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Purpose: This study investigated the role of death receptor 3 (DR3) in experimental autoimmune uveitis (EAU).
Methods: EAU was induced in B10.RIII mice by subcutaneous injection of interphotoreceptor retinoid-binding protein
(IRBP) 161–180 emulsified with complete Freund’s adjuvant and evaluated with clinical and histopathologic observation.
Total protein of draining lymph nodes (DLNs) was extracted from the control, EAU, or recovery phase mice. CD4+ T
cells were separated from lymphocytes with magnetic-assisted cell sorting. At the same time, some of the CD4+ T cells
were cultured with or without recombinant TL1A (rTL1A, the DR3 ligand) for three days, and the supernatants were
collected for the interleukin-17 (IL-17) test. DR3 mRNA and protein levels in CD4+ T cells and the endogenous
concentration of TL1A in mice DLNs were assessed with real-time PCR or western blotting. Levels of IL-17 in the
supernatants were determined with enzyme-linked immunosorbent assay.
Results: Histopathological and clinical data revealed severe intraocular inflammation in the immunized mice. The
inflammation reached its peak on day 14 in EAU and had resolved in the recovery phase (weeks 4–5 or more after IRBP
immunization). CD4+ T cells obtained from EAU (day 7 or 14) had higher levels of DR3 mRNA and protein expression
compared with the control group treated with complete Freund’s adjuvant alone and the recovery group. However, the
DR3 mRNA and protein levels on day 21 in EAU were similar to those observed in the control and recovery groups. The
endogenous levels of TL1A were upregulated in EAU, and decreased in the recovery phase mice. Adding rTL1A increased
the production of IL-17 by CD4+ T cells isolated from mice DLNs. Moreover, the increased IL-17 levels in the culture
supernatant of CD4+ T cells from EAU were much higher than those from the control and recovery phase mice. However,
the effects on promoting IL-17 production in TL1A-stimulated CD4+ T cells were similar between the controland recovery
groups.
Conclusions: Our data suggest that DR3 expression is induced during EAU and may be involved in the development of
this disease, possibly by promoting IL-17 secretion.

Experimental autoimmune uveitis (EAU) is a T cell–
mediated autoimmune disease that serves as a model for
several human posterior uveitis [1], such as Behcet’s disease,
Vogt-Koyanagi-Harada syndrome (VKH), birdshot
retinochoroidopathy, and sympathetic ophthalmia [2,3]. EAU
is induced in animals by the adoptive transfer of retinal
antigen-specific T lymphocytes [4,5] between syngeneic
rodents [6,7], or by immunization with retinal antigens, such
as the soluble retinal antigen (S-antigen) and
interphotoreceptor retinoid-binding protein (IRBP) [8-14]. In
addition, patients with uveitis have serum auto-antibodies to
retinal antigens, including S-Ag and IRBP [15,16], and EAU
can be induced by immunizing animals with the retinal
antigens known to elicit responses in lymphocytes isolated
from patients with uveitis [17].

During EAU, the integrity of the blood-retinal barrier is
compromised, and monocytes/macrophages and antigen-
specific T lymphocytes infiltrating the retina cause tissue
damage [18]. Researchers have generally believed that EAU
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is caused by interferon gamma (IFN-γ) mainly secreted by
CD4+ T helper1 (Th1) lymphocytes [19-22]. Recently,
evidence suggested that newly recognized interleukin (IL)-17,
produced by T helperIL-17 cells (IL-17-producing CD4+ T cells,
Th17), plays a crucial role in this autoimmune disease by
stimulating the initial influx of leukocytes into target tissues
and mediating the tissue inflammation [18,23-26].

Death receptor 3 (DR3, TNFRSF25, TRAMP, LARD) is
a member of the death-domain-containing tumor necrosis
factor superfamily (TNFSF) of receptors. DR3 is primarily
expressed on T cells and is essential for the development of
diverse T cell–mediated inflammatory diseases [27]. TL1A
(TNFSF15), a new TNFSF member, is currently the only
known ligand of DR3 [28,29]. TL1A was first identified as a
protein expressed on human endothelial cells and upregulated
in response to tumor necrosis factor-alpha (TNF-α) and
IL-1α. [28] Subsequently, expression of TL1A by antigen
presenting cells (APCs) [29], such as human tissue
macrophages [30], FcγR-activated peripheral blood (PB)
monocytes, and monocyte-derived dendritic cells (DCs), was
demonstrated [30-34].

CD4+ T cell activation and differentiation need not only
the recognition of the antigen-major histocompatibility
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complex (MHC) class II complex by the cognate T cell
receptor (TCR) but also co-stimulatory signals [35]. Most of
these signals belong to either the B7-type molecules that bind
CD28-like immunoglobulin (Ig) superfamily receptors or the
TNFSF ligands that engage their receptor counterparts in the
TNFRSF [36,37]. Several lines of evidence point to a role for
TL1A-DR3 binding in modulating CD4+ T cell activation
[27]. For example, in vitro, under conditions of suboptimal
anti-CD3/CD28 stimulation, TL1A interaction with DR3
increases IL-2-driven proliferation and IFN-γ and
granulocyte-macrophage colony-stimulating factor (GM-
CSF) production, and TL1A:DR3 interaction also synergizes
with IL-12 and IL-18 in stimulating TCR-independent
secretion of IFN-γ by human PB CD4+ T cells [38,39]. In vivo,
DR3-TL1A signaling has been associated with several
autoinflammatory conditions, including allergic asthma [40],
experimental autoimmune encephalomyelitis (EAE) [27,35],
experimental antigen-induced arthritis (AIA) [30],
inflammatory bowel disease [41], and allergic lung
inflammation [42]. In addition, mice lacking the DR3 gene
(DR3ko) exhibited a reduction in all histopathological
hallmarks of EAE, allergic lung inflammation [27], and AIA
[30]. Moreover, some researchers have discovered that TL1A-
DR3 interaction regulates Th17 development and IL-17
production [35], which play an important role in many
autoimmune diseases [23,24,43-48]. Therefore, DR3 could be
an attractive therapeutic target for T cell–mediated
autoimmune and allergic diseases.

Thus far, studies have shown that CD4+ T cells are
essential for the development of EAU [7,49-51]. However, the
regulation of DR3 expressed by CD4+ T cells or the effect of
DR3 on IL-17 production has not been investigated in the
EAU model. This study is the first to investigate the
expression and function of DR3 in CD4+ T cells in EAU. We
found that DR3 mRNA and protein levels were elevated in
EAU and that stimulation with the DR3 ligand, TL1A,
upregulated the secretion of IL-17 from CD4+ T cells. These
results indicate that DR3 may play an important role in the
development and maintenance of EAU.

METHODS
Mice and immunization: B10.RIII mice (6–8 weeks of age)
were purchased from Jackson Laboratories (Bar Harbor, ME)
and were housed under standard (specific pathogen-free)
conditions. All animals were treated according to the ARVO
Statement for the Use of Animals in Ophthalmic and Vision
Research. IRBP161–180 (SGIPYIISYLHPGNTILHVD) was
synthesized by Shanghai Sangon Biologic Engineering
Technology and Services Ltd. Complete Freund’s adjuvant
(CFA) containing 1.0 mg/ml Mycobacterium tuberculosis and
pertussis toxin (PTX) were obtained from Sigma-Aldrich Co.
(St. Louis, MO). To induce EAU, mice (8–12 weeks of age)
were immunized subcutaneously with a 200 µl emulsion
containing 50 µg IRBP161–180 in CFA. PTX (1.0 µg) was

concurrently injected intraperitoneally as an adjuvant [52].
Control groups of mice received an emulsion of 50 µl PBS
and 150 µl CFA, which was injected subcutaneously. Each
experimental group consisted of 6–8 mice.
Clinical examination and histopathological evaluation: After
the animals were immunized, they were observed with slit
lamp microscopy and ophthalmoscopy starting on day 7 until
day 28. Eyes were enucleated from the control, EAU, and
recovery phase mice (weeks 4–5 or more after IRBP
immunization), were fixed for 1 h in 4% buffered
glutaraldehyde, and were then transferred to 10% buffered
formaldehyde until processing. Fixed and dehydrated tissue
was embedded in paraffin and 5- to 7-µm sections were
stained using a standard hematoxylin and eosin (H and E)
approach. The intensity of EAU was scored from 0 to 4 in a
blinded fashion according to the histopathological grading
system previously described for murine EAU [50,53].
Purification of CD4+ T cells, cultivation, and medium
collection: Lymphocytes were collected from mice by
draining lymph nodes (DLNs, inguinal and iliac), and CD4+

T cells were isolated using a specialized kit (Miltenyi Biotec,
Palo Alto, CA). Briefly, lymphocyte suspensions were
incubated with CD4 MicroBeads to sort CD4+ T cells. Then
T cells were incubated in Gibco RPMI 1640 medium
(Invitrogen, Carlsbad, CA) with anti-CD3 (1 µg/ml) and anti-
CD28 (1 µg/ml) (eBioscience, San Diego, CA), with or
without recombinant TL1A (rTL1A, 100 ng/ml [29,54]; R and
D Systems, Minneapolis, MN). Incubations were performed
in a 24-well culture plate for 72 h at 37 °C under an atmosphere
of 5% CO2. After incubation, the supernatant was collected
and stored at −80 °C.
Reverse transcription PCR (RT–PCR) and real-time PCR:
Total RNA was extracted from CD4+ T cells that had been
isolated from control, EAU, or recovery phase mice using the
RNA extraction kit (RNeasy Mini Kit, Qiagen, Hilden,
Germany). Two micrograms of total RNA from each sample
were used for reverse transcription using the Superscript III
Reverse Transcriptase system (Invitrogen). The following
sequences of the DR3 and glyceraldehyde 3-phosphate
dehydrogenase (GAPDH) primers used for real-time PCR: 5′-
GGG CTA TCC TGA TCT GTG CAT-3′ (forward primer,
DR3), 5′-ATG CCA GAG GAG TTC CAA GAGT-3′ (reverse
primer, DR3), 5′-GAG AAC TTT GGC ATT GTG G-3′
(forward primer, GAPDH), and 5′-ATG CAG GGA TGA
TGT TCT G-3′ (reverse primer, GAPDH). The mRNA
expression levels were normalized to GAPDH, which was
used as a reference housekeeping gene. PCR analysis was
conducted on the real-time fluorescence quantitative PCR
system using SYBR Green PCR Master Mix (Qiagen)
according to the manufacturer’s instructions.

Western blotting analysis: Total protein of DLNs was
extracted from the control, EAU, or recovery phase mice using
a protein extraction kit (BioChain, Hayward, CA). CD4+ T
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cells were homogenized using an ultrasonicator (BANDELIN
Electronic, Bberlin, Germany), and the protein lysates were
prepared for western blotting (WB) analysis. Fifty
micrograms of protein from each sample was subjected to
sodium fodecyl sulfate–PAGE, and the separated proteins
were then transferred to polyvinylidene fluoride membranes.
The membranes were incubated with anti-mouse TL1A
(rabbit polyclonal antibody, Abcam, Cambridge, MA), anti-
mouse DR3 (rabbit polyclonal antibody, Santa Cruz
Biotechnology, Santa Cruz, CA), or anti-β-actin (rabbit
polyclonal antibody, Santa Cruz Biotechnology), followed by
a secondary antibody (goat antirabbit IgG-HRP; Santa Cruz
Biotechnology). Proteins were detected using the Phototope-
HRP western blot detection system (Cell Signaling, Danvers,
MA).
Enzyme-linked immunosorbent assay: Levels of IL-17 in
culture media were measured using a commercially available
enzyme-linked immunosorbent assay (ELISA) kit (R and D
Systems). The detection limit of the kit is 15 pg/ml.
Statistical analysis: Data were expressed as mean±SD. The
experimental groups were compared with Student t tests,
assuming equal variances for all data. P values < 0.05 were
considered to be statistically different.

RESULTS
Induction of EAU: EAU was successfully induced in B10.RIII
mice after immunization with 50 µg IRBP161–180 in CFA [52].

Immunohistochemistry revealed severe inflammation in the
posterior segment and a massive influx of inflammatory cells
infiltrating the vitreous body and retina, vitritis, vasculitis,
granuloma formation, and retinal photoreceptor lesions
(Figure 1B). Inflammation was initially identified on days 7–
9 after immunization and reached its peak by day 14.
Inflammation was then followed by a rapid resolution and
recovery (Figure 1D). As published reports have shown, there
was no apparent inflammation in the control (treated with
CFA only) [50,52] and recovery groups (week 4–5 or more
after IRBP immunization) [53] (Figure 1A,C).
Induction of EAU increases DR3 mRNA and protein
expression in CD4+ T cells: Since previous studies suggested
that CD4+ T cells play a significant role in the development
and maintenance of EAU [7,49], we used CD4 microbeads to
sort CD4+ T cells from mouse lymphocytes obtained by
draining LNs. The mRNA and total protein were extracted
from CD4+ T cells for analysis with RT–PCR and WB. We
found that the DR3 mRNA and protein levels increased in
CD4+ T cells from the EAU group 7 or 14 days after
immunization (Figure 2). However, there were no obvious
differences in DR3 mRNA and protein levels between the
controls, EAU (day 21), and recovery phase mice. We also
found that the expression of DR3 in CD4+ T cells in EAU
achieved the highest level at day 14, and then declined (Figure
2). These data raise the question of the role of DR3
upregulation in EAU.

Figure 1. Histopathologic features of the
eyes enucleated from experimental
autoimmune uveitis (EAU), recovery
phase and control mice. A: Eye of CFA
controls. Normal retinal structure in a
B10.RIII mouse. Hematoxylin-eosin (H
and E) staining (magnification, 200×).
B: Eye of EAU mice. An image from
mice day 14 after IRBP immunization
(at the peak of inflammation) shows
inflammatory T lymphocytes
(horizontal arrows) and macrophages
(vertical thin arrow) infiltrating the
vitreous and the retina, vasculitis
(vertical bold arrow), damage to the
retinal photoreceptor cell layer (pounds)
and granuloma (asterisk). H and E
staining (magnification, 200×). C: Eye
of recovery phase mice. An image from
mice week 4–5 or more after IRBP
immunization shows no obvious
inflammation in the retina. H and E
staining (magnification, 200×). D:
Mean histopathologic score during the
development of EAU. * indicates
p<0.001 when compared EAU with
control mice. Each value represents the
mean±SD (n=6).
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Secretion of IL-17 into CD4+ T cell culture medium is
upregulated by the DR3 ligand, TL1A: To determine the
potential role for increased DR3 expression in EAU, we chose
the cells of the most severe inflammatory mice (day 14) to
represent the EAU [53] as shown in Figure 1 and Figure 2. At
first, we detected the endogenous levels of TL1A in mice
DLNs with WB and found that the concentration of TL1A in
EAU was upregulated; then it decreased in the recovery phase
mice (Figure 3). After that, we added recombinant TL1A into
the medium of the CD4+ T cells. Since under conditions of
suboptimal anti-CD3/CD28 stimulation CD4+ T cells are
thoroughly activated [35], we included anti-CD3/CD28 in the
medium. We then measured IL-17 in the culture supernatants

Figure 2. DR3 mRNA and protein levels in CD4+ T cells from
experimental autoimmune uveitis (EAU) increased. A: Real-time
PCR analysis of DR3 mRNA expression in CD4+ T cells isolated
from the control, EAU, or recovery phase mice. GAPDH mRNA was
used as a control to normalize the total mRNA levels. * indicates
p<0.05 when compared day 7 with day 21 in the EAU group. B:
western blotting analysis of DR3 protein expression in the CD4+ T
cells. β-Actin was used as a loading control. C: Densitometry
quantification of western-blotting results in panel B. * indicates
p<0.05 when day 7 is compared with day 21 in the EAU group. Each
value represents the mean±SD (n=6).

with ELISA and found that TL1A interaction with DR3
clearly promoted IL-17 production by CD4+ T cells compared
with the media without TL1A in the control, EAU, or recovery
mice (Figure 4A). This effect was significantly more
pronounced in CD4+ T cells obtained from the DLNs of the
EAU mice. Then we calculated the increased concentration of
IL-17 after stimulated by TL1A for 2 h, and found that the
elevated IL-17 levels in the culture supernatant in the EAU
group were much higher, about fourfold, than that in the other
two groups (Figure 4B). However, the increased levels of
IL-17 stimulated by TL1A in the control group were similar
to those in the recovery group (Figure 4B).

DISCUSSION
Uveitis is considered a typical T-cell mediating, organ-
specific, autoimmune disease. EAU in B10.RIII mice induced
by IRBP161–180, the best-studied model of uveitis recently
shown to be IL-17 driven [23,44,55], has commonly been
described as a monophasic disease [56], with a clinical peak
about 2 weeks after immunization [37,57,58], then followed
by remission and tolerance to reinduction; namely, EAU is a
self-limited disease [1]. Similar to EAU, human posterior

Figure 3. The mice endogenous level of TL1A was upregulated in
experimental autoimmune uveitis (EAU). A: The concentration of
TL1A in draining lymph nodes was detected with western blotting.
B: Densitometry quantification of western-blotting results in panel
A. Each value represents the mean±SD (n=6).

Molecular Vision 2011; 17:3486-3493 <http://www.molvis.org/molvis/v17/a375> © 2011 Molecular Vision

3489

http://www.molvis.org/molvis/v17/a375


uveitis is also characterized by a bilateral granuloma,
vasculitis, retinal lesions, and so on; however, human
posterior uveitis often follows a relapsing and remitting
course [59-61], of which the etiology and pathology are still
elusive [62].

Previous studies showed that DR3 is expressed on T cells
[28], and DR3:TL1A signaling has been associated with
several autoinflammatory diseases, including EAE, lung
inflammation [27], Crohn’s disease [29], and experimental
arthritis [30,63].

To further investigate its function, we analyzed the role
of DR3 in EAU. First, we examined the expression of DR3 in
mice. The DR3 mRNA and protein levels in the CD4+ T cells
of EAU mice were upregulated compared with the recovery
phase mice and controls. Since DR3 expression coincides with
the rapid induction of its ligand (TL1A) expression [29,32]
and DR3 binding to TL1A regulates T-cell activation and
expansion [27,63], we examined whether TL1A was also
elevated in EAU. Results showed that the endogenous TL1A

Figure 4. TL1A (TNFSF15) promoted secretion of IL-17 by CD4+ T
cells. A: CD4+ T cells from the control, experimental autoimmune
uveitis (EAU), and recovery phase mice were cultured in the
presence of anti-CD3 (1 µg/ml) and anti-CD28 (1 µg/ml), with or
without recombinant TL1A (100 ng/ml) for 72 h. IL-17 levels in the
media were then determined with ELISA. B: The increased
concentration of IL-17 secreted by CD4+ T cell in each group after
TL1A stimulation for 72 h. Each value represents the mean±SD
(n=6).

levels were significantly increased in EAU compared with the
recovery phase mice and controls. These data imply that DR3
needs to be coupled with its ligand TL1A to execute its
function.

Several studies show that Th17 cells or IL-17 are
associated with ocular inflammatory diseases such as uveitis
[60,64,65] and CD4+ T cells are capable of producing IL-17
[12]. Therefore, we studied the effect of DR3 on IL-17
production in CD4+ T cells and try to explain the mechanism
of DR3 function in EAU. We found that DR3 interaction with
TL1A could induce the increase of IL-17 production by
CD4+ T cells. This is consistent with other findings that DR3-
TL1A interaction regulates the Th17 cell function and IL-17-
mediated autoimmune disease [35]. In summary, our study
showed that increased DR3 production may be associated
with the development of EAU in mice. These results indicate
that stimulation of DR3 with TL1A could increase IL-17
production, with the suggestion that the DR3:TL1A signaling
pathway may be involved in the pathogenesis of autoimmune
uveitis.

In future research, we plan to determine how the
interaction of TL1A with DR3 can increase the secretion of
IL-17. Our studies will focus on elucidating cell signaling
pathways that are activated in response to TL1A binding to
DR3 and on the possibility of the production of cytokines
other than IL-17. In addition, we want to knock out the DR3
gene in B10.RIII mice to observe whether the EAU model can
still be induced. These studies will provide valuable new
insights, and ultimately, we hope that elucidation of these
mechanisms will enable the development of new therapeutic
methods to treat human autoimmune and inflammatory
diseases.
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