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A B S T R A C T   

Recently, the application of biosensors in food safety assessment has gained considerable research attention. 
Nevertheless, the evaluation of biosensors’ sensitivity, accuracy, and efficiency is still ongoing. The advent of 
machine learning has enhanced the application of biosensors in food security assessment, yielding improved 
results. Machine learning has been preliminarily applied in combination with different biosensors in food safety 
assessment, with positive results. This review offers a comprehensive summary of the diverse machine learning 
methods employed in biosensors for food safety. Initially, the primary machine learning methods were outlined, 
and the integrated application of biosensors and machine learning in food safety was thoroughly examined. 
Lastly, the challenges and limitations of machine learning and biosensors in the realm of food safety were 
underscored, and potential solutions were explored. The review’s findings demonstrated that algorithms 
grounded in machine learning can aid in the early detection of food safety issues. Furthermore, preliminary 
research suggests that biosensors could be optimized through machine learning for real-time, multifaceted an-
alyses of food safety variables and their interactions. The potential of machine learning and biosensors in real- 
time monitoring of food quality has been discussed.   

1. Introduction 

Recently, significant advances have occurred in the field of artificial 
intelligence and machine learning, impacting various facets of human 
activities such as healthcare, agriculture, weather forecasting, and food 
safety. An enormous amount of data directly or indirectly linked to the 
topic of food safety has been generated worldwide (Marvin et al., 2017). 
The US Food and Drug Administration (FDA) presented “Steps to bring 
the US into a new era of smarter food safety,” incorporating the appli-
cation of machine learning and artificial intelligence in the field of food 
safety (Sharpless and Yiannas, 2019). Machine learning is a data-driven 
pattern recognition approach, which aims to identify discriminative or 
generative models from a given dataset, utilizing statistical associations 
between features. The acquisition model can predict outputs, such as 

category labels, cluster categories, and continuous real values. 
Currently, there are several food safety detection approaches based on 
algorithms, such as hyperspectral imaging, which integrates spatial and 
spectral operations to provide valuable information on food character-
istics in a nondestructive manner. However, hyperspectral images may 
contain irrelevant data (Jia et al., 2020). The combination of machine 
learning and biosensors could be a powerful tool for continuous learning 
in food safety monitoring and assessment. Machine learning possess 
huge potential in several aspects of food safety, including food adul-
teration detection, food quality prediction, and foodborne disease 
warning (Deng et al., 2021) (see Fig. 1). 

Noteworthiness, there has been an increased awareness of the role of 
food safety in human health and well-being, which has facilitated the 
development of relevant technologies to control and assess food safety. 
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Traditional analytical techniques based on large laboratory instruments, 
such as liquid chromatographs and atomic absorption spectrometers, 
can yield accurate results with excellent reproducibility. However, they 
are limited by a lengthy pre-experiment process, complex preparation, 
and technical operation. Biosensors, based on biomolecular recognition 
and downstream signal conversion, have the potential for food safety 
monitoring and assessment. Biosensors have been widely applied in 
several fields, including food safety, environmental monitoring, and 
disease diagnosis and treatment. Compared with traditional analytical 
methods, biosensors are more sensitive, simplified, fast, reliable, and 
efficient for food safety assessment and monitoring, with lesser demand 
for reagents. Biosensor technology possess the potential for real-time 
detection of food quality, which can facilitate the screening of suspi-
cious samples. Currently, biosensors are widely employed in detecting 
agricultural and veterinary drug residues, illegal additives, foodborne 
pathogens, biotoxins, and other food contaminants (Jia et al., 2021) (see 
Fig. 2) . 

In this review, we explore the role and potential applications of 
machine learning and biosensors in food safety. Firstly, the types of 
machine learning methods were highlighted, and the application of 
machine learning in food safety was discussed. Additionally, the 

combined application of biosensors in food safety was examined, and the 
limitations and possible solutions were discussed. Moreover, future 
trends in biosensor and machine learning research, along with potential 
applications in food safety, were highlighted. Overall, we believe that 
this review could serve as a reference for the application of biosensors 
and machine learning in food safety. 

2. Machine learning 

Machine learning, a fundamental component of artificial intelli-
gence, enables algorithms and software applications to predict outcomes 
from provided data without explicit programming. Machine learning 
concentrates on extracting meaningful patterns from large datasets 
(referred to as “learning”) through computational means. Subsequently, 
it applies this acquired knowledge to make predictions by processing 
additional data. 

2.1. Classification 

Machine learning can be classified in various ways based on different 
criteria. Based on the learning system, machine learning can be 

Fig. 1. Types of biosensors (I).  
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classified into four groups: unsupervised learning, supervised learning, 
semi-supervised learning, and reinforcement learning. In unsupervised 
learning, the labeled information about the training samples is un-
known, and the purpose is to expose the inherent attributes and rules of 
the data via acquiring the unlabeled training samples. Unsupervised 
learning has been used extensively in organizing computing clusters, 
social network analysis, market segmentation, and astronomical data 
analysis. 

However, supervised machine learning is the predominant approach 
in the field of natural science (Lai et al., 2018). In a given dataset, every 
piece of data and corresponding output values are known, establishing a 
specific relationship between the inputs and outputs (Lu, 2010). Com-
puter algorithms can make predictions based on this specific relation-
ship. The generated model can establish its own relationships through 
continuous learning and training on a known sample dataset, subse-
quently making predictions on a new dataset (Lu, 2010). Supervised 
learning contains regression and classification. When the target variable 
that we are trying to predict is a continuous variable, this algorithm is 
called regression. However, when target variable is predicted to be 
discrete values, this algorithm is called classification. 

Semi-supervised learning combines aspects of both supervised and 
unsupervised learning, utilizing datasets that can be labeled or unla-
beled. There are two common semi-supervised learning methods, 
including transductive learning and inductive learning. Reinforcement 
learning extracts information from the external environment rather than 
a dataset (Sutton and Barto, 1998), which is used for decision making. 
The goal is to learn the mapping from the environmental state to the 
behavior, then the selected behavior can obtain the maximum reward 
from the environment. The reward in reinforcement learning comes 
from the feedback in the environment. 

2.2. Executive process 

Machine learning executes four main tasks: classification, regression, 
clustering, and dimensionality reduction. Classification is a predictive 

problem where a dataset is assigned to discrete classes, while a regres-
sion problem arises when the target value is continuous. Additionally, 
clustering involves the spatial distribution and visualization of a dataset, 
and samples belonging to the same category are determined by 
comparing the distances between different samples. Dimensionality 
reduction is a technique for decreasing the dimensionality of variables to 
lower dimensional subspace (Cox, 1959). 

Classification and regression are both part of supervised learning, 
which are used to develop prediction models to generated outputs based 
on any given input. However, the difference between them is that the 
target is discrete in classification and continuous in regression. Gener-
ally, the algorithms for both are similar, and the same learning algo-
rithm can be used for classification and regression. The most frequently 
used learning algorithms for classification include support vector ma-
chine (SVM), stochastic gradient descent algorithm (SGD), Bayesian 
estimation, Ensemble, and K Nearest Neighbors. Moreover, SVM and 
SGD can also be used for regression. 

Clustering also analyses the attributes of samples, which is similar to 
classification. The difference is that classification has already labeled 
specific target before prediction, whereas there are no labeled targets 
prior to clustering (Zubaroğlu and Atalay, 2021). Additionally, classi-
fication is a supervised learning technique, while clustering is an un-
supervised learning technique. Clustering can only determine the 
attribute of a sample according to the distribution of the sample in space. 
The commonly used algorithms for clustering include K-means, 
Gaussian mixture model, and expectation-maximization. 

Dimensionality reduction is another important field of machine 
learning, with several important applications in both supervised 
learning and unsupervised learning. Dimensionality reduction involves 
removing redundancies to represent data in lower-dimensional sub-
spaces. The primary dimension reduction algorithm is principal 
component analysis (PCA), with some other algorithms, such as partial 
least squares regression and linear discriminant analysis (LDA), evolving 
from PCA. 

Fig. 2. Types of biosensors (II).  
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2.3. Workflow 

Machine learning process consists of several steps (Fig. 3). The initial 
step involves the preparation and acquisition of data to construct input 
for subsequent learning, serving as a determinant for the built model. 
This step is important because learning algorithms require large amount 
of data. The next step involved the development of the model using the 
training set, followed by the identification of the most appropriate al-
gorithm and the validation of the model. Thereafter, the performance of 
the validated model should be tested using test data, and subsequently 
deployed to make predictions using new data. Finally, the model should 
be tuned to improve the performance of the algorithm, using more data, 
different features, or adjusted parameters. Additionally, the system 
should undergo evaluation for accuracy. 

3. Main machine learning algorithms in food safety 

3.1. Classic algorithms 

Traditional and classical algorithms can deal with the problem of 
classification, clustering, and regression. However, most traditional and 
classical algorithms are not capable of handling complex-structured 
data, with multiple layers (Wang et al., 2021a). 

K-means clustering (K-means) is an unsupervised clustering algo-
rithm that automatically classify similar samples into categories 
(Fig. 4a). SVMs are a set of supervised learning methods used for clas-
sification, regression, and outlier detection (Fig. 4b) (Boser et al., 1992). 
Decision tree is a prediction model, which represents a mapping rela-
tionship between object attributes and values (Fig. 4c). (Breiman, 1996). 
The artificial neural network is a graphical computing model that 
mimics the functions of the human brain, where each neuron is inter-
connected to transmit information (Fig. 4d) (Kruse et al., 2016). Naïve 
Bayes adopts the “Attribute Conditional Independence Assumption,” 
assuming that all attributes are independent of each other for known 
categories (Fig. 4e) (Devroye et al., 2014). The principle of K nearest 
neighbor is that the category of unmarked samples is determined by 

majority voting based on the class of k nearest neighbor training samples 
or the mean value of label values (Fig. 4f). 

Suitable algorithms can significantly enhance the detection effi-
ciency and accuracy of biosensors. For example, SVM can be used to 
analyzed nonlinear and high-dimensional data. Recently, a nano 
biosensor has been developed for the detection of four widely used an-
tibiotics in the field of veterinary medicine, and SVM effectively deter-
mined the concentration of the antibiotics by analyzing acquired 
absorption spectrum (Gutiérrez et al., 2020). Moreover, various algo-
rithms can be combined for food safety monitoring. For instance, 
smartphone-based lateral flow assay was applied to distinguish ambig-
uous concentrations of Salmonella spp. By analyzing test line images, 
using SVM and KNN (Min et al., 2021). 

Considering the additional advantages of SVM, it could also serve as 
a supporting method for data processing, which can expand the field of 
data processing. SVM could be applied in e-nose, which is a reliable 
instrument for inspecting the quality of food and agricultural products 
(Infante et al., 2008; Jiang and Wang, 2016; Xu et al., 2019). E-nose 
consists of an array of sensors and pattern recognition algorithms to 
probe odors, which is similar to the human olfactory system (Wang 
et al., 2021b). Apart from e-nose, KNN, naïve Bayes (NB), LDA, and 
adaptive resonance theory map (ARTMAP) have also been applied (Jha 
et al., 2019). 

Electrochemical impedance spectroscopy (EIS) is used to detect 
pathogens in samples based on changes occurring at the electrode- 
solution. However, this strategy is not suitable for all kinds of EIS sen-
sors and can lead to the inaccurate detection. Xu et al. (2020) developed 
a machine learning-based EIS biosensor for improved detection of E. coli. 
The model was programmed to automatically establish a quantitative 
relationship between bacterial concentration and multiple impedimetric 
parameters, using SVM and PCA. 

Decision trees offer better interpretability but struggle to generalize 
data in overly complex trees; however, this limitation can be overcome 
by the random forest (RF) algorithm. RF is an ensemble learning algo-
rithm, which involves generating multiple models, such as classifiers, to 
solve specific problems. RF algorithm constructs the decision tree 

Fig. 3. The workflow of machine learning in processing data.  
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prediction set by randomly selecting a subset from the training data and 
aggregates the prediction results to reduce the variance. RF algorithm 
has been validated using complex and nonlinear data. Moreover, the 
training process of RF is rapid, with a low degree of overfitting (Alex-
ander et al., 2014). Moreover, several studies have confirmed the 
robustness of RF and laser-induced breakdown spectroscopy techniques 
(Gazeli et al., 2020) or infrared spectroscopy analysis (Gazeli et al., 
2020) for food classification. 

KNN has been applied in the processing of hyperspectral imaging, 
including Vis-NIR (Khanal et al., 2021), fluorescence hyperspectral im-
aging (Lee et al., 2021), and mechanically-flexible electrical impedance 
tomography (Darma and Takei, 2021). Interestingly, KNN can facilitate 
the detection of E. coli and Salmonella typhimurium on the surface of food 
processing facilities by analyzing fluorescence hyperspectral imaging 
(Lee et al., 2021). Additionally, KNN has been performed in combination 
with other algorithms to achieve classification of samples or data. For 
instance, Schroeder et al. (2019)developed a robust array of 20 carbon 
nanotube-based chemical sensors with K nearest neighbor model and RF 
model for the classification of multi-class time series, which was effi-
cient. The protocol successfully classified five independent test sets of 
cheese and wine samples. 

3.2. Dimensionality reduction methods 

In various research and application domains, substantial amounts of 
data with multiple variables are collected for analysis, informing 
decision-making processes. However, there is a need to reduce the 
dimensionality of these data and eliminate unnecessary data for efficient 
management. Dimensionality reduction entails reducing the variables 
requiring analysis while minimizing the loss of information from the 
original variables. Dimensionality reduction can consolidate closely 
related variables into fewer, unrelated variables. This allows for the use 
of fewer comprehensive indicators to represent various information 
within each variable. The most common methods for dimensionality 
reduction include PCA and LDA, and their differences are illustrated in 
Fig. 5. 

PCA is applied to simplify multiple variables by reducing the 
dimension of high-dimensional variables while minimizing data loss. 
For instance, PCA was applied to SERS results to obtain characteristic 
variables, and SVM was employed to classify duck meat into four cate-
gories based on sulfapyridine and sulfadiazine concentrations (Ren 
et al., 2021). LDA is a supervised linear dimensionality reduction algo-
rithm (Fulkerson, 1995). The central idea of LDA is to maximize inter-
class spacing and minimize intra-class distance. For instance, LDA has 
been used in combination with SVM to distinguish different antibiotics 

Fig. 4. Examples of machine learning models.  

Fig. 5. Differences between principal component analysis (PCA) and linear discriminant analysis (LDA).  
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(Xu et al., 2020). Additionally, LDA can be used as a powerful tool for 
classification, particularly for data related to spectrum and e-nose sig-
nals. Employing chemometric approaches, feature vectors were extrac-
ted from a sensor array and utilized as inputs for PCA to detect formalin, 
hydrogen peroxide, and sodium hypochlorite in raw milk. However, 
LDA exhibited relatively low classification accuracy in this scenario 
(Tohidi et al., 2018). 

3.3. Deep learning 

In comparison to traditional methods, deep learning (DL) enables 
enhanced insights into complex data features at high levels of abstrac-
tion. Additionally, beyond the algorithms mentioned earlier, studies on 
DL have developed computational models with multiple processing 
layers to systematically analyze data from original inputs (Lecun et al., 
2015). DL is based on artificial neural networks, and it performs better 
than other algorithms because of its deep architecture (Shorten et al., 
2021). 

Feedforward neural networks (FFNNs) are perhaps the simplest DL 
model, consisting of input layer, hidden layer, and output layer, with no 
cycle or loop inside the structure (Zhang et al., 2021). Additionally, 
FFNN is a useful tool for the analysis of data collected using colorimetric 
biosensors. Thankfully, FFNNs can address challenges, such as complex 
VOCs background signals and the intricate behavior of bacteria in the 
field of food safety. Additionally, an advanced deep feedforward neural 
network (DFFNN) with a learning rate scheduler, L2 regularization, and 
shortcut connections have been developed (Jia et al., 2021). After 
training on the ΔR/ΔG/ΔB database, the network demonstrated excel-
lent performance in identifying pathogens in single monocultures, 
multiple monocultures, and in cocktail culture, and was effective in 
distinguishing the pathogens from the background signal on cantaloupe, 
with accuracy of up to 93% and 91% under ambient and refrigerated 
conditions, respectively (Fig. 6a). 

Apart from FFNN, two types of DL architectures are gaining 
considerable attention due to their applications in computer vision: CNN 
and recurrent neural networks (RNN). These algorithms are mostly 
applied in autonomous driving vehicles and medical care (Alawadi et al., 
2019), and in resolving image processing problems (Russ, 2016). RNN 
has proven to be suitable for time series forecasting due to their ability to 
capture sequence or time series data (Kaviani and Sohn, 2021). The roles 
of RNN in environmental factor forecasting have been extensively dis-
cussed (Chen et al., 2018); however, food safety-related studies on RNN 
are limited. Therefore, this review focused on CNN due to its powerful 
ability to solve food safety-related issues. 

Recently, the potentials of biosensors combined with CNN has gained 
considerable research interest. CNN plays a crucial part in image tech-
nology, biomedical technology, and industrial production because of its 
local receptive fields, weight sharing, pooling, and sparse connections 
(Patrício and Rieder, 2018). CNN consists of four layers: convolutional, 
pooling, active, and fully connected layers. The convolutional layer 
executes the transvection of input image (different data) and the filter 
matrix (a set of fixed weights) to enhance the original image and sup-
press noise interference. The process of convolution will automatically 
learn the features without manual selection of features, and it reflects 
the characteristics of local receptive field and weight sharing (Tian, 
2020). The pooling layer executes the calculation of the average or 
maximum image region, greatly reduce the calculations without losing 
the main features of the image. The active layer is necessary to add a 
nonlinear relation to the result calculated above for most complex 
problems. The commonly used active functions include sigmoid func-
tion, Tanh function, ReLU function, and leaky ReLU function. The fully 
connected layer is similar to the traditional neuron network, and con-
nects neurons in each layer. 

Hu et al. (2021) developed a fluorescent biosensor to identify fluo-
rescent bacteria, such as S. typhimurium, in milk based on DL via the 
faster R–CNN algorithm, and its minimum limit of detection was as low 

as 55 CFU/mL. Future studies should attempt focus on developing highly 
automated, accurate, sensitive, and rapid means of detection of patho-
gens, using portable fluorescence microscope equipment and more 
advanced DL algorithms. 

As we know, the main challenge of colorimetric biosensor is the 
relatively low sensitivity. Interestingly, the sensitivity of colorimetric 
biosensors could be improved by constructing algorithm-reinforced 
biosensors for food safety monitoring and assessment. Utilizing poly-
acrylonitrile (PAN) and thin layer silica gel (SG), with p-amino-
phenylcyclic acid (SA) and naphthalene ethylenediamine hydrochloride 
as carriers and chromogenic agents, a nitrite color sensor named PAN- 
NSS was proposed. A combination of PAN-NSS, deep convolutional 
neural network (DCNN), and APP provides an efficient, highly sensitive, 
and fully integrated detection system for field detection (Guo et al., 
2021). 

While image analysis and decomposition can be performed with only 
a few accessible samples, insufficient training is insufficient to resolve 
more complex problems. Guo et al. (2020) developed a portable 
food-freshness prediction platform based on cross-reactive colorimetric 
barcode combinatorics and DCNNs for monitoring meat freshness, 
achieving an accuracy of 98.5% (Fig. 6b). 

To deal with the problem of insufficient datasets, generative models, 
such as generative adversarial networks (GANs), can be used to generate 
data from the scratch (Creswell et al., 2018; Goodfellow et al., 2014; Guo 
et al., 2021). Yang et al. (2022) proposed a WGAN-ResNet method, 
which combines two DL networks, the Wasserstein generative adversa-
rial network (WGAN) and the residual neural network (ResNet), to 
detect carbendazim based on terahertz spectroscopy. The WGAN and 
pretraining model technology were employed to solve the problem of 
insufficient learning samples for training the ResNet (Fig. 7). The WGAN 
was used for generating new datasets, while the pretraining model 
technology was applied to reduce the training parameters to avoid re-
sidual neural network overfitting. Overall, the results demonstrated that 
our proposed method achieves a 91.4% accuracy rate, which is better 
than those of SVM, KNN, NB, and ensemble learning. 

The combination of biosensors and machine learning provides a new 
strategy for food safety. The combination of machine learning and bio-
sensors supports the rapid and highly sensitive detection of food con-
taminants (Table 1). Despite some practical challenges, biosensors 
combined with machine learning could become a general trend in the 
field of food safety in the future. 

4. Challenges and future trends 

Biosensor technology serves as a potent alternative to traditional 
laboratory methods for food analysis, offering potential applications in 
monitoring food bioprocesses. For example, the e-nose can be tailored 
for detecting various parameters, replacing the multi-instrumentation 
employed in laboratories (Nayak et al., 2020). Furthermore, enhance-
ments in biosensor stability and reproducibility are imperative to meet 
the stringent demands of the food bioprocess industry. Moreover, future 
research should concentrate on enhancing biosensors for trace detection 
and extracting additional features from complex samples. Collection and 
analysis of food signals can facilitate the detection of hazard factors and 
promote the optimization of food processing (Lv et al., 2018). Never-
theless, the integration of machine learning into biosensing can address 
certain limitations mentioned earlier (Jiménez-Sanchidrián and Ruiz, 
2016). While machine learning has been successfully employed in bio-
sensing, its potential in spectrum-based biosensors remains underex-
plored. The precision of machine learning depends largely on how 
quickly and accurately test data can be obtained, especially as the 
number of substances to be tested in food continues to increase. Besides 
choosing the most suitable algorithm and well-defined inputs and out-
puts, machine learning requires high-quality training data to achieve 
accurate prediction results (Baker et al., 2018). 

The success of machine learning is dependent on the availability of 
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Fig. 6. Application of Feedforward neural networks (FFNNs).  
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large amount of training data. Machine learning may struggle with small 
datasets, particularly for high-dimensional datasets; the model tends to 
“remember” each data point as a unique case rather than “learning” 
from the data, resulting in overfitting and inefficient training (von 
Rueden et al., 2021). Additionally, with the proliferation of 
application-specific analytical algorithms, there is an urgent need for 
rigorous evaluation and benchmarking of data (Quainoo et al., 2017). 

Besides exploring and enhancing new classification algorithms, ef-
forts should be directed towards improvements in data management and 
collection (Farrell et al., 2018). Additionally, both organic and inorganic 
compounds have been utilized in the fabrication of biosensors for 
assessing and monitoring food safety. Notably, it is important to collect 

the spectral data of each food substance and continually update data-
bases of spectral data of food materials for a more accurate and robust 
forecasting. Additionally, data storage and management is important to 
facilitate the global application of machine learning and biosensing, 
especially data ownership and privacy. Therefore, further research is 
necessary to develop rules regarding data usage and privacy. 

Presently, machine learning has been applied in food safety moni-
toring and assessment. Machine learning could improve the tracking of 
diverse analytes and detection of interactions in complex biological 
environments by improving the diversity and functionality of small 
sensing devices (Bertani et al., 2020). 

Furthermore, organic and inorganic compounds have been used in 

Fig. 7. Flow chart of the detection of carbendazim using WGAN-ResNet based on THz spectroscopy.  

Table 1 
Application of machine learning in food detection.  

target analytes mechanism algorithm application ref. 

Kanamycin, Ampicillin, Oxytetracycline and 
Sulfadimethoxine 

optical SVM detection of antibiotics in the milk Gutiérrez et al. (2020) 

Salmonella spp. optical SVM, KNN detection Salmonella spp. In raw meat, egg 
products, and milk 

Min et al. (2021) 

doxycycline (DOX), tetracycline, oxytetracydine (OTC), 
and metacydine (MTC) 

optical SVM, LDA detection and identification of tetracyclines in 
river water and milk 

Xu et al. (2020) 

indigo optical RF determine indigo in cream Zhang et al. (2020) 
honey adulteration optical RF detection of honey adulteration Calle et al. (2023) 
aflatoxin optical RF detection of aflatoxin-polluted corn kernels Cheng and Stasiewicz 

(2021) 
α-naphthalene acetic acid (NAA) electrochemical ANN detection of α-naphthalene acetic acid (NAA) 

residues in food 
Zhu et al. (2021a,b) 

aflatoxin B1 and fumonisins electrochemical ANN aflatoxin B1 and fumonisins in maize Leggieri et al. (2021) 
benzoic acid electrochemical ANN benzoic acid in cola-type carbonated beverages Yang et al. (2021) 
pesticide residue optical SVM, RF, ANN determination of pesticide residue in food Khanal et al. (2021) 
xanthine (XT) and hypoxanthine (HX) electrochemical ANN determination of XT and HX in fish Zhu et al. (2021c) 
food odor and microbial population electrochemical k-NN, LDA, SVM/ 

SVR, MLP 
beef quality monitoring Wijaya et al. (2018) 

detection of the sulfapyridine and sulfadimidine optical PCA, SVM detection of the sulfapyridine and sulfadimidine 
remained in duck meat 

Ning et al. (2020) 

food odor optical DCNN assessment of food freshness Guo et al. (2020) 
Salmonella typhimurium optical CNN detection of Salmonella typhimurium in milk Hu et al. (2021) 
identifying pathogens optical DFFNN identifying pathogens Jia et al. (2021)  
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the development of biosensors for food safety assessment and moni-
toring. However, the mechanisms of synthesizing these compounds are 
yet to be fully explained, with simulation and data-driven methods 
employed as alternatives to the experimental trial-and-error. Machine 
learning models can effectively predict the conditions for the formation 
of new organic or inorganic products. Machine learning provides a new 
perspective for the designing of next generation of materials (Hou et al., 
2018); moreover, machine learning could be applied for the monitoring 
of clinical diagnosis and the environment. 

5. Conclusion 

In conclusion, the amalgamation of machine learning with bio-
sensors has been successfully employed in the realm of food safety, 
yielding significant results. Hence, the integration of machine learning 
into other biosensor detection methods holds a promising future. In the 
long run, it is possible to envision a combination of machine learning 
and biosensors technologies in the large-scale and end-to-end predictive 
modeling systems. 
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Calle, J.L.P., Punta-Sánchez, I., González-de-Peredo, A.V., Ruiz-Rodríguez, A., Ferreiro- 
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