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Abstract: The global burden of arboviral diseases and the limited success in controlling them calls
for innovative methods to understand arbovirus infections. Metabolomics has been applied to
detect alterations in host physiology during infection. This approach relies on mass spectrometry
or nuclear magnetic resonance spectroscopy to evaluate how perturbations in biological systems
alter metabolic pathways, allowing for differentiation of closely related conditions. Because viruses
heavily depend on host resources and pathways, they present unique challenges for characterizing
metabolic changes. Here, we review the literature on metabolomics of arboviruses and focus on
the interpretation of identified molecular features. Metabolomics has revealed biomarkers that
differentiate disease states and outcomes, and has shown similarities in metabolic alterations caused
by different viruses (e.g., lipid metabolism). Researchers investigating such metabolomic alterations
aim to better understand host–virus dynamics, identify diagnostically useful molecular features,
discern perturbed pathways for therapeutics, and guide further biochemical research. This review
focuses on lessons derived from metabolomics studies on samples from arbovirus-infected humans.
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1. Introduction

Metabolites are the downstream products of enzymes and cellular pathways and provide a
window into the biochemical state of cells in varying conditions. A metabolite is a small molecule
synthesized by catabolic or anabolic processes. Metabolomics is the systematic study of these small
molecules, including amino acids, lipids, nucleotides, sugars, hormones and vitamins; virtually all
organic compounds found in an organism except DNA, RNA, and proteins [1,2]. Metabolomics
analyses can be performed on any biofluid, as well as on tissues or even breath [1–3].

Screening metabolite abundances in the blood of newborns has allowed clinicians to effectively
ameliorate potentially devastating effects of inborn errors of metabolism since the 1960s by reducing the
time to diagnose and treat these disorders that occur in thousands of infants per year [4,5]. By applying
targeted mass spectrometry (MS) techniques, 49 inborn errors of metabolism can be identified at
birth [6]. This highly successful program clearly demonstrates the utility of detecting abnormalities
in the concentrations of small molecules, and that metabolomics data can transition into practical
diagnostic tests. Like inborn errors of metabolism, arboviruses deplete particular small molecules
during infection and cause increased levels of others- often inflammation mediators. By elucidating
metabolic changes in diseased states, metabolomics can provide insights into therapeutic molecules
that could inhibit virus multiplication or lessen symptoms of viral diseases. Additionally, changes in
metabolite abundances can be exploited as prognostic and diagnostic tools for arboviral diseases.
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1.1. Arboviruses

Arboviruses are, by definition, transmitted to vertebrate hosts via arthropods, which include
mosquitoes, ticks, or fleas. They cycle between vertebrate and invertebrate hosts to survive, and
in general are not effectively passed horizontally in one host type [7,8]. This review focuses on
arboviruses in the Flaviviridae and Togaviridae families, namely dengue viruses (DENVs), Zika virus
(ZIKV), and chikungunya virus (CHIKV), as these are human arboviral infections investigated
by metabolomics techniques to date. These viruses have overlapping geographic ranges and
initially emerged in Africa before spreading to other continents [9–12]. Vectored by Aedes genus
mosquitoes, these arboviruses collectively infect millions of people per year [9–12]. Since they can
often cause similar clinical symptoms and numerous complications, rapid and accurate diagnostics
for treatment and prognostication of arboviral infections are imperative [10,13]. Both flaviviruses and
togaviruses are enveloped viruses with single-stranded, positive-sense RNA genomes of approximately
11–12 kilobases [14]. Genome replication occurs via viral RNA-dependent RNA polymerase in
membrane-bound replication spherules connected to the cytoplasm, but protected from cellular
defenses [15]. As a result, these viruses significantly alter the host metabolic environment for their
replicative advantage. The host metabolic pathways manipulated by viruses depend on the lifecycle of
the virus, the immune defenses activated, as well as the tissues and cell types infected [16,17]. Research
in arbovirus metabolomics has identified membrane lipids induced by DENVs for replication, and has
detected both host inflammatory and viral lipid metabolic alterations [18–20]. Comparing patients
infected with DENVs to febrile patients that have illnesses not caused by DENVs identified metabolites
that may improve the clinical diagnosis of DENVs [21,22]. Prognostic biosignatures that separate severe
forms of dengue from milder forms have been developed [21–24]. Metabolomic studies have suggested
that prescribing uric acid or dihomo-γ-linolenic acid (DGLA) may ameliorate dengue disease [24,25].
Another study linked metabolites to the symptoms of CHIKV infection [26]. Molecules during human
ZIKV infection involved in autophagy and potentially neurological complications associated with the
severe forms of this disease have also been identified by metabolomic techniques [27,28]. These studies
demonstrate the real potential for metabolomics to elucidate host–virus interactions to aid in the
development of antiviral and symptomatic treatments as well as prognostic or diagnostic tests.

1.2. Metabolomics

Metabolomics analyses of viruses present unique challenges since these pathogens lack an
independent metabolism and must instead commandeer host resources [16,17,29]. Arboviruses induce
strong host responses, and the sheer number of virally infected cells lends to detectably aberrant
levels of metabolites. Metabolomics is a powerful tool for studying natural infections in situ, as it
provides a means to investigate broad changes during human infection without the need for a model
system. Metabolomics studies often aim to identify biomarkers, which are compounds correlated to a
particular disease state or condition. A biosignature, or metabolic signature, is a set of biomarkers that
distinguishes a particular disease from the healthy state or related diseases.

Depending on the motives and end goals, metabolomics studies typically follow the same general
workflow and can be divided into two main categories: untargeted studies and targeted studies
(Figure 1). Untargeted studies are discovery-based and seek a broad, comprehensive picture of
metabolites present in a system at a given time, including both identified metabolites and unknowns.
In contrast, targeted studies aim to validate and quantify specific pre-defined metabolites, thus
requiring more a priori knowledge [1]. Careful experimental design is required for both targeted
and untargeted studies. Sample preparation prior to analysis varies by sample type and requires
forethought to effectively halt enzymatic activity, prevent loss or degradation of metabolites, and
optimally extract metabolites. Procedures for extracting metabolites have been comprehensively
detailed elsewhere [30–33].
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Figure 1. Workflow for metabolomic studies. Samples used for metabolomics analyses, most
commonly serum or urine, should be carefully collected, stored, and characterized to confirm
infection status and group membership. Metabolites are then quenched and extracted for nuclear
magnetic resonance (NMR) or mass spectrometry (MS) analyses. Common MS techniques include
direct-injection mass spectrometry (DIMS), liquid chromatography–mass spectrometry (LC-MS) and
gas chromatography–mass spectrometry (GC-MS). Analytical methods generate data that must be
aligned, extracted, corrected, and filtered to obtain molecular features. Metabolite identification and
pathway analyses provide insight into the pathways perturbed during a disease state. Statistical
analyses, such as principal component analysis (PCA) and partial least squares discriminate analysis
(PLS-DA), differentiate and further classify samples and identify potential biomarker candidates. Once
pathways and potential biomarkers have been elucidated, secondary verifications, such as targeted
analyses, are often performed to confirm and further investigate biological connections, modes of
action, or therapeutic potential of identified biomarkers.

Sample preparation and extraction methods depend on the choice of analytical method.
For example, lipidomics, a subtype of metabolomics focusing on lipid species, often requires
specialized extraction and analytical techniques. Metabolites are most often analyzed using nuclear
magnetic resonance (NMR) spectroscopy or MS-based techniques. NMR spectroscopy, based on
exciting transitions between the spin states of magnetic nuclei [34], is rapid, quantitative, and highly
reproducible in a variety of systems [35–37]. Additional advantages of NMR spectroscopy include
minimal sample preparation, non-destructive methods, and the ability to perform comprehensive
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metabolite detection with a single measurement [35]. Despite many advantages, NMR spectroscopy
has several limitations, namely, its low sensitivity and selectivity compared to MS-based methods [38],
as well as a limited capacity for targeted approaches with current techniques [35]. Proton NMR (1H
NMR) is one of the most common NMR spectroscopic methods due to short analytical time and
relatively high sensitivity compared to other NMR methods [39].

MS is a common approach for both targeted and untargeted studies, boasting higher sensitivity
and selectivity, as well as the ability to detect more metabolites in a single run than NMR
spectroscopy [35]. Direct-injection (also termed infusion) MS (DIMS) is high-throughput as samples
are directly injected into a mass spectrometer, reducing analysis time and bias [40]. Limitations of
DIMS include ion suppression and residue formation within the instrument, though additional MS
assays can overcome these limitations [41,42]. To improve resolution, MS is often combined with a
chromatographic separation method such as liquid chromatography (LC) or gas chromatography
(GC) to separate mixture components and simplify metabolite identification [38]. LC-MS and GC-MS
generally require more laborious sample preparation than DIMS or NMR and include adaptations
for compounds that are difficult to ionize [38]. GC-MS can only analyze volatile compounds and
often requires derivatization of metabolites [43]. LC-MS is able to separate and detect a wide variety
of molecules and is thus generally well-suited to global analyses of biological molecules. The most
common LC-MS method is reversed-phase LC-MS (RPLC-MS), which is adept at separating most
semi-polar compounds, but is not suitable for highly polar or ionic molecules [35,44]. However,
techniques such as hydrophilic interaction liquid chromatography (HILIC) can increase sensitivity
for analyzing polar metabolites [45]. Targeted experiments can include multiple reaction monitoring
(MRM), which detects and quantifies analytes of a specific mass [46] and incorporates standard curves
to quantify metabolites and confirm identities through comparison to standards. Detailed targeted
methods have been previously reviewed [1,47,48].

Following data acquisition, spectral data are pre-processed according to the analytical method,
and molecular features are then extracted and identified. Statistical analyses of metabolomics data
are performed to assess differences between sample groups, identify differential metabolites, and
classify samples based on these metabolites. Statistical analyses typically include both unsupervised
approaches such as clustering analyses and principal component analysis (PCA), which seek to
understand variation and trends within the data, and supervised approaches such as partial least
squares discriminant analyses (PLS-DA), which can identify biomarkers and predict or classify
sample group membership [49]. Once putative biomarkers have been identified and statistical and
significance analyses have been performed, functional interpretations elucidate biological connections
between metabolites and identify perturbed metabolic pathways. Pathway analysis tools include
MetaboAnalyst [50], Mummichog [51], Kyoto Encyclopedia of Genes and Genomes (KEGG) [52], and
MetaCyc [53], among others [54]. Efforts to inform biological understanding from metabolomics
data require molecular features to be identified as metabolites by probing existing databases such
as METLIN [55], the Human Metabolome Database (HMDB) [56–58], MassBank [59], and LIPID
MAPS [60]. Identifying perturbed pathways and specific metabolites can be challenging, particularly
when performing untargeted analyses, so additional verification, often by tandem MS, is necessary.
Biological explanations for findings lend additional confidence to metabolomics results. Additional
software tools for processing and analyzing metabolomics data are detailed elsewhere [61–66].

While no single analytical platform or methodology is able to detect and quantify all the
components of a sample, some platforms are better suited to certain metabolites, sample types,
or desired study outcomes. Regardless of the approach chosen, it is crucial to minimize variation
at each step of the workflow. Establishing and following standard operating procedures reduces
bias in sample preparation and processing [67]. Variation in biological samples is widespread, and
while some variables such as patient age and gender produce real and interesting differences in
metabolomics data, some variables, such as patient sampling time, diet, and medications, produce
irrelevant artifacts that can heavily affect data and skew results. To account for the latter variation, it is
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necessary to “normalize” the data, effectively removing unnecessary biases while preserving authentic
biological variation. Although there is no standard normalization method, most methods fall into
two broad categories: normalization via the inclusion of quality control and internal and/or external
standards [68] that are run and processed along with other samples, and normalization by data-scaling
and statistical methods [69–73]. Additionally, metabolomic studies normalize data by comparing the
group of interest to a control group. Groups must have sufficient sample numbers to compensate for
individual variation and discover metabolites that legitimately separate groups.

Standardization in reporting results is another factor critical to accurate interpretation of
metabolomics data. The Metabolomics Standards Initiative (MSI), created to guide analytical
techniques and reporting practices, is an excellent step toward standardization of metabolomics
methods [74]. However, the MSI is not comprehensive and will require additional updates as the field
progresses [74].

Interpretation of metabolomics data requires, as with all steps of the workflow, acute discretion
and attention to detail. Optimally, metabolite identities are confirmed, often by tandem MS
(MS/MS) [75]. Orthogonal techniques should be used to validate metabolite abundances. Many of
the same metabolites are perturbed for unrelated diseases due to the common host pathways altered
by different pathogens. However, levels of overlapping metabolites often differ during the course of
infection and require deeper investigation to understand infection processes and their progression.

2. DENV

DENVs are among the most clinically important arboviruses as they infect 390 million people
per year and cause about 9000 deaths worldwide [12,76]. DENVs have four serotypes, numbered
one to four. Infection with one serotype does not provide immunity to infection with other serotypes.
Diseases caused by these viruses range from asymptomatic to lethal infection. Dengue fever (DF)
is a five-to-seven-day acute febrile illness characterized by headaches as well as joint, muscle, and
bone pain [77]. Most patients recover from DF. Subsequent infection with a second serotype can
result in a more severe form of disease, Dengue Hemorrhagic Fever (DHF), which is characterized
by plasma leakage into pleural and abdominal cavities [77]. Though classified as different diseases,
DHF mimics the symptoms of DF early in infection [77]. The worst subset of DHF cases is termed
Dengue Shock Syndrome (DSS), in which the patient develops hemorrhage and profound hypotension.
Patients with grade IV DHF/DSS have undetectable blood pressure and pulse and are at serious risk
of dying [77]. These disease categories are based on the World Health Organization’s (WHO) 1997
criteria, which were refined in 2011 [77,78]. While DHF can be caused by primary infection, DHF
and DSS are principally due to antibody-dependent enhancement of viral entry during secondary
infection [14,77].

2.1. Infection with DENVs Alters Cell Membrane Composition (Glycerophospholipids and Sphingolipids)

DENVs induce alterations in many host lipids, including fatty acids, glycerolipids,
glycerophospholipids, and sphingolipids. A fatty acid is a carboxylic acid with an aliphatic carbon
chain that is typically unbranched and 4–28 carbons long [79]. The carbon chains can be unsaturated
(containing double bonds) or saturated (no double bonds). Fatty acids can exist free or esterified into
larger molecules (Figure 2).
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Figure 2. Lipid structures. LIPID MAPS naming conventions indicate “carbon atoms”: “double bonds”
(location and conformation of double bonds) [80]. Phosphatidylcholine (PC) is composed of two lipid
tails esterified to glycerol 3-phosphate with a choline head group. Glycerol’s stereospecific carbons
are numbered sn-1, sn-2, and sn-3 [81]. Phosphatidylethanolamine (PE), phosphatidylserine (PS), and
phosphatidylinositol (PI) have the same structure, but with alternative head groups. Ceramide (Cer)
contains a sphingosine backbone, and a fatty acyl group. Sphingomyelin is Cer with a phosphocholine
or phosphoethanolamine head group. The “d” in the name indicates that these have 1,3-dihydroxy
sphingosine backbones.

Phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI),
phosphatidylserine (PS), and sphingomyelin (SM) are major components of cell membranes
(abbreviations listed in Table 1) [82]. PC, PE, PI, and PS are glycerophospholipids with a
3-phosphoglycerol backbone esterified to a pair of fatty acyls with the sn-2 site enriched in unsaturated
fatty acyls [81,83,84]. Within these classes of molecules, species vary by the length and saturation
of their fatty acyl tails. Lipid tails can be ether-linked instead of the prototypic ester linkage.
Lysophospholipids (LPL) are variants of glycerophospholipids that have one fatty acyl chain
hydrolyzed, often by phospholipase A2, so only one remains.
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Table 1. Metabolite abbreviations. Other abbreviations are listed at the end of the text.

Abbreviation Metabolite

AA arachidonic acid

ALA α-linolenic acid

ATP adenosine triphosphate

Cer ceramide

DGLA dihomo-γ-linolenic acid

DHA docosahexaenoic acid

DHCer dihydroceramide

EPA eicosapentaenoic acid

FADH2 flavin adenine dinucleotide

GTP guanosine triphosphate

LPC lysophosphatidylcholine

LPE lysophosphatidylethanolamine

LPI lysophosphatidylinositol

LPL lysophospholipid

LPS lysophosphatidylserine

NADH nicotinamide adenine dinucleotide

PC phosphatidylcholine

PE phosphatidylethanolamine

PG phosphatidylglycerol

PI phosphatidylinositol

PIP phosphatidylinositol phosphate

p-PC plasmalogen phosphatidylcholine

p-PE plasmalogen phosphatidylethanolamine

PS phosphatidylserine

SM sphingomyelin

VLDL/LDL very-low-density lipoprotein/low-density lipoprotein

Metabolomics studies on dengue patients revealed alterations in glycerophospholipids
and sphingolipids (Table 2). The first metabolomics study on human sera from patients
infected with DENV1-3 identified decreased levels of PC, lysophosphatidylcholines (LPC), and
lysophosphatidylethanolamines (LPE) and increased levels of SM(d18:1/18:1(9Z)) relative to healthy
control patients [20]. Increased SM levels correlated with decreased lymphocyte counts and LPE levels
positively correlated to platelet counts. The timing of these changes connected elevated SM with the
early host response while increased LPE levels correlated to later responses, and thus these lipids
may have potential as prognostic biomarkers [20]. Khedr et al. [85] also found four of the same LPCs
similarly decreased during infection with DENVs in adult sera relative to healthy controls. LPCs have
also been shown to have prognostic potential in a cohort of children in Nicaragua with DENV2 [22]. In
this study, patients who had DHF had higher levels of LPCs than non-dengue controls [22]. LPCs have
been linked to increased endothelial permeability, a hallmark of DHF/DSS [77,86]. The conical shape
of LPCs induces positive membrane curvature, which may be crucial for the functionality of the
virion envelope or formation of the replication spherules, as both are highly curved [87]. Other work
identified seven glycerophospholipids including PSs, PEs, and LPEs that predicted onset of DHF
in adults in Singapore [23]. Of these three classes, only the LPEs were consistently decreased in
patients with DHF; PSs and PEs were increased or decreased according to their particular fatty acyl
composition. These studies demonstrated that glycerophospholipids have considerable potential as
prognostic biomarkers predicting the likelihood that a patient has DHF.
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Table 2. Selected metabolites from publications on human infections with dengue viruses (DENVs). Metabolites generally increased in disease are in red, decreased
metabolites are in blue. Black metabolites have mixed results in the corresponding publication. If not specified, LC was reversed-phase. Standard single letter amino
acid abbreviations are used.

Publication Arboviruses Studied Sample Source Technique Comparison Selected Metabolites (down in Disease, up in Disease) Ref. No.

Cui et al., 2013 DENV1–3 (mostly DENV1
and DENV3) Human sera LC-MS; GC-MS;

MRM healthy vs 3 DF time points
fatty acids (AA, ALA, DHA); acylcarnitines;

glycerophospholipids (LPC; LPE; PC); glycerolipids;
sphingolipids (SM); amino acids (F; W); bile acids

[20]

Voge et al., 2016 DENV2 and DENV1 Human sera HILIC-MS;
LC-MS/MS; MRM non-dengue vs DF vs DHF/DSS vitamin D3; glycerophospholipids (PC; LPC); amino acid

(P); fatty acids (DHA; ALA; AA) [22]

Cui et al., 2016 DENV1–4 (mostly DENV2) Human sera LC-MS; LC-MS/MS;
MRM DF vs DHF serotonin; kynurenine; glycerophospholipids (PS;

PE; LPE) [23]

Cui et al., 2018 DENV1–4 (mostly DENV2) Human sera LC-MS; LC-MS/MS DF vs DHF purines; acylcarnitines; glycerophospholipids (PC; LPC;
LPE; p-PC); amino acids (F); fatty acids (DHA); bile acids [25]

Khedr et al., 2015 DENV Human blood GC-MS healthy vs early febrile DF fatty acyl esters (AA; DHA) [88]

Khedr et al., 2016 DENV Human sera LC-MS/MS healthy vs DF glycerophospholipids (LPC; LPI; PC; PI; PE; PS) [85]

El-Bacha et al., 2016 DENV3 Human sera 1H NMR
non-Dengue vs primary DF;
secondary DF; primary DHF;

secondary DHF

amino acids (A; H; Q; Y); (very) low-density lipoprotein;
carboxylic acids (acetate) [21]

Villamor et al., 2018 DENV1–4 Human sera GC-MS DF vs DHF fatty acyl esters (DHA; AA; adrenic acid;
docosapentaenoic acid; DGLA; pentadecanoic acid) [24]

Melo et al., 2018 DENV4 Human sera DIMS; MS/MS healthy vs DF glycerophospholipids (PC); triacylglycerols [89]

Shahfiza et al., 2017 DENV Male human urine 1H NMR healthy vs DF hydroxy ketones; amino acids and derivatives; carboxylic
acids; fructose; myo-inositol [90]
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Glycerophospholipids can also differentiate viral diseases. Khedr et al. [85] used LC-MS/MS
to quantify glycerophospholipids in sera from healthy controls and patients diagnosed with DF,
hepatitis B, or hepatitis C. The authors attributed the decreased PIs and PE in DF patients compared
to healthy controls to phospholipase A2 activation by DENVs, which would convert them to
lysophosphatidylinositols (LPI) and LPE [85,91]. Indeed, virus infection increased the amount of
LPI(16:0), a potential product of phospholipase A2 activity on the PIs. PSs and LPCs were also less
abundant during DF than in healthy controls [85]. Levels of several PCs, PE(38:4), and PS(36:2) were
higher and levels of LPCs were lower in DF patients than those of hepatitis B or hepatitis C patients,
thereby differentiating these viral diseases [85].

Another group, Melo et al. [89], found seven PCs that were elevated in the sera of DENV4-infected
patients in Brazil (within four days of symptom onset) relative to healthy controls using DIMS and
MS/MS. Because some of the PCs had ether-linked fatty acyls, the authors speculated that three of the
PCs are precursors to the platelet activation factor, which has been linked to thrombocytopenia and
vascular permeability during DENV2 infection [89,92]. Alternatively, the PCs may contribute to the
formation of the viral spherule membranes [89].

Cui et al. [93] used metabolomics to validate a humanized mouse model for DENV2 infection
(Table 3). They found that SMs were elevated in the sera within seven days of DENV2 inoculation,
while glycerophospholipids including PE, LPE, and PC mostly decreased, consistent with previous
results in human sera from the same group [20,93]. This study emphasized the value of metabolomics
to broadly evaluate a model system and compare it to human infection [93].
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Table 3. Selected metabolites from papers on infection with DENVs in model systems and mosquitoes. Metabolites generally increased in disease are in red, decreased
metabolites are in blue. Black metabolites have mixed results in the corresponding publication. If not specified, LC was reversed-phase. Standard single letter amino
acid abbreviations are used.

Publication Arboviruses Studied Sample Source Technique Comparison Selected Metabolites (down in Disease, up in Disease) Ref. No.

Cui et al., 2017 DENV2 Humanized mouse
sera

HILIC and RPLC-MS;
LC-MS/MS

DENV2 time points (0, 3, 7, 14, &
28 days post infection (dpi))

fatty acids (DHA, AA, ALA); purines; pyrimidines;
acylcarnitines; acylglycines; glycerophospholipids (PE;
PC; LPE; LPC; p-PC); sphingolipids (SM); amino acids

(K; P); bile acid

[93]

Brooks et al., 1983 DENV1–4 Monkey kidney cell
media

Frequency-pulsed
electron-capture

gas-liquid
chromatography

mock vs DENV1–4 amines; alcohols; carboxylic acids; hydroxy acids [94]

Birungi et al., 2010 DENV1–4 human endothelial
cell media

1H NMR; DIMS mock vs DENV1–4 (6, 24, & 48 hpi) amino acids (A; I; F; W; Y); keto acids; dicarboxylic acids;
fatty acids; indole acid; acyl glycine; cholesterol [95]

Fontaine et al., 2015 DENV2 Human foreskin
fibroblast cell lysate GC-MS; LC-MS mock vs DENV2 (10, 24, & 48 hpi)

amino acids (A; G; Q; W); carbohydrates;
glycerophospholipids (LPE; LPC); fatty acids (EPA; DHA);

purines; pyrimidines kynurenine; cholesterol
[96]

Perera et al., 2012 DENV2 C6/36 Aedes albopictus
cell lysate LC-MS; MRM mock and UV-inactivated DENV2

vs DENV2
glycerophospholipids (PC; LPC; PE; LPE); sphingolipids

(SM; Cer) [19]

Chotiwan et al., 2018 DENV2 Aedes aegypti midguts
(bloodfed)

LC-MS; LC-MS/MS;
MRM mock vs DENV2 (3, 7, & 11 dpi)

glycerophospholipids (LPC; LPE; LPS; LPI; PI; PC; PE; PS;
PG); glycerolipids; sphingolipids (Cer); fatty acyls;

acyl-carnitines; sterol lipids
[97]
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2.2. Fatty Acid Levels Are Influenced by Infection with DENVs

Glycerophospholipids provide a reservoir for unsaturated fatty acids and the Lands’ cycle controls
the balance of free fatty acids and their incorporation in glycerophospholipids [98]. Phospholipase A2
cleaves the fatty acyl group from the sn-2 carbon of glycerophospholipids, freeing the fatty acid that is
often unsaturated, such as arachidonic acid (AA), docosahexaenoic acid (DHA), and eicosapentaenoic
acid (EPA) (Figure 3) [81,83,84]. Unsaturated fatty acyls incorporated into glycerophospholipids
influence membrane properties [83].
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Figure 3. Fatty acid metabolism. Fatty acids are freed from glycerophospholipids by phospholipases
producing lysophospholipids (LPL). Fatty acids are then conjugated to coenzyme A (CoA). The fatty
acyl is bonded to carnitine for transport to the mitochondrial matrix, where they can undergo
β-oxidation generating acetyl-CoA. The acetyl-CoA can enter the tricarboxylic acid (TCA) cycle to
generate NADH which will produce adenosine triphosphate (ATP) during oxidative phosphorylation,
or the acetyl-CoA can be used to build new fatty acids and glycerophospholipids. The fatty acids can
also be used to remodel glycerophospholipids in the Lands’ cycle without being degraded [98].

In the serum of people with DF in Singapore, AA, a pro-inflammatory fatty acid, was elevated
during the febrile and defervescent phases [20]. AA comprises up to 25% of the fatty acyls in cell
glycerophospholipids [81]. Eicosanoids produced from AA can be both pro- and anti-inflammatory
and mediate the overall response [84,99]. Hence, AA may contribute to DF symptoms and limiting
viral multiplication. In contrast, the increases in anti-inflammatory molecules during the febrile phase
of DF, including DHA, inosine, and cortisol, are likely the body mitigating the inflammation, though
these metabolites may aid viral persistence [20]. This study also detected elevated α-linolenic acid
(ALA), a dietary fatty acid and a precursor to DHA, in human sera during infection with DENV1-3 [20].
Voge et al. [22] found that AA, DHA and ALA could predict DHF, as levels were higher in patients with
DHF than those with DF in their cohort of children in Nicaragua. Both Cui et al. [20,25] and Voge et
al. [22] found increased DHA in adult DF compared to in healthy controls, but substantially decreased
DHA in adult DHF/DSS compared to in DF, a markedly different result than the increase in DHA
found in children in Nicaragua with DHF. Cui et al. [93] also found increased AA, DHA, and other
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fatty acids in the serum of DENV2-infected humanized mice. These studies link fatty acid metabolism
to the symptoms induced by DENVs, implying this pathway may be a potential therapeutic target.

2.3. Infection with DENVs Alters Glycerolipid Utilization

Glycerolipids can have one, two, or three fatty acyl groups esterified to a glycerol backbone
and are termed mono-, di- and triacylglycerols (or triglycerides). Glycerolipid usage is altered in
humans during infection with DENVs [24,88,89]. Increased levels of four triacylglycerols differentiated
DENV4-infected patients in Brazil during febrile illness from healthy controls [89]. These glycerolipids
may be mobilized to provide energy for viral replication or acetyl-coenzyme A (acetyl-CoA) for de
novo fatty acid biosynthesis [89]. To study the alterations in the composition of fatty acyl-containing
molecules during DF, Khedr et al. [88] used targeted GC-MS lipidomics to analyze esterified fatty acyls
in the blood. In serum, esterified fatty acyls are mostly found in cholesterol esters, triacylglycerols, and
glycerophospholipids [100]. The blood of patients with DF had reduced abundances of most fatty acyls
targeted, compared to blood of healthy controls, consistent with reduced serum glycerophospholipids
noted during infection by DENVs in Cui et al. [20] and Voge et al. [22,88]. The fatty acyls assayed by
Khedr et al. [88] were chemically derived from lipids in whole blood, unlike the free fatty acids that Cui
et al. [20] and Voge et al. [22] assayed in human sera. This work was extended by Villamor et al. [24],
who assayed levels of most of the same fatty acids chemically derived from larger lipid molecules
using targeted GC-MS metabolomics to prognostically differentiate DHF/DSS from DF. The sera
used were collected from Columbian dengue patients within 96 hours of the onset of fever. Villamor
et al. [24] found that elevated DHA and AA levels and lower levels of DGLA and pentadecanoic
acid relative to total fatty acids indicated the patient likely had DHF/DSS rather than DF. Because
it inhibits inflammatory eicosanoid biosynthesis, Villamor et al. [24] proposed DGLA as a potential
therapeutic against DENVs. This work helped quantify changes in polyunsaturated fatty acyls that
may be responsible for mediating inflammatory responses during severe dengue.

2.4. Metabolites Associated with β-Oxidation Are Perturbed during Infection with DENVs

Fatty acids from both glycerophospholipids and glycerolipids can undergo β-oxidation to produce
acetyl-CoA, which can be used for de novo fatty acid synthesis, or they can enter the tricarboxylic
acid (TCA) cycle to generate reduced nicotinamide adenine dinucleotide (NADH), reduced flavin
adenine dinucleotide (FADH2), and guanosine triphosphate (GTP) [101]. The NADH undergoes
oxidative phosphorylation to generate adenosine triphosphate (ATP). Acylcarnitines are intermediates
for transporting fatty acids for oxidation in the mitochondria, and have one fatty acyl group esterified
to carnitine [101].

Human sera contained elevated acylcarnitine levels during the febrile and defervescent phases of
DF [20]. Cui et al. [20] suggested this aberrant β-oxidation indicated liver dysfunction. Acylcarnitine
levels were lower in DHF patients than in DF patients, which may suggest differential perturbation of
β-oxidation in severe versus mild dengue [20,25]. Bile acids were elevated during the defervescent
phase of DF relative to healthy controls, implying liver damage, and were five times higher in DHF
patients than in DF patients [20,25,102]. Elevated bile acids were significantly correlated with elevated
aspartate transaminase and alanine transaminase levels in the blood, consistent with liver swelling and
damage in DF and potential liver failure in DHF [25,103]. Similarly, bile acids, liver transaminases, and
metabolites involved in fatty acid β-oxidation were elevated in the sera of DENV2-infected humanized
mice, indicating liver damage [93].

Other researchers found other molecules that suggest aberrant β-oxidation and liver function.
In a study in Brazil using 1H NMR to assay sera of patients with DF or DHF, very-low-density
lipoprotein/low-density lipoprotein (VLDL/LDL) levels were lower in all dengue disease states than
during non-dengue disease, perhaps due to liver dysfunction and altered β-oxidation [21]. Supporting
this hypothesis, increased acetate levels, which correlate to liver disease [104], occurred in DHF patients
relative to non-dengue control patients [21]. Free acetate, principally produced by intestinal flora, is
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bonded to CoA in the liver by acetyl-CoA synthetase as an alternative to pyruvate for the TCA cycle or
fatty acid synthesis. In the urine of men with DF five to seven days post symptom onset, acetoacetate,
a ketone body, was increased [21]. This elevated level of acetoacetate was likely produced in the
liver from β-oxidation, suggesting that acetoacetate is being used to transport energy throughout the
body in place of glucose, as occurs during fasting [105]. The increase in urine acetoacetate suggests
dysregulation of fundamental energy storage and usage pathways during DENV3 infection.

These studies demonstrated perturbed β-oxidation in dengue disease, which implies liver
dysfunction. It has been noted in the literature that infection with DENVs can cause liver swelling
and elevated levels of liver transaminases [77,78], but a number of liver-related metabolites found by
different studies imply more dysfunction than is generally recognized. In rats, Chang et al. (2017)
demonstrated that liver fibrosis altered the TCA cycle as well as tryptophan, glycerophospholipid, and
sphingolipid metabolism [106]. These same pathways were also altered in humans and mice infected
by DENVs, suggesting that DENVs induce liver damage [20–23,25,27,85,90,93,95,96]. Levels of bile
acids, acylcarnitines, and acetate were also increased in the sera of humans infected with DENVs,
similarly suggesting liver damage [20,21,25]. Confirming the link between liver damage and certain
metabolites, Cui et al. [25,93] found elevated liver transaminases correlated with elevated bile acids.
Acceptance that DENVs cause liver damage is gaining traction [107,108], though the sensitivity of
metabolomic findings suggests earlier mild damage than previously appreciated.

2.5. Amino Acid Usage Is Redistributed by Infection with DENVs

Amino acids do more than comprise the building blocks of proteins; they are also important
sources of carbon and nitrogen and are precursors to many other metabolites, including serotonin and
NAD+ [101]. Serotonin is important both as a neurotransmitter and to enhance blood clotting, while
NAD+ is required for oxidative phosphorylation, the primary pathway for generating ATP [101,109].
Catabolism of amino acids can generate ATP [101].

Though 95% of tryptophan is converted to NAD+ via the kynurenine pathway, it can also be
converted to serotonin or catabolized to pyruvate and acetyl-CoA to enter the TCA cycle [101,110,111].
Levels of tryptophan and kynurenine were altered during infection with DENVs in cell culture models
and human sera, suggesting that these viruses alter inflammatory responses, as this pathway impacts
and is influenced by inflammation [20,23,95,96,111]. DENV3 infection increased tryptophan levels and
DENV4 altered kynurenine levels in the media of infected human cells [95]. Although not highlighted
by Fontaine et al. [96], the supplemental table from their publication indicates that kynurenine had
the largest fold increase of any metabolite detected at 24 hours post infection (hpi) (100-fold) and 48
hpi (49-fold), during DENV2 infection of human primary cells, whereas levels of tryptophan were
significantly decreased. Based on their MS analysis of human sera, Cui et al. [23] proposed that
products of tryptophan metabolism were prognostic for DHF. The authors compared levels of various
metabolites during the febrile phase of infection with DENVs to cytokine assays and medical records
to differentiate patients that developed DHF from those that resolved DF [23]. DF patients had lower
serotonin and higher kynurenine levels than healthy controls, while DHF patients had even lower
levels of serotonin and higher levels of kynurenine than DF patients within 96 hours of fever onset [23].
The elevated levels of serotonin in DHF patients compared to DF patients persisted through the
defervescence/critical phase five to seven days post fever onset [25]. Plasma serotonin, which is a
separate pool from that of the central nervous system, resides in granules in platelets and enhances
platelet aggregation when released [109]. Thus, Cui et al. [23] postulated that the reduction in serotonin
is due to the reduction in platelets during the thrombocytopenia characteristic of DHF. Reduced
platelet counts and plasma serotonin levels can be detected before patients become critical [23,77].
When both serotonin and interferon-γ levels are used for a prognostic test, Cui et al. [23] achieved an
early predictive power of 77.8% sensitivity and 95.8% specificity in differentiating DHF from DF on
the samples utilized in this study. Though the roles of tryptophan metabolism in dengue disease are
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not yet well elucidated, metabolomic approaches indicate that these pathways may play important
roles in virus multiplication and pathogenesis, which can be exploited to develop a prognostic assay.

Proline and glutamine are also potentially prognostic amino acids. Voge et al. [22] identified
proline to predict progression to DHF during the febrile phase of DENV-2 infection in children in
Nicaragua. Glutamine levels are influenced in cells and human sera by infection by DENVs [21,26,96].
Glutamine is the most abundant free amino acid in plasma [112]. In addition to its obvious role
in protein synthesis, it is an important source of carbon, nitrogen, and energy for lipid synthesis,
the TCA cycle, and other anabolic processes [112]. Elevated levels of glutamine have been linked
to inflammatory cytokine production, a fundamental aspect of DHF/DSS responsible for increased
disease severity [77,113]. Because of its role in numerous metabolic processes, glutamine usage is likely
altered by viruses to optimize the balance of different glutamine metabolites useful for viral replication.
Glutamine and glutamate levels were higher in DENV2-infected primary human cells than in mock
infected at all time points [96]. Removing exogenous glutamine reduced infectious virus by 60% [96].
Glutamine may be replenishing the TCA cycle’s intermediates during infection [96]. In human sera,
glutamine levels decreased with increased dengue severity, indicating that it may be catabolized for
energy or carbon metabolism during viral infection [21].

In human sera five to seven days post fever onset, levels of phenylalanine were higher and uric
acid levels were lower in DHF than in DF, possibly from higher oxidative damage in DHF [25]. Nitric
oxide signaling, a part of oxidative stress that helps activate monocytes, may be a host immune response
attempting to restrict replication of DENVs, but also is correlated to reduced platelet aggregation and
DSS [114]. Conversion of phenylalanine to tyrosine relies on the cofactor tetrahydrobiopterin, which
is oxidized during oxidative stress, causing an accumulation of phenylalanine. Decreased levels of
uric acid, a major antioxidant in the blood, may allow for the oxidative damage previously reported
during infection with DENVs [114]. Hence, Cui et al. [25] proposed that administering uric acid would
decrease oxidative damage from viral infection and alleviate DHF, a valuable potential therapeutic
technique. Shahfiza et al. [90] noted increased levels of 4-hydroxyphenylpyruvate, a downstream
product of phenylalanine and tyrosine metabolism, in the urine of men with DF on the fifth through
seventh days post symptom onset compared to healthy controls. This suggests that tyrosine was
processed to 4-hydroxyphenylpyruvate. DF patients also had an increase in valerylglycine in their
urine [90]. While little is known about valerylglycine metabolism, increases in other urine acylglycines
indicate dysregulation of amino acid or fatty acid metabolism [115]. As with humans, Cui et al. [93]
also found molecules related to phenylalanine, tryptophan, lysine, arginine and proline metabolic
pathways elevated in the sera of DENV2-infected humanized mice within seven days post infection
(dpi).

Many amino acids and their metabolites have been implicated in infection with DENVs. Several,
including proline, serotonin, and kynurenine, may be useful prognostics for differentiating patients
likely to decline with DHF and who will need extra medical intervention from those who will recover
from DF [22,23].

2.6. DENVs Affect Additional Pathways

Alterations induced by infection with DENVs have been observed in many other metabolic
pathways related to energy transfer and biosynthetic anabolism, including nucleotide and vitamin
D metabolism, the TCA cycle, and glycolysis. Cui et al. [20,93] demonstrated in human sera and
humanized mice sera that the metabolic disturbances induced by DENVs are greatest early in infection,
and slowly return to healthy levels over time, with defervescent samples falling in between healthy
and febrile samples by PCA. The patterns of these alterations mirror the course of infection, indicating
that DENVs do not induce widespread, long-lasting perturbations in host metabolism.

Several studies evaluated the ability of metabolomics to differentiate DENV serotypes. In carefully
controlled cell culture experiments, all four serotypes were differentiated [94,95]. Cui et al. [20] were
not able to identify metabolites in human sera that differentiated DENV1 and DENV3 [20]; perhaps



Viruses 2019, 11, 225 15 of 30

because these are the most closely related serotypes, or because the techniques applied lacked the
sensitivity required for this task [9,14,116]. However, Voge et al. [22] found 25 metabolites that
differentiated DENV1 and DENV2 serotypes in human sera, and Villamor et al. [24] found some fatty
acyls that varied between the different serotypes during human infections.

Glycolysis is a fundamental process of cellular metabolism and was found to be altered by DENV2
in human foreskin fibroblasts by LC-MS and GC-MS on cell lysates by Fontaine et al. [96]. Levels of
glucose 6-phosphate and fructose 6-phosphate, which are glycolysis intermediates, were significantly
increased in infected cells at 24 and 48 hpi, whereas levels of downstream glycolysis metabolites,
phosphoenolpyruvate and 3-phosphoglycerate, were elevated at 10 hpi, but decreased by 48 hpi when
compared to levels in uninfected cells. These findings may suggest that elevated glycolysis produces
downstream products during early infection and slows such that upstream intermediates accumulate
during the later stages of infection. Inhibition studies determined that glycolysis is required for DENV2
replication, as withholding glucose from the medium or inhibiting glycolysis reduced virus replication
about 100-fold [96]. Fontaine et al. [96] hypothesized that glycolysis is necessary for lipid biosynthesis
induced by DENVs to form replication spherules or perhaps other replicative requirements, such as
generating ATP. By utilizing glycolysis, DENVs could save fatty acids for membrane synthesis rather
than use them for β-oxidation.

Shahfiza et al. [90] found that the TCA cycle, which is downstream of glycolysis, was perturbed by
infection with DENVs. Levels of succinate and citrate were decreased in the urine of infected men on
the fifth through seventh days post symptom onset compared to those in healthy controls, indicating
that this fundamental pathway for fueling the body is perturbed by infection [90]. The authors
suggested these and 11 other metabolites they identified as altered in the urine of men infected by
DENVs are potential diagnostic molecules [90].

Other metabolites altered by infection with DENVs include vitamin D3, purines, and pyrimidines.
Decreased levels of 1,25-dihydroxyvitamin D3, the biologically active version of vitamin D3, correlated
to DHF/DSS compared to DF and non-dengue disease in the Nicaraguan cohort analyzed by Voge
et al. [22]. Though principally associated with calcium regulation, vitamin D3 can also influence the
vascular barrier and immunoregulation [117]. Hence, reduced 1,25-dihydroxyvitamin D3 production
may be partially responsible for the symptoms of DHF/DSS [22]. Cui et al. [93] found purine and
pyrimidines elevated in the sera of DENV-infected humanized mice within 7 dpi, perhaps to generate
ribonucleotides for viral genome replication.

Over a dozen articles have illuminated the metabolic alterations caused by infection with DENVs
in model systems and humans, implicating lipid and fatty acid changes, as well as changes in glycolysis,
the TCA cycle, β-oxidation, amino acid metabolism, and many other affected pathways. These studies
are valuable as they suggested metabolites for diagnostic and prognostic assays, proposed therapeutics
such as uric acid and DGLA, and elucidated host–virus interactions [24,25,90].

3. CHIKV vs DENVs

CHIKV is an alphavirus in the Togaviridae family, but shares epidemiological and ecological
features with the flaviviruses DENV1–4 and ZIKV, as they have overlapping geographic ranges and are
transmitted by the same Aedes vectors [9]. Local transmission of CHIKV has been documented on five
continents, and there is substantial risk for CHIKV to spread to Australia [118]. Chikungunya fever,
which has affected millions of people over the last two decades, is an acute febrile illness with joint
arthralgia that can persist for months or years following fever resolution [9]. Identifying metabolic
features that distinguish CHIKV from other tropical diseases could substantially improve diagnoses
for populations at risk of contracting this and clinically similar diseases.

To differentiate metabolic alterations induced by CHIKV from DENVs, Shrinet et al. [26]
analyzed sera from patients in India infected with CHIKV, DENVs, or co-infected with both using
1H NMR (Table 4). Shrinet et al. [26] found alterations in glycine, serine, threonine, and galactose
metabolism, as well as the TCA cycle, in CHIKV patients relative to healthy controls. Alterations in
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the TCA cycle are expected given CHIKV’s high energy requirements for rapid multiplication and
generation of biosynthetic building blocks for lipids, proteins, and RNA. The authors found statistical
correlation between joint damage and elevated hypoxanthine and 4-hydroxyphenylpyruvic acid levels
during CHIKV infection, consistent with their reported involvement with arthritis [26,119,120]. This
finding provides evidence for conserved molecular features between CHIKV-induced arthralgia and
rheumatoid arthritis. As for CHIKV infection, glycine, serine, threonine, and galactose metabolism
were also altered in patients infected with DENVs and in patients co-infected with CHIKV and
DENVs versus healthy controls. Glutamine levels were noted to increase only in co-infections, which
may be due to the statistical selection of metabolites, as other work has found glutamine levels
altered by infection with DENVs alone [21,26,96]. Several biomarkers differentiated CHIKV infections
from infections with DENVs, including sorbitol, 2-ketobutyric acid, and sarcosine [26]. Sorbitol was
elevated in CHIKV patients relative to healthy controls, but was not detected in dengue patients, and
was observed at an intermediate level in co-infected patients. Sorbitol is an intermediate in sugar
metabolism, and therefore, virus-specific changes suggest that CHIKV and DENVs cause different
alterations in carbon metabolism.
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Table 4. Selected metabolites from papers on chikungunya virus (CHIKV), West Nile virus (WNV), and Zika virus (ZIKV). Metabolites generally increased in disease
are in red, decreased metabolites are in blue. Black metabolites have mixed results in the corresponding publication. If not specified, LC was reversed-phase. Standard
single letter amino acid abbreviations are used.

Publication Arboviruses Studied Sample Source Technique Comparison Selected Metabolites (down in Disease, up in Disease) Ref. No.

Shrinet et al., 2016 DENV and CHIKV Human sera 1H NMR
Healthy vs CHIKV vs DENV vs

co-infected
carbohydrates (sorbitol); amino acids (Q); pyrimidine;

organic acids [26]

Martin-Acebes et al.,
2014 WNV HeLa cell lysate LC-MS; LC-Orbitrap mock vs WNV sphingolipids (Cer; DHCer; SM); glycerophospholipids

(PC; LPC; p-PC; p-PE) [121]

Merino-Ramos et al.,
2016 WNV Vero cell lysate LC-MS WNV infected vs WNV infected

treated with ACC inhibitor

cholesteryl esters; sphingolipids (Cer; monohexosylCer);
glycerophospholipids (PC; PE; PS) (all down in drug

treated cells compared to no drug)
[122]

Liebscher et al., 2018 WNV Vero cell lysate LC-MS/MS mock vs WNV glycerophospholipids (LPC; PC; PS; PE; PI) [123]

Melo et al., 2016 ZIKV C6/36 Aedes albopictus
cells MALDI MS; MS/MS mock vs ZIKV infected sphingolipids; glycerophospholipids (LPC; LPS; PE; PC);

diacylglycerol [124]

Melo et al., 2017 ZIKV Human sera DIMS healthy and non-ZIKV vs ZIKV angiotensins; ganglioside GM2; phosphatidylinositols [27,28]
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4. ZIKV

ZIKV is an emerging flavivirus that has recently expanded from Southeast Asia to the Americas.
With only 13 naturally acquired cases reported between the discovery of ZIKV in humans in 1953 and
an outbreak on Yap Islands in Micronesia in 2007, the recent expansion of ZIKV was surprising [13].
Also surprising was the discovery that ZIKV can be sexually transmitted, though it is primarily
vectored by Aedes mosquitoes [7,125,126]. ZIKV usually causes no symptoms or only a mild febrile
illness with rash, but can cause severe diseases such as microcephaly during fetal development or the
paralytic autoimmune disorder, Guillain-Barre syndrome [126].

Melo et al. [27,28] investigated unique metabolites in human serum using DIMS. They selected
metabolites that were detected in the serum of ZIKV-infected patients, but were not detected in
non-ZIKV ill patients nor detected in healthy controls. They found increased levels of PI phosphates
(PIPs), which are PI with an additional phosphate on the sugar moiety, and angiotensins. Both PIPs
and angiotensins contribute to mTOR signaling to prevent autophagy. Like DENVs, ZIKV induces
autophagy, presumably to increase β-oxidation and aid viral multiplication [127,128]. The hosts
may increase angiotensins and PIPs to restrict autophagy and deprive ZIKV of the nutrients it
would obtain from β-oxidation. However, ZIKV NS4A and NS4B proteins inhibit the mTOR
signaling pathway that is stimulated by PIPs and angiotensins, thus allowing for autophagy and
making this potential host defense ineffective [127]. Melo et al. [27,28] also identified an increase
in ganglioside GM2, a sphingolipid, in ZIKV-infected patients relative to their non-ZIKV-infected
control patients. Gangliosides, which increase membrane flexibility and are instrumental in anchoring
DENV-2 replication complexes to membranes, may also anchor ZIKV replication complexes [129].
The authors suggest that since the host immune system attacks neuronal gangliosides in Guillain-Barre
syndrome [130], ganglioside GM2 may be associated with this serious ZIKV complication [27].
The molecules identified in the study by Melo et al. [27,28] were not identified as being altered
by infection by DENVs or CHIKV in other studies, though a direct comparison is not advisable
as appropriate comparison groups for ZIKV to other flaviviruses have not yet been included in a
comprehensive study.

5. Conclusions

The studies discussed have covered three arboviruses from the Flaviviridae and Togaviridae families
and have demonstrated their influence on innumerable pathways, including the TCA cycle, fatty
acid metabolism, oxidative damage, amino acid metabolism, glycolysis, immune system interactions,
mTOR signaling, autophagy and others. The quantity of data gathered in just one metabolomics study
is difficult to compile and understand; in reviewing the papers above, we have necessarily neglected
to incorporate all information presented. This review is intended as a broad overview to guide readers
to papers that will most benefit them.

Substantial gaps in our knowledge of arbovirus metabolic alterations remain. While the manipulation
of host membranes by West Nile virus (WNV) has been studied in cell culture, metabolomics data from
patients infected by WNV are lacking [121–123,131]. Arboviruses from the Bunyavirales order and the
Reoviridae family also are an area that could benefit from metabolomic investigation.

5.1. Summary of Pathways Common among Arboviruses

Both togaviruses and flaviviruses rely on elevated glycolysis or β-oxidation of fatty acids to
produce the energy they need to multiply [20,21,89,90,93,95–97,132]. DENVs induce autophagy
and upregulate β-oxidation for energy, in the form of ATP, or for the chemical products that can
be used in anabolic processes [21,89,128]. Products of β-oxidation, including acetyl-CoA, may be
used to make required fatty acids and glycerophospholipids that comprise the new membranes
that flaviviruses induce to house their replication complexes. Indeed, fatty acid levels are altered
by flavivirus infection and inhibiting their de novo synthesis decreases production of WNV and
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DENVs [18,19,122]. These new fatty acids may have independent functions or may be esterified into
glycerophospholipids to contribute to membrane architecture.

Membranes are important for each part of the flavivirus and togavirus lifecycles, including cell
entry, replication, assembly, and exit [14,133]. Replication occurs in membrane-bound vesicles that
protect vulnerable double-stranded RNA intermediates from host surveillance. Assembly of virions
occurs on membranes that facilitate budding from the cell. Due to the necessity of membranes in
arbovirus lifecycles, glycerophospholipids are elevated by flavivirus infection in both human and
mosquito cells and generally reduced in host serum, likely due to intracellular utilization of the
glycerophospholipids depleting them from the serum [11,19,20,22,88,93,97,121,123,124]. Intracellular
levels of the most abundant membrane glycerophospholipid, PC, increased during infection with
DENVs, WNV and ZIKV [19,82,121,124]. Flavivirus infection of humans, humanized mice, and
cell culture often altered levels of glycerophospholipids that curve membranes or control membrane
fluidity, such as PI, PE, LPL, and sphingolipids, consistent with the need for flexible, curved membranes
for replication spherules and virion envelopes [11,20,22,27,28,85,87,93,121,123,134]. Sphingolipid and
LPL production are also important for viral multiplication, as inhibiting their metabolic conversions
decreased flavivirus multiplication [97,121,123].

One class of membrane-curving glycerophospholipids is LPLs, which are produced by the removal
of one fatty acyl group from PC, PE, PI, PS, or phosphatidic acid. Phospholipase A2 activity, which is
elevated in human serum during infection with DENVs [91], produces LPLs by cleaving sn-2 fatty acyls,
thereby producing free fatty acids and LPLs [81,83,84]. The sn-2 of LPLs are enriched in unsaturated
fatty acids, including AA, DHA, and ALA [81,83,84], which were elevated in the sera of patients who
developed DHF, suggesting that phospholipase A2 activity is high in DHF patients [22,24]. Release
of polyunsaturated fatty acids from their glycerophospholipids reservoir allows for production of
pro- and anti-inflammatory signaling molecules, such as prostaglandins, leukotrienes, thromboxanes,
lipoxins, and resolvins [83,84]. Hence, flavivirus production of LPLs for curved membranes may also
trigger some of the inflammatory responses that characterize their infection.

Studies of arbovirus metabolomics demonstrated conserved aspects of togavirus and flavivirus
manipulation of host metabolism, especially fatty acid and glycerophospholipid metabolism, but also
demonstrated that unique metabolic biosignatures of different viruses make it possible to differentiate
between viral infections. Alterations in human metabolism induced by infection with DENVs have
been compared to changes caused by influenza virus [135], hepatitis B and hepatitis C viruses [85],
and CHIKV [26].

5.2. Strengths of Metabolomics Analyses

Metabolomic techniques allow for sensitive and accurate measurements of many metabolites,
relating to a wide variety of molecular processes simultaneously. When Birungi et al. [95] analyzed
extracellular metabolites generated by DENVs in human cell culture using DIMS and 1H NMR, both
techniques consistently identified trends in the levels of amino acids, dicarboxylic acids, fatty acids,
and other TCA-related metabolites, demonstrating that different approaches to metabolomics can
obtain comparable results.

A major strength of metabolomics is the ability to assess perturbations in physiological states
during human infection to understand host–virus interactions in humans. Arbovirus-induced
metabolic biosignatures identified in many of the studies discussed have potential for use in novel
diagnostic assays [20–22,26,27,85,88,90]. Metabolomic methods for detecting viruses are orthogonal
to both PCR and serology (Table 5). Metabolic alterations tend to occur more quickly than serologic
changes and can be detected past the limited time in which viral RNA can be detected by PCR
for arboviruses in serum. Metabolic changes induced by infection tend to revert to normal after
the pathogen has been cleared, allowing metabolites to differentiate recent infection from previous
infection with the same virus serotype. As such, metabolic assays can complement current genomic and
serologic assays. Additionally, the sensitivity of metabolomic techniques allows researchers to identify
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metabolic changes signaling disease progression [21–24]. Serology and PCR cannot provide this
prognostic data, but several metabolomics studies have identified prognostic markers of DHF [21–24].
This suggests that many of these metabolite biomarkers serve as an alarm system for specific disease
states, illustrating the potential of metabolomics in better understanding these diseases. The ultimate
goal of this approach is to identify the disease state within days 1–3 of fever onset and provide a
path to early disease intervention, monitoring of progression or resolution, and recurrence, if any.
Metabolomics data can also be used to evaluate the efficacy of therapeutic intervention by providing
detailed molecular monitoring of disease states and variations from homeostasis [20].
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Table 5. Comparison of metabolic profiling, PCR, and serology techniques for assaying arbovirus infection.

Metabolic Profiling PCR Serology

Virus detection Indirect Direct Indirect

Access to necessary technology

• Mass spectrometers are found in hospital
laboratories (particularly those linked to
universities), major clinical laboratories and
laboratories performing newborn screening

• Not commonly found in
resource-limited settings

• Common to most clinical
laboratories and becoming more
accessible in
resource-limited settings

• Common to most clinical laboratories
including in resource-limited settings

Sample preparation difficulty Simple Simple to difficult Simple

Uses Diagnostic and prognostic Diagnostic Diagnostic

Major limitations

• Requires advanced instrumentation
• Currently not being applied for infectious

disease diagnostics
• Not standardized

• Laboratory contamination
• Dependent on viral load
• Specificity issues

• Dependent on adaptive immune response
• Cannot differentiate past from

current infection
• Cross-reactivity

Major strengths

• Flexibility in adjusting specificity and
sensitivity when monitoring
multiple biomarkers

• Can measure rapid changes in metabolite
abundance for monitoring
disease progression

• High resolution

• Rapid
• Highly sensitive when virus load

is sufficient

• Multiple platforms in diagnostic use
• Standardized
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In addition to scientific discovery, metabolomics can also be used to evaluate animal models or
experimental designs. In 2017, Cui et al. [93] used LC-MS and LC-MS/MS to validate a humanized
mouse model for dengue, as animal models that recapitulate dengue symptoms are lacking. The mice
were extremely immunodeficient NSG mice seeded with human CD34+ fetal liver cells to produce
human platelets, monocytes, and hepatocytes [136]. Cui et al. [20,93] identified many of the altered
molecular features in mice to be part of the same metabolic pathways that were altered in human
sera from their previous study, helping validate the humanized mice as a model for human infection
with DENVs.

5.3. Explanation of Variation in Metabolomics Studies

Metabolomics studies can vary in many aspects that can lead to different statistically significant
changes in metabolite levels. Inconsistencies between studies can arise from differences in sample
collection times and preparation methods, controls, virus genotypes, host populations (including
genetics and diet) or model systems, disease states, data collection methods, and analytical methods.
While some groups may report significant differences in metabolite levels different from the general
trends mentioned in other studies, this is not cause for alarm, but rather suggests that their data
may result specifically from their sample set and analytical methods. Hence, it is difficult to build a
generalizable profile of the metabolic alterations induced by any virus. For example, Cui et al. [20]
and Voge et al. [22] both identified LPC(16:0), LPC(18:1), ALA, AA, and DHA as metabolites altered
in human sera by infections with DENVs, but study populations from Nicaragua, Mexico, and
Singapore did not show consistent trends in these metabolites. Differences in techniques, especially in
chromatography (RPLC and GC versus HILIC) may be partially responsible, as well as differences
in control groups (healthy versus non-dengue disease). Villamor et al. [24] noted that DHA levels
were related to the DENV serotype, potentially explaining variation in DHA trends across different
studies, locations, and patients. Additionally, DHA is derived from ALA, an essential omega-3 fatty
acid, which is principally obtained from the diet [83]. Hence, regional and individual differences in
consumption are likely.

It is important to keep in mind that different sample types reflect different aspects of metabolism.
Cell lysate is distinct from cell medium. The medium is depleted or enriched with metabolites not
just according to changes in metabolism, but also according to the cells’ ability to absorb, retain, or
excrete metabolites. Similarly, human sera are subject to limitations of metabolite transport and may
not reflect abundances of molecules within cells, which may explain why glycerophospholipids were
generally elevated in cell lysate, but decreased in human sera during flavivirus infection [11,19,20,22,
88,93,97,121,123,124].

Variation between studies emphasizes that metabolomic biosignatures best describe the samples
used to build them, so researchers must select samples to best represent the populations and questions
they seek to resolve. A standard set of methods to collect, characterize, and report samples will
reduce variability between studies and improve generalizability in the same way that standardizing
sample collection and processing within an experiment reduces variability. Despite different findings,
the studies discussed in this review demonstrate the ability of metabolomics to differentiate disease
conditions and predict disease severity. Meta-analyses of many papers or large sample sets drawn from
diverse populations will likely improve the generalizability of metabolomics to clinically diagnose
viral diseases.

5.4. Perspectives

Metabolomics provides insight into many aspects of host–virus interactions by confirming and
providing more detail on previous findings, including viral energy and membrane requirements,
metabolite roles in viral infection, and metabolic associations with clinical symptoms, disease states,
and disease progression. The ability to broadly surveil metabolites in human sera is distinctly useful
as it provides an extensive yet detailed evaluation of physiological state, and can be used to evaluate
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interventions during infection. Metabolomics has identified many disease biomarkers for possible
future diagnostics and therapeutic treatments. However, there are several caveats and challenges to
metabolomic studies [137]. There is high inter-laboratory variation in sample collection, processing
and analysis. Identifying unknown metabolites and distinguishing confounding biological variations
are difficult. Additionally, it is hard to obtain large independent sample cohorts that represent patient
populations. Development of biosignatures is expensive and establishing the biological significance
of biomarkers is challenging. Finally, when metabolomics is translated into diagnostic tests, they
face slow adoption by the medical community [137]. To help overcome these challenges, appropriate
control groups and well-characterized samples are essential. To minimize variability in sample
collection, it is optimal to collect large numbers of prospective, rather than retrospective, samples to
better control handling conditions and to account for patient variability. Miscategorized samples can
invalidate results and interpretation, so the methods used to characterize samples, such as laboratory
testing (PCR, serology, etc.) and collection of patient data, should be rigorous. This is important to
understand if age, sex, geographic location, or other factors, such as use of specific drugs, are driving
the differences observed. It is crucial to confirm metabolite identities and quantities with several
data collection methods to minimize the disadvantages of individual approaches and ensure data
robustness. The path from discovery of metabolites as biomarkers to an established clinical assay has
been established in research on autism, newborn screening, and preeclampsia [6,138,139].

MRM assays are currently deployable in the US, as state laboratories that perform newborn
screening are equipped with this technology. To expand to regions without MRM capability, alternative
low-cost techniques for detecting metabolites comprising a biosignature should be developed. These
may be antibody- or chemistry-based and may be ELISA-like or paper-based tests. The challenges
in developing metabolism-based clinical tests for infectious diseases can be overcome by following
the path set forward by other fields. Additionally, many of these metabolic pathways altered by viral
infection are also altered in human disease conditions such as diabetes, metabolic syndromes, and
cancers and thus have inhibitors/drugs that are already developed and on the market. Following
early biomarker detection, metabolic pathways can be manipulated using already developed and
tested compounds that can be re-purposed as antivirals. As illustrated in this review, metabolomics
has the potential to expand our understanding of viral infections to unparalleled levels. Ongoing
work combining metabolomics, genomics, and proteomics into an extensive systems biology approach
will increase the strength of all three approaches, as will expanding the field of immunometabolism
to link the metabolic changes discussed to immune responses involved in arboviral diseases. As
technologies and metabolomic methods improve, metabolomic techniques will likely become even
more valuable to increase our understanding of a multitude of diseases, syndromes, and ailments with
metabolic components.
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