent accumulations, the processing gain would reach more than 20 dB, which makes it
possible to obtain a higher SNR at a certain receiving threshold level for both the mesospheric and
ionospheric sounding.

2.3. Multichannel Receiver

The receiving subsystem of MAI system is a 6-channel digital intermediate frequency (IF) receiver.
After filtering, amplifying, mixing, and A/D sampling at the analog front-ends, the six digital IF signals
are input into the DDC module in parallel. Through the digital IF processing for demodulation at the
DDC module, the baseband signals are uploaded via USB bus for further analysis. The algorithms of
the pulse compression and the physical parameter inversions of the baseband signals are realized by
software on the host computer.

The circuit design of each analog channel is shown in Figure 6. A suppression switch isolates
the fade zone through timing control. And the multi-channel suppression switches constitute the
switch array to suppress the near field coupling of the transmitting antenna during the transmission.
Considering the need of MAI system to ensure the receiving performance of both MF and HF bands,
the preferred filter of the first stage chooses a larger bandwidth, which is 0–30 MHz, covering the whole
working frequency band. Two-stage amplification mode is employed in this system. The first low noise
amplifier (LNA) is placed before the mixer, while the second stage is an IF amplifier. The total gain of
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the front-end can reach 53.1 dB. In order to effectively suppress the mirror frequency, the intermediate
frequency is selected at a higher frequency band of 71.4 MHz.
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Figure 6. The circuit design of the analog channel. Between the levels, several “π” networks are
employed to match the impedance and adjust the gain consistency of each channel.

As the range resolution of the MAI system is 1.92 km, corresponding to the duration of each code
bit Tp = 12.8 µs , the IF bandwidth B of the radar is selected as Equation (7) [31]:

B = 1.5/Tp = 117.1875 kHz ≈ 120 kHz (7)

To realize the impedance matching of two-port network between the different levels, “π” resistance
networks with an attenuation value of 1dB are added. Therefore, when the filter insertion losses are
included, the total noise figure (NF) of each analog front-end is about 10 dB. Then the sensitivity of the
analog front end can be determined as Equation (8) [31]:

S= −114 dBm + NF + 10 log B(MHz) ≈ −113 dBm (8)

For the MAI system, the selected sampling digit of ADC is N = 14 bits with a 2.5 Vpp full voltage
range. When the sampling rate is fs = 20 MHz, the maximum SNR of ADC can be calculated as
Equation (9) [31]. Further, the dynamic range DR can be determined as Equation (10), which can also
be considered as the dynamic range of the receiver [31].

SNR(dB) = 6.02N + 1.76 + 10 log( fs/2B) = 105.2 dB (9)

DR = Vmax/Vmin = 77.5 dB (10)

where Vmax and Vmin represent the maximum sampled voltage and voltage resolution of
ADC, respectively.

In the DDC module, as shown in Figure 7, the 8.6 MHz orthogonal signals are generated by the
numerically controlled oscillator (NCO) for digital mixing. Through the cascade integrator comb (CIC)
and finite impulse response (FIR) filters, the echo signals are converted into the baseband I/Q data.
The simple structure of CIC filter reduces the difficulty of design [33], and FIR filter compensates for
the irregularity of CIC filter’s passband. Due to the 256 times downsampling during the process of the
two-stage anti-aliasing filters, the output data rate of the digital signal of each channel is reduced from
40 Mbps to 156.25 kbps. The whole DDC module is implemented in a field-programmable gate array
(FPGA) chip for easy modification and high-speed operation.
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2.4. Miniaturized Antenna

The antenna of MAI system should be adapted to the mesospheric and ionospheric sounding
mode simultaneously, which means that the antennas need to guarantee the performance at MF band
while ensuring that the serious beam splitting and directivity change would not occur at HF band.
Apparently, the large-sized standing-wave antenna array employed in conventional MF radar is not
suitable for the MAI system. Therefore, two schemes are adopted in this paper for the functions of
MF radar and the ionospheric sounding. Moreover, some simulations are also carried out based on
computer simulation technology (CST).

For the mesospheric sounding, MAI system adopts the mode of one transmitting and six receiving.
A 75 m three-wire linear polarized dipole antenna is employed to match the MF band. The physical
erection image is also can be seen as Figure 8. The frequency of 1.98 MHz is chosen as the working point
for the mesospheric sounding. The simulation results of the variation of the transmitting characteristics
with the erection height at 1.98 MHz are shown in Table 3. And the impedance is 50 Ω. When the
erection height is within 6 m, the directivity gain increases with height slightly, but when it exceeds
4 m, the VSWR deteriorates rapidly. Obviously, the height of 3 m is the most suitable choice. It has the
best VSWR to guarantee the radiation characteristic, and the lower erection height also reduces the
construction difficulty.Sensors 2020, 20, x FOR PEER REVIEW 10 of 24 
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Table 3. The variation of the transmitting antenna characteristics with the erection height.

Parameters H = 2 m H = 3 m H = 4 m H = 5 m H = 6 m

Directivity Gain (dB) 8.5 8.51 8.52 8.54 8.55
Beamwidth (◦) 67.17 67.28 67.19 67.22 67.27

VSWR. 1.15 1.12 1.21 1.28 1.3

For the MF echoes’ receiving, MAI system employs two-wire dipole progressive-wave
Barker & Williamson broadband folded dipole antennas [34], the length of which is 54.9 m, compared
with Wuhan MF radar, it is reduced by 20 m. When MAI system works in SA mode at 1.98 MHz,
an equilateral triangle array with a side length of 180 m is employed for receiving. At each vertex of the
array, two antennas are crossed horizontally in an orthogonal polarization state. The specific receiving
antenna erection shape is shown in Figure 9. The nearest one is 200 m away from the transmitting
antenna. Figure 9a is the array structure and Figure 9b is the erection form of each vertex. In this way,
although there is only one transmitting channel, the separate reception of the ordinary wave (O) and
the extraordinary wave (X) can still be achieved. Figure 9c shows the schematic erection form of a
single receiving antenna and Figure 9d shows the structure image. The erection height is indicated
by h. Due to gravity, the antenna cannot be completely straightened, so the spacing between poles is
only 50 m.Sensors 2020, 20, x FOR PEER REVIEW 11 of 24 
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Figure 9. The antenna erection form: (a) The array structure, with a positive triangle structure; (b) The
erection form of each vertex. The two antennas are erected in an orthogonal way; (c) The schematic
erection form of a single receiving antenna with the feed point in the center. Due to the influence of
gravity, the antenna cannot be straightened completely. The distance between the two poles is 50 m;
(d) The structure image of the Barker & Williamson Broadband Folded Dipole Antennas. The dotted
line indicates the erection scheme type of the inverted “V”, which is not adopted in this paper.

Further, Table 4 shows the variation of the receiving characteristics with the elevation height of the
receiving antennas. In the range of 4–25 m, the directivity gain has little change. However, when the
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erection height is above 12 m, the beamwidth expands gradually. Considering the difficulty of the
construction, the 8 m height for erection is a suitable choice.

Table 4. The variation of the receiving antenna characteristics with the erection height.

Parameters H = 4 m H = 8 m H = 12 m H = 20 m H = 25 m

Directivity gain(dB) 7.76 7.99 8.24 8.33 8.37
Beamwidth(◦) 70 70.26 70.92 72.86 74.59

Thus, the whole array pattern simulation results based on CST can be obtained as Figure 10.
Figure 10a,b shows the simulation results of O and X waves, respectively. The gain of the whole array is
above 17 dB. The synthetic beam-pointing is vertical upward with a 27.4◦ beamwidth. The simulation
results prove that the antenna array design scheme of this paper has a good receiving characteristic
and can effectively meet the requirements of the mesospheric sounding with strong feasibility and
operability. The whole array is characterized by high gain, narrow beamwidth, low cost and small
structural size. Compared with the common MF radars, whose antenna towers are usually higher
than 20 m, or use of the digital beam forming (DBF) antenna array with dozens of antennas, the MAI
system employs only several 8 m towers and six small size progressive-wave receiving antennas.
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Figure 10. The pattern of the antenna array with the impedance of 50 Ω: (a) O-mode wave; (b) X-mode
wave. No matter for O or X-mode wave, the antenna array has a high gain and vertical upward
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When the MAI system works for ionospheric sounding, the mode of one transmitting and one
receiving is usually adopted in order to reduce the amount of data and the processing time. For both
of the transmitting and receiving, the 54.9 m progressive-wave antennas are employed to adapt to the
wide frequency bandwidth. Switching from the mesospheric sounding mode to ionospheric mode
only requires changing the antenna interface at the host device. The simulation results of the antenna’s
performance in HF band is shown in Figure 11. Figure 11a–d represent the cases of 3, 5, 10, and 20 MHz.
Though the main lobe splits at the higher frequency band, but for the ionospheric sounding which
requires less stringent directivity, it can still meet the need. The gain of full working band is more than
4 dB and the pointing direction is always upward.Sensors 2020, 20, x FOR PEER REVIEW 13 of 24 
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i.e., the monitoring module, power supply module and linear power amplifier, are placed 
independently in the frame of three layers of the same movable cabinet, which is convenient for 
disassembly, reorganization and troubleshooting. In Figure 12b, the transmitting excitation source 
and multi-channel receiver are integrated into the same casing. Each module, especially the receiving 
channel, is shielded and isolated by an aluminium alloy frame. The connecting cables of each channel 
are strictly cut to the same length. The local oscillator (LO) and calibration reference signals are 
generated by the separate single-channel DDS devices and fed into each channel by power splitters 
to maintain the consistency. 
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direction is always upward.

3. Prototype Device

In order to verify the correctness of the scheme described in this paper and the value of engineering
practice, we have designed and developed a prototype device. The finished product shown in Figure 12a
shows three 2 kW power amplifier units. For every unit, the main components, i.e., the monitoring
module, power supply module and linear power amplifier, are placed independently in the frame of
three layers of the same movable cabinet, which is convenient for disassembly, reorganization and
troubleshooting. In Figure 12b, the transmitting excitation source and multi-channel receiver are
integrated into the same casing. Each module, especially the receiving channel, is shielded and isolated
by an aluminium alloy frame. The connecting cables of each channel are strictly cut to the same length.
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The local oscillator (LO) and calibration reference signals are generated by the separate single-channel
DDS devices and fed into each channel by power splitters to maintain the consistency.
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Figure 12. The finished product of the prototype: (a) 2 kW power amplifier units. Three units together
provide 6 kW for transmitting. (b) The transmitting excitation source and multi-channel receiver.
The aluminum alloy frames are shielded between the modules.

4. Typical Experimental Results

Based on this prototype device, the verification experiment was carried out in Kunshan (120◦57′ E,
31◦30′ N), Jiangsu Province, China, from December 2017 to January 2018. The whole experiment was
conducted respectively for two parts: one to carry out the MF sounding to verify the mesospheric
sounding capability of MAI system, and the other to sound the ionosphere in the form of vertical
sounding to verify the ionospheric sounding performance of MAI system. They will be described
separately below.

4.1. Mesospheric Sounding

The sounding of the mesosphere was operated first. MAI system worked in a fixed frequency at
1.98 MHz. The number of coherent accumulations is 1024. As a representative example, Figure 13
shows a typical SNR map of the mesospheric sounding obtained by one receiving antenna. It can
be seen that MAI system has successfully realized the MF radar’s ability to sound the mesosphere
at a small transmitting power. The maximum SNR has reached more than 35 dB. The main altitude
distribution of the signals’ reflection region is 75–100 km. And the electron density changes rapidly in
time and space.
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Figure 13. SNR map for mesospheric sounding at the local time of 00:08−01:08, 1 January 2018. 
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By employing the FCA algorithm [4,5], the echo signals of the equilateral triangle antenna
array can be used to estimate the drift velocity of the wind field. When the coordinates of the
antennas of each vertex of the array is set to (x1, y1),(x2, y2),(x3, y3), and the signal time delay is
τ, the correlation functions between the signals can be obtained: ρ(ξ12, η12, τ), ρ(ξ23, η23, τ) and
ρ(ξ13, η13, τ), where ξi j = x j − xi, ηi j = y j − yi. Under the hypothetical condition that the correlation
function ρ between the antenna signals is only related to the antenna spacing (ξ, η) and the signal time
delay τ, its basic form can be expressed as a concentric ellipse cluster as the Equation (11).

ρ(ξ, η, τ) = ρ(Aξ2 + Bη2 + Cτ2 + 2Hξη) (11)

When the diffraction pattern of the sounding object has a drift velocity (Vx, Vy), Equation (11) can
be rewritten to the Equation (12)

ρ(ξ′, η′, τ) = ρ(A(ξ′ −Vxτ)
2 + B(η′ −Vyτ)

2 + Cτ2 + 2H(ξ′ −Vxτ)η(η
′
−Vyτ)) (12)

where (ξ′, η′) is defined as the Equation (13):

ξ′ = ξ+ Vxτ, η′ = η+ Vyτ (13)

In terms of eliminating the coefficient C, the correlation function can be expressed by the coefficient
parameters a, b, f , g, h as the Equation (14):

ρ(ξ, η, τ) = ρ(aξ2 + bη2 + τ2 + 2 fξτ+ 2gητ+ 2hξη) (14)

Define τi j as the maximum delay time of ρ(ξi j, ηi j, τ), and then the Equation (15) should be satisfied:

∂ρ(ξi j, ηi j, τ)

∂τ
= 0, τi j = − fξi j − gηi j (15)

Define τ′i j to express the delay time which is determined by ρ(ξi j, ηi j, 0) = ρ(0, 0, τ′i j),
the Equation (16) can be obtained:

ρ(ξi j, ηi j, 0) = ρ(aξ2
i j + bη2

i j + 0 + 2 fξi j 0 + 2gηi j 0 + 2hξi jηi j) = ρ(aξ2
i j + bη2

i j + 2hξi jηi j)

ρ(0, 0, τ′i j) = ρ(a02 + b02 + τ′2i j + 2 f 0τ′i j + 2g0τ′i j + 2h00) = ρ(τ′2i j )

τ′2i j = aξ2
i j + bη2

i j + 2hξi jηi j

(16)

Then, when the equation ρ(ξi j, ηi j, τi j) = ρ(0, 0, τ′′i j) is established, the delay time τ′′i j can be
determined by the Equation (17):

τ
′′2
i j = τ′2i j − τ

2
i j (17)

Based on Equations (15)–(17), the coefficients parameters a, b, f , g, h can be solved. Then, we can
use these coefficients to calculate the velocity of the wind field (Vz, Vm) as Equation (18):{

Vz = Vx/2 = (hg− b f )/2(ab− h2)

Vm = Vy/2 = (h f − ag)/2(ab− h2)
(18)

Based on the signals of the three vertices of the antenna array, Figure 14a shows the wind field
estimation result during the same time period of Figure 13. The direction of the arrow represents the
direction of the wind field. In the range of 75–83 km, MAI system obtained a relatively stable wind
field estimation. This is also consistent with the signal energy distribution in Figure 13. The range of
velocity distribution is mainly between 20–60 m/s. But beyond this range, where are marked in grey,
it becomes less accurate, which may be caused by the low SNR or the effect of the oblique echoes in
00:40–01:00 LT. Figure 14b,c are the zonal and meridional wind profiles at 00:50 LT. Beyond 75–83 km,
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the profiles are also shown as dashed lines. It can be seen that the velocities are distributed in tens of
meters per second. At the height of 75–83 km, the zonal wind is mainly between–18 m/s and –23 m/s,
which is relatively stable. Conversely, the meridional wind varies rapidly with the height, from –5 m/s
to –12 m/s in the range of 75–83 km.Sensors 2020, 20, x FOR PEER REVIEW 17 of 24 
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Figure 14. Wind field inversion results by FCA at the local time of 00:08-01:08, 1 January, 2018: (a) the
temporal and spatial characteristics of wind field. Beyond 75−83 km, it is marked in gray for the less of
accuracy (b) the zonal profile at 00:50; (c) the meridional profile at 00:50. Beyond 75−83 km, they are
also marked as dashed lines.

In addition to the wind field, the sounding data of MAI system can also be used to inverse the
electron density of the low ionosphere. For MF/HF radar, DAE algorithm is often applied to calculate
the electron density [35]. According to DAE algorithm, when the ionosphere is modeled into a myriad
of thin layers, the transmittance of the hth layer and the reflectivity of the current reflecting Hth layer
can be defined as exp[−∆hK(h)] and R(H). ∆h is a small range separation of two adjacent layers.
By ignoring the secondary reflection, the amplitude A(H) of hth layer’s echo can be expressed as
Equation (19), where Y is the other loss besides the ionosphere.

A(H) = Y exp

−∆h
H∑

h=1

K(h)

R(H) exp

−∆h
H∑

h=1

K(h)

 = Y ·R(H) exp

−2∆h
H∑

h=1

K(h)

 (19)

where K(h) is the absorption coefficient of the hth layer.
In the case of the MAI system, the two orthogonally erected antennas at each vertex of the array

make it possible to be used for receiving the O and X wave signals alternately. Since there are different
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transmittance and reflectivity parameters for the O and X echo signals, Equation (19) can be specifically
written as Equation (20): 

AO(H) = YORO(H) exp
[
−2∆h

H∑
h=1

KO(h)
]

AX(H) = YXRX(H) exp
[
−2∆h

H∑
h=1

KX(h)
] (20)

When it is assumed that YO = YX, then Equation (21) can be obtained:

Ax(H)

Ao(H)
=

Rx(H)

Ro(H)
exp

−2∆h
H∑

h=1

(Kx(h) −Ko(h))

 (21)

When the logarithms are taken simultaneously on the left and right sides of Equation (21), it can
be transformed into Equation (22):

ln
[

Ax(H)
Ao(H)

]
= ln

[
Rx(H)
Ro(H)

]
− 2∆h

H∑
h=1

(Kx(h) −Ko(h))

ln
[

Ax(H)
Ao(H)

]
− ln

[
Ax(H−1)
Ao(H−1)

]
= ln

[
Rx(H)
Ro(H)

]
− ln

[
Rx(H−1)
Ro(H−1)

]
− 2∆h[Kx(H) −Ko(H)]

(22)

In practical calculation, the reflection coefficient RO/X(H) can be obtained from Equation (23):

RO/X(H) =


{
ω−ωL
vm(H)

C3/2(
ω−ωL
vm(H)

)
}2

+
{

5
2 C5/2(

ω−ωL
vm(H)

)
}2

{
ω+ωL
vm(H)

C3/2(
ω+ωL
vm(H)

)
}2

+
{

5
2 C5/2(

ω+ωL
vm(H)

)
}2


1/2

(23)

where ω is the angular frequency of the sounding signal. ωL is the longitudinal component of angular
cyclotron frequency, which can be calculated according to the magnetic dip based on International
Geomagnetic Reference Field (IGRF). vm(H) is the collision frequency of Hth layer and can be calculated
relay to the atmospheric pressure profile according to International Reference Atmosphere (CIRA) of
the Committee on Space Research (COSPAR) [36]. C3/2() and C5/2() can refer to [37].

When F(H) is defined as Equation (24), after calculating F(H), electron density profile of
the corresponding height at Hth layer N(H) can be obtained by substituting Equation (24) into
Equation (22) [36].

F(H) =
2[Kx(H) −KO(H)]∆h

N(H)
(24)

Specifically, F(H) can be calculated by Equations (25) and (26). FO(H) = 5
4

e2

mε0cvm(H)
C5/2(

ω+ωL
vm(H)

)

FX(H) = 5
4

e2

mε0cvm(H)
C5/2(

ω−ωL
vm(H)

)
(25)

F(H) = 2[FX(H) − FO(H)]∆h (26)

where e, m, ε0 represent the electric quantity, electronic mass and dielectric constant respectively.
Then, the electron density profile of the corresponding height at Hth layer N(H) can be expressed

as Equation (27) [36]

N(H) =

{
ln

[
RX(H)
RO(H)

]
− ln

[
RX(H−1)
RO(H−1)

]}
−

{
ln

[
AX(H)
AO(H)

]
− ln

[
AX(H−1)
AO(H−1)

]}
F(H)

(27)
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Figure 15a shows a typical result of the inversion based on the DAE algorithm. Figure 15b shows
a typical signal power distribution with height. Considering that the D layer of the ionosphere has a
low electron density at night, which is difficult to reflect the MF signals, we chose the sounding data
at noon for electron density inversion. From 70 km onwards, the electron density increases with the
height. During the observation period, the electron density also increased slightly over time.
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11:15, 8 January 2018. 
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Figure 15. (a) the electron density inversion results of DAE algorithm at the local time of 11:00−12:00,
8 January 2018. (b) shows the signal power of X-wave mode and O-wave mode at the local time of
11:15, 8 January 2018.

4.2. Ionospheric Sounding

The sounding of the ionosphere adopts the single-transmit and single-receive mode. Switching
from the mesospheric sounding mode requires a two-wire dipole progressive-wave antenna to be
connected to the transmitting channel as a transmitting antenna to match a larger bandwidth. In the
ionosonde mode, DDS upconverter module converts the output frequency according to instructions
transmitted by USB bus, and LO also changes synchronously. The frequency sweeps in a range from
2 MHz to 20 MHz with a step of 50 kHz. At each frequency point, 32 coherent accumulations were
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performed, and the residence time was 0.26 s. In the vertical sounding mode, the MAI system obtains
the ionogram shown in Figure 16. At the local time of 17:50, 5 January, 2018, the maximum SNR is
about 30 dB. The ordinary (O) and the extraordinary (X) echoes can be clearly observed. This ionogram
contains the echos of the Sporadic-E (Es) layer, F1 layer, F2 layer and the 2-hop echoes of the F2 layer.
In the height distribution, the virtual height of the Es layer mainly distributes near 120 km with the
corresponding delay is about 0.83 ms. The virtual heights of the F1 and F2 layers are 210–305 km and
260–320 km, respectively. There is a clear turning point between them. Further, the critical frequency
of F2 layer is about f0F2 = 6.15 MHz. This ionogram obtained by MAI system is typical and similar to
the traditional ionograms as well.
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Figure 16. An example of vertical sounding ionogram at the local time of 17:50, 5 January 2018. 
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Figure 16. An example of vertical sounding ionogram at the local time of 17:50, 5 January 2018.

For the ionogram, we use the quasi-parabolic segments (QPS) model to invert the electron density.
In QPS model, the E, F1, and F2 layers are represented by a single quasi-parabolic (QP) model [38–42],
while the transition regions of the E-F1 and F1-F2 are represented by a reverse QP model. Therefore,
the whole electron density profile can be described as in Equation (28).

NF2 = aF2 − bF2
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rF2
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)2
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r
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bF2rF2(1− rF2/rcF2)

rF1(1− rF1/rcF2)

NE = aE − bE

(
1−

rE

r

)2
E layer; rcF2 = −

bF2rF2(rF2/rF1 − 1)
aF2 − aF1 + bF2(rF2/rF1 − 1)

N jFE = a jFE + b jFE

(
1−

r jFE

r

)2
E− F1; a jFE = aE, r jFE = rE, b jFE = −

bF1rF1(1− rF1/rcF1)

rE(1− rE/rcF1)

N jFF = a jFF + b jFF
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The calculation of the whole electron density profile is determined by nine parameters: NmF2 is
the peak of electron density in the F2 layer, rmF2 is the peak distance from the geocentric distance, ymF2

is half thickness of the F2 layer. NmF1, rmF1, ymF1, NmE, rmE, ymE, are the corresponding parameters of
the F1 layer and E layer, respectively. am = Nm is the peak electron density of the corresponding layer,
rm is the peak distance from the centrosphere, ym is half thickness of the corresponding layer. bm is the
intermediate parameter of the calculation.

According to the QPS model, Figure 17 shows the electron density profile obtained from the
inversion of the ionogram of Figure 16. The electron density profile above the peak height is fitted by
Chapman model [42]. As can be seen from Figure 17, the profile of the inversion layer contains the
E, Fl and F2 layer with obvious turning points between the adjacent layers. The boundary between
the E layer and the F1 layer is at the true height of 113.5 km. For the F1 and F2 layers, the boundary
is at 185.5 km. The true peak height of the critical frequency is 247.1 km, with an electron density of
4.722× 105 el/cm3. Since the Es layer does not exist conventionally, the inversion for the Es layer is
included in the program.
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Figure 17. Electron density profile at the local time of 17:50, 5 January 2018. 
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According to the above experimental results, the design concept and engineering value of the MAI
system are verified. On the same hardware platform, the MAI system combines the function of the MF
radar for the sounding of the lower ionosphere and the ionospheric sounding function of the ionosonde.
Through the inversions of the sounding data, the wind field of the mesosphere, the profiles of the
electron density in the lower ionosphere, and the electron density above the conventional ionosphere E
layer can be obtained. If these results are used scientifically in future research, it will be very promising
to study the physical characteristics of the lower ionosphere and ionosphere.

5. Conclusions

In this paper, we propose a new type of sounding system which integrates the MF radar’s
sounding function of the mesosphere (which also belongs to the lower ionosphere) and the ionosonde’s
sounding function of the ionosphere above E layer into one hardware platform which is denoted as the
middle atmosphere-ionosphere (MAI) system. It breaks through the monopulse mode adopted by
traditional MF radar. MAI system innovatively adopts the pseudo-random phase code modulation on
the waveform design. Relying on the pulse compression, an extra correlation gain would be obtained,
and thus the transmitting power can be reduced to simplify the equipment and consequently the
cost. The employment of the complementary code sequences also enables MAI system to have a
strong anti-jamming capability. For the antennas employed in MAI system, unlike the traditional MF
radars, a mode of one transmitting and six receiving is adopted for the mesospheric (lower ionospheric)
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sounding. The progressive-wave antennas are employed for receiving, which miniaturizes the array
structure, reduces the difficulty of erection, and satisfies the large bandwidth for the ionospheric
sounding. Although the efficiency may be lost, the waveform gain would compensate for this. Using
the developed prototype device, we conducted a verification experiment. Based on the experimental
data, using FCA and DAE algorithms, the drift velocities of the wind field and the electron density
profiles of the lower ionosphere are estimated or calculated. By sweeping in high frequency band, MAI
system conducted the ionospheric vertical sounding. After inversing with the QPS model based on the
ionogram, the ionospheric electron density profile could be acquired. The successful development of
MAI system makes it possible to sound the two regions on the same platform at the same location.
This is of significance to the study of the coupling characteristics and physical processes of them.
With the further improvement of experiments, the scientific research based on MAI system will be
more desirable.

For the current MAI system, in order to better carry out future research tasks, we think that we
need to improve some of its shortcomings. Firstly, the current signal quality needs to be strengthened.
Both the wind field estimation and the low ionospheric electron density inversion have some data points
missing. While this will not affect the macroscopic spatial and temporal analysis, the performance
details need improvements. Secondly, at present, the electron density profiles of the lower ionosphere
and the upper ionosphere have not been connected in series. Further, if we combine the sounding
results together, the continuous electron density profiles from the D layer to the F layer is very
promising. The cause of the abnormal phenomenon of the electron density at lower ionosphere is also
worthy of in-depth study. Finally, the current two sounding functions are time-independent. If the
time-sharing operation is modified to offer a continuous mode, the sounding results would be more
scientifically meaningful.
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