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Artificial	 intelligence	 (AI)	 in	healthcare	 is	 the	use	of	computer‑algorithms	 in	analyzing	complex	medical	
data	 to	 detect	 associations	 and	 provide	 diagnostic	 support	 outputs.	 AI	 and	 deep	 learning	 (DL)	 find	
obvious	 applications	 in	 fields	 like	 ophthalmology	 wherein	 huge	 amount	 of	 image‑based	 data	 need	 to	
be	 analyzed;	 however,	 the	 outcomes	 related	 to	 image	 recognition	 are	 reasonably	 well‑defined.	AI	 and	
DL	have	found	important	roles	 in	ophthalmology	in	early	screening	and	detection	of	conditions	such	as	
diabetic	retinopathy	(DR),	age‑related	macular	degeneration	(ARMD),	retinopathy	of	prematurity	(ROP),	
glaucoma,	and	other	ocular	disorders,	being	successful	inroads	as	far	as	early	screening	and	diagnosis	are	
concerned	and	appear	promising	with	advantages	of	high‑screening	accuracy,	consistency,	and	scalability.	
AI	 algorithms	 need	 equally	 skilled	 manpower,	 trained	 optometrists/ophthalmologists	 (annotators)	 to	
provide	accurate	ground	truth	for	 training	the	 images.	The	basis	of	diagnoses	made	by	AI	algorithms	 is	
mechanical,	and	some	amount	of	human	intervention	is	necessary	for	further	interpretations.	This	review	
was	 conducted	 after	 tracing	 the	history	of	AI	 in	 ophthalmology	 across	multiple	 research	databases	 and	
aims	to	summarise	the	journey	of	AI	in	ophthalmology	so	far,	making	a	close	observation	of	most	of	the	
crucial	studies	conducted.	This	article	further	aims	to	highlight	the	potential	impact	of	AI	in	ophthalmology,	
the	pitfalls,	and	how	to	optimally	use	it	to	the	maximum	benefits	of	the	ophthalmologists,	the	healthcare	
systems	and	the	patients,	alike.
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Ever	 since	 a	 handful	 of	 scientists	 coined	 the	 term	 in	 the	
Dartmouth	workshop	 in	 1956,	 artificial	 intelligence	 (AI)	
has	been	 the	 locus	of	 innovation	 in	 the	 scientific	world	 for	
decades.[1]	With	its	capabilities	and	potential	gradually	being	
unearthed	by	 scientists,	AI	 is	 becoming	a	game‑changer	 in	
the	contemporary	scenario.	Medicine	and	healthcare	are	the	
latest	 advocates	of	AI’s	 revolutionary	potential,	 and	 image	
recognition	and	analysis	seem	to	be	one	of	its	strongest	fortes.[2,3]

Although	 the	definition	of	AI	has	evolved	over	 the	past,	
at	present	it	refers	to	machine	learning	(ML)	and	its	notable	
subset,	deep	learning	(DL).[1,4,5]

ML	refers	to	a	paradigm	that	relies	on	data	instead	of	explicit	
instructions	to	inform	a	computer	how	to	perform	a	specific	
task.	These	problems	are	best	understood	as	creating	a	mapping	
function	between	an	input	and	an	output.	In	healthcare,	inputs	
are	 typically	 images	 or	 3D	volumes	 taken	 from	 a	patient	
with	 a	 specific	modality	 (retinal	 camera,	 optical	 coherence	
tomography	 [OCT],	X‑rays,	 and	other	 imaging	modalities),	

with	outputs	being	the	diagnosis	of	a	specific	condition.	Some	
typical	applications	are	chat‑bots,	oncology,	pathology,	and	
rare	diseases.

Algorithms	 are	 being	 applied	 on	 a	 database	 of	 inputs	
and	 desired	 outputs	 representative	 of	 the	 problem	
(the	“training	 set”).	The	outcome	 is	 a	 statistical	model	 that	
generalizes	the	mapping	to	any	given	case	of	the	same	nature	
as	the	training	set.	This	is	done	through	an	error	minimization	
process,	 often	 iterative	 in	nature,	during	which	 a	 complex	
model of relationships transforming the input into the most 
optimal	output	is	“learnt”	from	the	training	set.

Artificial	 neural	 networks	 (ANNs),	 a	 set	 of	machine	
learning	 (ML)	 algorithms,	 have	 achieved	 state‑of‑the‑art	
performance	in	a	wide	range	of	problems.	Their	fundamental	
building	block	is	an	artificial	neuron,	which	consists	of	simple	
mathematical	 functions	 transforming	 inputs	 into	an	output.	
These	neurons	are	stacked	beside	on	top	of	each	other	to	form	
layers.	This	mimics	the	way	the	human	brain	works.	Neurons	
rely	on	weights	to	compute	their	output.	The	training	process	
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of	a	neural	network	consists	of	deriving	the	most	optimal	set	
of	weights	through	a	process	called	“backpropagation.”	This	
involves	multiple	iterations	through	a	very	large	training	set.

While	the	algorithmic	fundamentals	of	ANNs	date	back	to	
the	60s,	its	potential	only	started	to	emerge	in	the	last	decade.[6] 
Thanks	to	more	powerful	hardware,	it	is	now	possible	to	train	
neural	networks	with	a	number	of	neurons	of	an	unprecedented	
magnitude.	The	 rise	of	 these	 large	neural	networks,	 coined	
“deep	 learning”	 (DL),	 has	 been	 a	 game‑changer	 in	many	
applications.	In	ophthalmology,	DL	has	allowed	ML	algorithms	
to	reach	accuracies	acceptable	for	large‑scale	field	deployment.

Methods
This	 review	was	 conceived	 after	 extensive	online	 research	
using	 the	 keywords	AI,	ML,	DL,	 ophthalmology,	 diabetic	
retinopathy	(DR),	age‑related	macular	degeneration	(ARMD),	
retinopathy	of	prematurity	(ROP),	anterior‑segment	diseases,	
cataract,	glaucoma,	fed	into	research	databases	like	PubMed,	
Web	 of	 Science,	 Embase,	 and	Cochrane.	A	 chronological	
history	 of	AI	 and	 its	 adaptation	 in	 healthcare,	 especially	
ophthalmology,	was	mapped	andthe	subsequent	advances	in	
different	fields	of	ophthalmology	were	documented.

Artificial Intelligence in Ophthalmology: 
Opportunities and Potential in Different 
Ophthalmological Conditions
AI	finds	obvious	 applications	 in	ophthalmology	where	 the	
amount	of	data	to	be	analyzed	are	complex	and	the	number	
of	patients	to	be	analyzed	is	huge;	however,	the	outcomes	are	
simple	and	well‑defined.	There	are	various	approaches	in	the	
use	of	AI	systems	to	automatically	detect	lesions	in	images	of	
the	eye.

DL	has	 shown	 robust	 skills	 in	medical	 imaging	analysis	
as	it	involves	constant	refining,	weighting,	and	comparing	of	
details	in	the	images	as	a	part	of	the	constant	learning	process,	
to	accommodate	every	piece	of	 information	possible.[7,8] The 
most	common	way	to	apply	DL	to	images	(fundus	or	visual	
field	images)	or	volumes	(OCT	scans)	is	through	convolutional	
neural	networks	(CNNs).	They	take	image	pixels	or	volume	
voxels	 (the	 3D	equivalent	of	 a	pixel)	 as	 input.[3,9‑12] In deep 
neuronal	 learning,	 a	CNN	algorithm	 teaches	 itself	 through	
repetition	and	self‑correction	process	until	the	output	matches	
with	that	of	the	human	grader,	by	analyzing	a	labelled	training	
set	of	expert‑graded	images	and	provides	the	diagnosis.	The	
optimised	AI	algorithm	 is	 then	 ready	 to	provide	diagnostic	
support	with	unknown	fundus	images.

The	most	common	conditions	for	which	the	utility	of	AI	has	
been	demonstrated	include,
•	 Diabetic	retinopathy	(DR)
•	 Age‑related	macular	degeneration	(ARMD)
•	 Retinopathy	of	prematurity	(ROP)
•	 Glaucoma,	cataracts,	and	other	anterior	segment	diseases.

The	quality	of	an	AI	algorithm	vastly	depends	on	the	dataset	
used	to	train	and	validate	it.	Beyond	the	absolute	number	of	
images,	it	 is	crucial	to	gather	a	fair	amount	of	data	for	each	
of	 the	different	desired	outcomes.	 In	medical	 applications,	
data	distributions	 are	 often	heavily	 skewed,	 since	healthy	
cases	 are	 almost	 always	more	prevalent	 than	pathological	

cases.	The	most	advanced	stage	of	the	pathology	is	often	the	
one	with	 the	 least	 available	data.	 If	 the	 trained	 algorithm	
is	 intended	 to	be	used	on	different	 imaging	device	models,	
it is also important to use datasets representative of the 
differences	of	output	between	them,	such	as	field	of	view	or	a	
characteristic	color	tint.	The	datasets	should	also	be	gathered	
following	daily	practice	protocols	for	exclusion	criteria	or	for	
assessment	of	acceptable	quality.	A	possible	strategy	consists	
of	implementing	a	quality	detection	algorithm	as	an	integral	
part	of	the	AI	system.	Furthermore,	possible	variations	in	the	
images	due	to	ethnicity,	age,	gender,	and	so	on	should	also	be	
fairly	represented	in	the	datasets.

Validating	 an	AI	 algorithm	 can	 either	 be	 done	 in	 a	
prospective	or	 retrospective	way.	Retrospective	validations	
can	either	be	done	by	carving	out	a	subset	of	the	dataset	for	
that	purpose.	This	is,	however,	the	weakest	option,	as	this	only	
validates	the	algorithm	for	the	characteristics	and	biases	of	the	
dataset	used.	A	better	alternative	is	the	use	of	an	independent	
validation	dataset	gathered	in	a	different	context.	Prospective	
validation	is	the	most	comprehensive	validation	approach.	It	
validates	the	entire	system	in	conjunction	with	the	capturing	
process	and	the	deployment	workflow.

Further	analysis	of	the	cases	wherein	the	AI	algorithm	has	
failed	 to	provide	 a	definite	 answer	 can	be	used	 to	provide	
further	 insights.	 It	might	 lead	 to	 a	diagnosis	 of	 a	different	
pathology	which	had	not	been	comprehended	earlier	by	the	
algorithm.

DR and AI
DR	has	evolved	to	be	a	hotspot	 for	AI.	With	more	than	400	
million	people	with	diabetes	worldwide,	DR	is	touted	to	be	
one	of	 the	 leading	 causes	 of	preventable	blindness.[10] The 
overall	prevalence	of	any	DR	among	the	global	population	is	
as	high	as	34.6%,	with	~10%	vision‑threatening	DR	(VTDR).[11] 
In	India,	one	out	of	five	people	with	diabetes	has	some	form	
of	retinopathy.	DR	being	a	global	health	burden,	tele‑retinal	
screening	programs	and	retinal	screening	programs	employing	
DL‑based	 imaging	 scans	 using	 fundus	 photography	 or	
multimodal	 imaging	have	 immense	potential	and	are	being	
studied	in	various	trials	by	ophthalmologists.	Several	reported	
studies have implemented DL algorithms for diagnosis of 
microaneurysms,	hemorrhages,	hard	 exudates,	 cotton‑wool	
spots,	and	neovascularization	among	people	with	DR.	Some	
of	 these	 algorithms	borrow	other	ML	 techniques	on	 top	of	
ANNs,	 such	as	morphological	 component	 analysis	 (MCA),	
lattice	neural	network	with	dendritic	processing	 (LNNDP),	
and	k‑nearest	neighbour	(kNN).[2,12]

A	potential	 benefit	with	AI‑enhanced	diagnosis	 in	DR	
detection	 is	 the	 sheer	 increase	number	of	patients	who	get	
screened	at	primary	 care	 clinics	 thereby	allowing	 for	 early	
detection	of	diabetic	eye	disease,	which	may	have	otherwise	
gone	undetected	as	a	result	of	the	patient	not	independently	
going	to	an	ophthalmologist	to	be	screened	for	DR.

DL	algorithms	for	DR	detection	have	recently	been	reported	
to	 have	higher	 sensitivity	 (~97%)	 as	 compared	 to	manual	
efforts	by	ophthalmologists	(~83%),[4] though at this time, more 
peer‑reviewed	clinical	studies	may	be	needed	in	literature	to	
claim	that	AI	may	be	doing	better	than	an	ophthalmologist,	in	
reading	images.



July 2020  1341Dutt, et al.: Artificial intelligence in ophthalmology practice

The	 potential	 of	AI	 and	 automated	 screening	 systems	
in	detecting	 referable	DR	has	been	 established	 in	multiple	
studies	over	the	recent	past	emphasizing	AI’s	potential	in	early	
screening	and	detection	of	DR	[Table	1].	EyeArt	by	Eyenuk	
has	used	40,542	images	from	5084	patient	encounters	obtained	
from	the	EyePACS	telescreening	system	to	train	AI	algorithms	
to	screen	for	DR	with	a	90%	sensitivity	at	63.2%	specificity,	
as	well	as	 to	detect	 the	presence	of	microaneurysms	with	a	
sensitivity	of	100%.[13]	Another	study	by	Tufail	et al.	evaluated	
the	sensitivity	and	the	specificity	of	EyeArt	and	Retmarker,	two	
automated	DR	image	assessment	systems	(ARIAS)	in	a	study,	
earlier	in	2017.	The	sensitivity	point	estimates	of	the	EyeArt	
were	94.7%	for	any	DR,	93.8%	for	referable	retinopathy/RDR	
(graded	by	humans	as	either	ungradable,	maculopathy/diabetic	
macular	edema,	preproliferative,	or	proliferative	DR),	99.6%	for	
proliferative	DR	(PDR)	and	that	of	Retmarker	was	73.0%	for	any	
retinopathy,	85.0%	for	RDR	and,	97.9%	for	PDR,	respectively.[14]

Furthermore,	 tech‑giant	Google	 (Health)	 has	 reported	
having	created	a	dataset	of	128,000	images	fed	by	scientists	to	
train	a	DL	network	for	DR.[4]

Google’s AI system (automated retinal  disease 
assessment	–ARDA)	was	evaluated	with	the	help	of	two	test	
runs	using	fundus	photos	from	pre‑diagnosed	DR	patients	by	

expert	physicians	(The	EyePACS‑1	data	set	and	MESSIDOR‑2	
data	 set).	 These	 tests	 resulted	 in	high	 sensitivity	values	 of	
97.5%	and	96.1%	 in	 each	practice	 set	 and	 specificity	values	
of	98.1%	and	98.5%.	Google	has	partnered	with	Aravind	Eye	
Care	System	and	Sankara	Nethralaya	in	India	to	integrate	its	
AI	system	as	part	of	its	global	DR	care	initiative.[15,16]

Another	 study	 to	 evaluate	 the	 sensitivity	and	 specificity	
of	DL	algorithms	in	automated	detection	of	DR	from	fundus	
photographs	defined	 referable	diabetic	 retinopathy	 (RDR),	
as	moderate	 and	worse	DR,	 referable	 diabetic	macular	
edema	 (DME),	 or	 both,	with	 two	 different	 datasets;	 the	
EyePACS‑1	data	set	consisting	of	9963	images	from	4997	patients	
and	MESSIDOR‑2	data	 set	 consisting	of	 1748	 images	 from	
874	patients.	The	prevalence	in	both	sets	for	RDR	was	7.8%	and	
14.6%,	respectively.	For	the	first	operating	cut	point	with	high	
specificity,	the	sensitivity	and	specificity	for	EyePACS‑1	were	
90.3%	and	98.1%,	respectively.	For	MESSIDOR‑2,	the	sensitivity	
was	87.0%	and	the	specificity	was	98.5%.	For	the	second	cut	
point	with	high	sensitivity,	in	EyePACS‑1	the	sensitivity	was	
97.5%	and	 specificity	was	 93.4%	and	 for	MESSIDOR‑2	 the	
sensitivity	was	96.1%	and	specificity	was	93.9%.[16]

A	multiethnic	 study	 conducted	 by	Asian	 researchers,	
fed	a	DL	 system	 (DLS)	with	a	dataset	 consisting	of	 images	

Table 1: A review of the performance of various artificial intelligence algorithms validated in prospective as well as 
retrospective studies in the detection of referable diabetic retinopathy (RDR) using fundus images

Study (Authors) Type of Study Camera/AI Algorithm Dataset Sensitivity 
(%)

Specificity 
(%)

Rajalakshmi et al.[18] Retrospective Remidio, Fundus on Phone (FOP)/EyeArt Internally generated 
dataset

99.3 66.8

Abràmoff et al.[19] Retrospective Topcon TRC NW6 nonmydriatic fundus 
camera/IDx‑DR X2

MESSIDOR‑2 96.8 87

Gulshan et al.[16] Retrospective Topcon TRC NW6 nonmydriatic 
camera/inception‑V3 

MESSIDOR‑2 87 98.5

Gulshan et al.[16] Retrospective EyePACS‑1 90.3 98.1

Ting et al.[17] Retrospective FundusVue, Canon, Topcon, and Carl Zeiss/
VCG‑19 

SiDRP 14‑15 90.5 91.6

Guangdong 98.7 81.6

SIMES 97.1 82.0

SINDI 99.3 73.3

SCES 100 76.3

BES 94.4 88.5

AFEDS 98.8 86.5

RVEEH 98.9 92.2

Mexican 91.8 84.8

CUHK 99.3 83.1

HKU 100 81.3

Ramachandran et al.[27] Retrospective ‘Canon CR‐2 Plus Digital Nonmydriatic 
Retinal Camera (Canon Inc., Melville, 
New York, USA)/Visiona

ODEMS 84.6 79.7

Ramachandran et al.[27] Retrospective ‘Canon CR‐2 Plus Digital Nonmydriatic 
Retinal Camera (Canon Inc., Melville, 
New York, USA)/Visiona

Messidor 96 90

Natarajan et al.[20] Prospective Remidio Nonmydriatic Fundus on 
Phone (NM FOP 10)/MediosAI

Internal dataset 
generated

100 88.4

Sosale et al.[28] Prospective Remidio Nonmydriatic Fundus on/Medios AI 
Phone (NM FOP 10)

Internal dataset 
generated

98.8 86.7
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for	DR	 (76370	 images),	possible	glaucoma	 (125189	 images),	
and	AMD	 (72610	 images),	 and	 performance	 of	DLS	was	
evaluated	 for	detecting	DR	 (using	112648	 images),	possible	
glaucoma	 (71896	 images),	 and	AMD	 (35948	 images).	 This	
DLS	was	used	 to	 evaluate	 494661	 retinal	 images	 as	 a	part	
of	 the	 Singapore	National	Diabetic	Retinopathy	Screening	
Program	 (SIDRP),	 using	 digital	 retinal	 photography	 and	
verified	by	a	team	of	trained	professional	graders.[17]

In	the	primary	validation	dataset	consisting	of	71	896	images	
from	14880	patients,	the	DLS	had	a	sensitivity	of	90.5%	and	
specificity	of	91.6%	for	detecting	RDR;	100%	sensitivity	and	
91.1%	 specificity	 for	 vision‑threatening	DR	 (VTDR)	when	
compared	with	professionally	analysed	records	from	graders.[17]

The	first	published	study	of	the	use	of	AI‑based	automated	
detection	of	DR	with	smartphone‑based	fundus	images	was	
from	India.[18]	A	retrospective	analysis	of	Remidio	Fundus	on	
Phone	(FOP)	mydriatic	smartphone‑based	retinal	images	and	
EyeArt	AI	software	showed	a	very	high	sensitivity	of	95.8%	for	
detection	of	DR	of	any	level	of	severity	(95.8%)	and	over	99%	
sensitivity	for	detection	of	RDR	as	well	as	sight‑threatening	
DR	(STDR)/VTDR.[18]

IDx	 is	 the	 first	AI	 device	 to	 get	USFDA	 approval	 for	
screening	 for	DR	 in	 2018.The	 retinal	 images	 captured	by	a	
Topcon	NW400	camera	are	uploaded	to	the	IDx‑DR	software	
server.	The	software	interprets	the	retinal	images	to	provide	
the	following	outputs:	i)	“More	than	mild	DR	detected:	referred	
to	eye	care	professional”	or	ii)	“negative	for	more	than	mild	
DR;	rescreen	in	12	months.”	A	multicenter	trial	of	the	device	in	
more	than	900	adults	with	diabetes	revealed	a	sensitivity	and	
specificity	of	87.3%	and	89.5%,	respectively.	There	are	more	
AI algorithms in the pipeline awaiting regulatory approval, 
from	multiple	ophthalmic	researchers	and	private	companies.

There	have	been	attempts	to	address	two	key	challenges	
in	 implementing	 large‑scale	models	 of	 screening,	 namely,	
affordable	 imaging	 systems	 and	AI	 algorithms	 that	 can	
be	 used	 in	minimal	 infrastructure	 contexts	where	 access	
to	 the	 internet	may	 be	 difficult.	A	 recent	 study	 aimed	 at	
evaluating	 the	 performance	 of	Medios	AI‑	 an	 offline	AI	
algorithm	that	can	be	used	on	a	smartphone,	to	detect	RDR	
on images taken on Remidio’s Fundus on Phone (FOP 
NM‑10),	 a	 smartphone‑based	 imaging	 system.	This	 study	
analyszed	 images	 of	 231	 people	with	 diabetes	 visiting	
various	 dispensaries	 under	 the	municipality	 of	 Greater	
Mumbai	[Fig.	1].[20]	The	results	showed	high	accuracy	of	the	
offline	AI	algorithm	with	sensitivity	and	specificity	in	grading	
RDR	of	100%	and	88.4%,	respectively	and	any	grade	of	DR	
as	 85.2%and	92%,	 respectively,	when	 compared	 to	manual	
reports	generated	by	trained	ophthalmologists.[20]

ARMD and AI
ARMD	is	a	chronic,	degenerative	condition	of	the	retina	which	
is	the	most	common	cause	of	visual	impairment	in	elderly	is,	
characterized	by	drusen,	 retinal	pigment	 changes,	 choroidal	
neovascularization,	hemorrhage,	exudation,	and	even	geographic	
atrophy.[10]	It	is	broadly	classified	as	dry	and	wet	ARMD.	Ting	
et al.	 showed	 that	 their	DLS	had	a	 sensitivity	of	 93.2%,	 the	
specificity	was	88.7%	and	the	AUC	was	0.931	for	detection	of	
referable	ARMD	based	on	multiethnic	fundus	images.[17]

With the promising results from DL interpretation of 
fundus	images,	efforts	towards	DL	use	in	OCT	analysis,	given	

its	use	in	the	management	of	retinal	disorders.	DL	analysis	
of	OCT	for	morphological	variations	in	the	scan,	detection	of	
intraretinal	fluid	or	subretinal	fluid,	neovascularization	has	
started	 showing	promise.	DL	 systems	are	being	 effectively	
used	to	identify	anatomic	OCT‑based	features	aiding	in	early	
diagnosis	 of	 retinal	 pathology	 and	 also	 predict	 outcomes	
of	treatment.[19,21]	The	sensitivity	using	such	methods	varies	
between	87–100%	with	very	high	accuracy.	Hwang	et al.	used	a	
dataset	of	labelled	35,900	OCT	images	obtained	of	age‑related	
macular	degeneration	(AMD)	patients	and	used	them	to	train	
CNNs	 to	perform	AMD	diagnosis	 and	 found	 the	 accuracy	
was	generally	higher	than	90%	when	compared	to	diagnosis	
by	 retina	 specialists	 and	 the	 treatment	 recommendations	
provided	 by	DL	was	 also	 comparable	 to	 that	 of	 retina	
specialists	[Table	2].[21,22]

ROP and AI
ROP	 is	 a	 leading	 cause	of	 childhood	blindness	 all	 over	 the	
world	but	 it	 can	be	 treated	effectively	with	 early	diagnosis	
and	timely	treatment.	Blindness	can	be	prevented	if	ROP	with	
plus	disease	or	retinopathy	in	zone	one	stage	3	even	without	
plus	disease	is	treated	on	time.	Infants	with	pre‑plus	disease	
require	close	and	repeated	observation.	The	barriers	to	ROP	
screening	are	significant	inter‑examiner	variability	in	diagnosis	
and	only	a	few	trained	examiners	to	screen	for	ROP.	Repeated	
observations	and	testing	require	huge	manpower	and	energy	
and	this	is	where	AI	could	make	a	huge	impact	in	improving	
the	efficacy	of	ROP	treatment.[23]

Researchers	 at	The	Massachusetts	General	Hospital	 and	
OHSU	have	 been	working	 on	 combining	 two	 existing	AI	
models	to	create	an	algorithm	and	making	reference	standards	
to	train	the	same,	respectively.	On	comparing	this	algorithm	
with	the	analysis	by	trained	ophthalmologists,	its	accuracy	was	
detected	to	be	better	(91%)	than	that	by	the	experts	(82%).[23,24]

Other	 studies	have	 reported	 the	automatic	 identification	
of	 ROP	 through	 algorithms	 that	 focussed	 on	 two‑level	
classification	(plus	or	not	plus	disease)	some	of	which	were	
based	on	 tortuosity	 and	dilation	 features	 from	arteries	 and	
veins,	with	an	accuracy	of	95%	accuracy,	which	is	comparable	
to	the	diagnosis	made	by	experts	[Table	3].[2,24] In 2018, Brown 
et al.	 reported	 the	 results	 of	 a	 fully	 automated	DL	 system,	
informatics	in	ROP	(i‑ROP)	that	could	diagnose	plus	disease,	
with	AUROC	of	0.98.	The	i‑ROP	system	has	created	a	severity	
score	for	ROP	that	appears	to	be	promising	for	ROP	treatment	
monitoring.[25]

Figure 1: (a) Interface for the inbuilt, automated, offline AI-algorithm, 
Medios‑AI integrated into fundus on phone (FOP) to provide instant 
DR diagnosis. (b) Sample report generated showing heat maps 
highlighting DR lesions

ba
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AI in glaucoma, cataracts and other anterior segment diseases
Cataract	 and	 glaucoma	 are	 very	 common	 diseases	 in	
ophthalmology.	Cataracts	 lead	 to	 clouding	of	 the	 lens	 and	
whereas	glaucoma	damages	the	optic	nerve	causing	irreversible	
blindness.[10]	Conditions	like	these,	although	irreversible,	their	
progress	can	be	significantly	lowered	by	early	diagnosis	and	
reasonable	treatment.

Slit‑lamp	 images	have	been	 fed	 into	CNN	algorithms	 to	
evaluate	the	severity	of	nuclear	cataracts.	On	further	iteration	and	
validation,	their	accuracy	was	found	to	be	70%	against	clinical	
grading.	Significant	progress	has	also	been	made	considering	
identification	 of	 pediatric	 cataracts	 in	 terms	 of	 achieving	
exceptional	 accuracy	 and	 sensitivity	 in	 lens	 classification	
and	density.[10]	ML	algorithms	 like	 radial	basis	 functions	or	
support‑vector	machines	have	 improved	 lens	 implant	power	
selection	prior	to	cataract	surgeries.	They	have	been	useful	in	
conducting	anterior	segment	area	analysis	such	as	 in	corneal	
topography	scans	and	intraocular	lens	power	predictions.[4]

Glaucoma	detection	primarily	depends	on	 the	 intraocular	
pressure,	the	thickness	of	retinal	nerve	fibre	layer	(RNFL),	optic	
nerve,	and	visual	field	examination.	Researchers	have	devised	
an	algorithm	to	classify	the	optic	disc	of	open‑angle	glaucoma	
from	OCT	images.	This	algorithm	has	reported	an	accuracy	of	
87.8%.[10]	ML	algorithms	to	identify	glaucoma	in	its	early	stages	
assessing	the	cup	disc	ratio	in	fundus	images	or	the	thickness	of	
the	retinal	nerve	fiber	in	OCT	images	have	reported	accuracies	
ranging	between	63.7%	and	93.1%	depending	on	 the	 input	
images [Table	4].	Ting	et al.	showed	that	their	DLS	had	a	sensitivity	
and	specificity	of	96.4%	and	87.2%,	respectively	and	the	AUC	was	
0.942	for	glaucoma	detection	was	based	on	fundus	images.[17]

Potential pitfalls
There	are	a	few	potential	pitfalls	that	one	needs	to	weigh	before	
being	prompted	to	blindly	 trust	 the	AI‑based	decisions	and	
diagnoses	in	ophthalmology.[7]

•	 AI	 algorithms	would	need	equally	 skilled	manpower	 to	
capture	clear	and	coherent	images	to	be	fed	as	input	images.	

Table 2: A review of the performance of various Artificial Intelligence algorithms tested for detection of Age‑related 
Macular Degeneration (ARMD)

Study (Authors)/Image 
Used

AI Algorithm/Dataset AI Utility Sensitivity 
(%)

Specificity 
(%)

Burlina et al.[29]/Fundus 
images

DCNN‑A WS/National Institutes of Health 
AREDS 

Detecting the presence of AMD from the 
dataset and differentiating from normal 
images

88.4 94.1

DCNN‑U WS 73.5 91.8

DCNN‑A NSG 87.2 93.4

DCNN‑U NSG 73.8 92.1

DCNN‑A NS 85.7 93.4

DCNN‑U NS 72.8 91.5

Lee et al.[30]/OCT Images Modified VGG16/Heidelberg Spectralis 
(Heidelberg Engineering, Heidelberg, 
Germany) imaging database

Detecting the presence of AMD from the 
dataset and differentiating from normal 
images

92.6 93.7

Treder et al.[31] DCNN (using open‑source deep learning 
framework TensorFlow (Google Inc., 
Mountain View, CA, USA))/ImageNet

Detecting the presence of AMD from the 
dataset and differentiating from normal 
images

100 92

Sengupta et al.[32]/OCT 
Images

Transfer Learning/Privately generated 
dataset with 51140 normal, 8617 drusens, 
37206 CNV, 11349 DME images

Differentiating AMD/DME images from 
the dataset consisting of all conditions 
causing treatable blindness

97.8 97.4

Sengupta et al.[32]/Fundus 
Images

DCNN/AREDS 66.34 88.95

DCNN/Tsukazaki Hospital database 100 97.31

CNN/Kasturba Medical College database 96.43 93.45

Hwang et al.[22]/OCT 
Images

VGG16/Internally generated database with 
35,900 images

Identify Normal images without AMD 99.07 99.54

Identify Dry AMD 83.99 99.34

Identify inactive Wet AMD 96.07 90.40

Identify Active Wet AMD 86.47 99.05

Inception V3 Identify normal images without AMD 99.38 99.70

Identify Dry AMD 85.64 99.57

Identify Inactive Wet AMD 97.11 91.82

Identify Active Wet AMD 88.53 98.99

ResNet50 Identify Normal images without AMD 99.17 99.80

Identify Dry AMD 81.20 99.45

Identify Inactive Wet AMD 95.35 90.24
Identify Active Wet AMD 87.19 97.84
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Curated	data	sets	that	are	robust	become	a	must	for	proper	
deep	learning	by	the	AI	systems

•	 AI	 algorithms	 require	 a	 reliable	 single	 output	 for	 each	
input.	On	the	contrary,	intergrader	variability	is	high	when	
diagnosing	retinal	conditions.	This	gives	rise	to	a	paradox:	
the	AI	should	be	more	reliable	than	humans	while	learning	
from	data	labelled	by	humans.	This	needs	to	be	overcome	
by	involving	multiple	graders	and	arbitrators	which	can	be	
lengthy and expensive

•	 High	computational	costs	and	in‑depth	training	experiences	
are	needed	for	developing	AI	algorithms;	hence,	one	might	
only	bear	 such	 investments	when	 it	 comes	 to	 conditions	
with	higher	morbidity	and	mortality	rates	but	not	so	much	
for rare diseases

•	 The	 basis	 of	 identification	 and	diagnoses	made	 by	AI	
algorithms	 is	mechanical,	 and	 some	 amount	 of	 human	
intervention	 is	 always	necessary	 for	detecting	 each	 and	
every	feature	or	variation	of	a	disease;

•	 AI	may	miss	findings	it’s	not	looking	for,	which	a	trained	
human grader may not, giving patients a false sense of 
security

•	 A	wide	range	of	complex	algorithms	are	necessary	to	execute	
AI operations and designing these algorithms is itself, 
complicated;	a	slight	error	in	programming	could	lead	to	
higher levels of damage

•	 One	of	the	challenges	in	use	of	AI	in	ophthalmology	is	the	
limited	availability	of	large	data	for	the	rare	ocular	diseases	
as	well	as	in	very	common	conditions	like	cataract	where	
imaging	is	not	done	as	a	part	of	routine	medical	practice

•	 The	“Black	Box” mode of learning where what goes on 
inside	a	neural	network	or	ML	algorithm	remains	unclear,	
despite	familiar	inputs	and	outputs;	complete	transparency	
is	needed	for	taking	accountability	for	treatment	decisions	
for patients[26]

•	 An	ML	algorithm	would	only	be	reliable	on	a	population	
which	 is	 exactly	 similar	 to	 the	 one	 it	 learnt	 from,	 and	
whenever	there	is	a	slight	change	in	the	input	data,	a	whole	
new	set	of	learning	algorithms	need	to	be	programmed	to	
maintain	the	same	accuracy

•	 The	difficult	 attribution	of	 liability	 in	 case	of	 errors	 and	
malfunctions	of	AI	systems	in	screening	and	healthcare.

Legal aspects of AI
The development and implementation of the AI algorithms 
involve	 huge	 datasets	 and	 hence	 there	 are	 several	 legal	
issues	 such	 as	 regulatory	 issues,	 privacy	 issues,	 tort	 laws,	
and	 intellectual	 property	 laws	 that	 need	 to	 be	 addressed.	
The	AI	 system	 consists	 of	 a	 complex	 set	 of	mathematical	
rules	whose	 inner‑working	mechanisms	are	beyond	human	
comprehension.	Generalized	principles	on	how	to	deal	with	
AI	becomes	difficult	as	there	are	different	forms	of	applications	
for	different	purposes.	This	necessitates	the	governments,	the	
industry	players,	research	institutions,	and	other	stakeholders	
to	draft	special	AI	ethics	principles	regarding	fairness,	safety,	
reliability,	 privacy,	 security,	 inclusiveness,	 accountability,	
and	 transparency	 and	policies	 that	 need	 to	 be	 applied	 to	
the	AI	activities.	Similarly,	as	 the	majority	of	AI	algorithms	
development	and	validation	and	then	clinical	implementation	
involves the use of huge datasets, this leads to important 
questions	on	consent,	privacy,	and	security	against	the	misuse	
of	data.	Liability	of	the	product,	in	case	the	algorithm	commits	
an	error	in	diagnosis	and	misses	a	diagnosis,	is	another	aspect	
which	 lawmakers	need	 to	pay	heed	 to	while	dealing	with	
AI‑based	products	or	solutions.[36]

What lies in the future?
There	 are	 newer	 applications	 being	discussed	 among	 the	
ophthalmic	fraternity.	These	include	research	on	implementing	

Table 3: A review of the performance of various artificial intelligence algorithms tested for detection of Retinopathy of 
Prematurity (ROP)

Study (Authors) Image AI Algorithm/Dataset Sensitivity (%) Specificity (%)

Worrall et al.[33] Fundus images Bayesian CNN (per image)/Canada 82.5 98.3

Bayesian CNN (per exam) 95.4 94.7

Zhang et al.[34] Wide‑angle retinal 
images

AlexNet/Private dataset with 420 365 wide‑angle retina images 72.9 78.7

VGG‑16 98.7 97.8
GoogleNet 96.8 98.2

Table 4: A review of the performance of various artificial intelligence algorithms tested for detection of Glaucoma

Study (Authors) Image AI Algorithm/Dataset Sensitivity (%) Specificity (%)

Sengupta et al.[32] Fundus image DENet/SECS, SINDI 70.67, 37.53

Inception V3/Private database with 48000+ images 95.6 92

MB‑NN/Private database 92.33 90.9

OCT Images MCDN/Private database 88.89 89.63
Yousefi et al.[35] OCT Images The algorithm developed combining Bayesian net, Lazy K Star, 

Meta classification using regression, Meta ensemble selection, 
alternating decision tree (AD tree), random forest tree, and simple 
classification and regression tree (CART)/Privately generated from 
University of California at San Diego (UCSD)‑based diagnostic 
innovations in glaucoma study (DIGS) and the African Descent and 
Glaucoma Evaluation Study (ADAGES), assessed RNFL thickness

80.0 73.0
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AI	 and	ML	algorithms	 in	 automated	grading	of	 cataracts,	
managing	 pediatric	 conditions	 such	 as	 refractive	 errors,	
congenital	cataracts,	detect	strabismus,	predicting	future	high	
myopia,	 and	diagnosing	 reading	disability.	There	have	also	
been	 studies	 reported	 to	 automatically	detect	 leukocoria	 in	
children	 from	a	 recreational	 smartphone	or	digital	 camera	
photographs,	 implying	another	potential	 application	of	AI.	
Applications	in	ocular	oncology	using	multispectral	imaging	
and	ML	has	also	been	 recently	 tested.	Newer	AI	algorithms	
are	now	measuring	inner	and	outer	retinal	layer	thicknesses	to	
predict	the	risk	for	Alzheimer’s	disease.[37] Moreover, with the 
use	of	AI	in	multimodal	imaging,	i.e.,	combining	fundus	images	
with	OCT	and	OCT	angiography	images,	it	might	be	possible	
to	detect	more	accurately	and	multiple	retinal	diseases	at	one	
go.	Such	an	algorithm	would	be	invaluable	in	the	differential	
screening	of	DR,	AMD,	glaucoma,	and	other	retinal	disorders	
simultaneously,	 along	with	 their	 severity.	 Further	 studies	
and	validations	are	required	to	assess	the	application	of	these	
algorithms	in	the	clinical	settings	to	ensure	that	such	AI‑assisted,	
automated	 screening	 and	diagnosis	 effectively	minimize	
doctors’	burden	and	add	value	at	the	ophthalmology	clinics.[38]

Conclusion
The deployment of AI in ophthalmology is augmenting 
diagnostic	 imaging,	 which	may	 soon	 lead	 to	 real‑time	
deployment	 in	 telemedicine	 screening	 programs.	 Recent	
studies	done	real‑time	have	shown	the	feasibility	of	using	an	
AI‑assisted	automated	detection	 system	 in	ophthalmology,	
especially	in	the	detection	of	DR.	The	advantages	of	the	use	of	
AI	in	ophthalmology	far	outweigh	its	limitations.	When	used	
wisely	and	 cautiously,	with	proper	 tracking	and	 reporting,	
AI	would	definitely	provide	 the	desired	output	 that	 could	
help	 to	 increase	 adherence	 and	 compliance	with	 screening	
and	treatment	regimens.	Robust	deep	learning	algorithms	are	
evolving rapidly and would soon get integrated into regular 
eye‑care	 services.	One	 should	 always	 remember	 that	AI	
provides	the	best	results	only	when	augmented	by	the	skilled	
human	workforce.
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Commentary: Artificial intelligence 
for everything: Can we trust it?

The	growing	prevalence	of	using	artificial	intelligence	(AI)	for	
everything	is	visible	virtually	in	all	aspects	of	modern	life.	In	
the	accompanying	article,[1] the authors examined the rising 
popularity of AI in ophthalmology[2]	by	tracing	its	history	across	
multiple	research	databases	and	various	crucial	studies.	They	
also	emphasized	 the	dangers	of	 implicitly	 trusting	machine	
learning	(ML)	and	AI‑based	technology.

Conventional software programming vs machine learning
Conventional	 “explicit	programming”	of	 software	 follows	
definite	written	rules,	and	a	well‑written	software	produces	
the	expected	output	 from	a	given	 input	with	no	mistakes.	
If	there	is	a	mistake,	the	programmer	can	look	through	the	
source	code	to	find	the	reason	for	 the	mistake	and	correct	
the	bug.

In	machine	 learning,	 the	 software	 learns	 by	making	
mistakes.	Even	after	extensive	training	of	the	software,	AI	can	
still	make	new	mistakes	that	the	programmer	cannot	predict,	
understand,	or	debug.

Hidden danger?
Due	to	the	Black	Box	nature	of	most	AI,	the	process	by	which	the	
software	arrived	at	the	conclusion	–	whether	right	or	wrong,	is	
hidden	from	everyone	including	the	programmer	who	created	
the	AI	in	the	first	place.	One	might	recall	the	advice	of	Arthur	
Weasley	from	the	Harry	Potter	books	“Never	trust	anything	
that	can	think	for	itself	if	you	can’t	see	where	it	keeps	its	brain”.	
This	unpredictable	nature	of	AI	and	ML	 is	 the	 reason	why	
Stephen	Hawking	and	Elon	Musk	warned	that	the	global	arms	
race	for	AI	may	cause	World	War	3.[3] However, others like Bill 
Gates	and	Mark	Zuckerberg	were	more	optimistic	about	the	

advantages	of	AI	and	suggest	that	it	will	only	enhance	human	
intelligence	and	make	our	lives	easier.[4]

In addition, apart from making unintentional mistakes, 
rogue	AI	can	create	fake	patient	information	similar	to	what	
Mirsky et al.	had	presented	at	a	conference	wherein	they	used	
a	deep	learning	AI	to	insert	fake	cancer	lesions	in	CT	scans	by	
hacking	an	active	hospital	network.[5]

AI for ophthalmologists
AI	can	now	be	used	in	ophthalmology	for	fundus	evaluation	
for	diabetic	retinopathy,	glaucoma,	retinopathy	of	prematurity,	
age‑related	macular	degeneration,	retinal	vascular	occlusions,	
retinal	detachment,	and	other	retinal	conditions.	AI	can	predict	
how	many	injections	of	anti‑VEGF	(vascular	endothelial	growth	
factor)	a	patient	might	need.	Hill‑RBF	IOL	calculation	formula	
is	based	on	ML.

More	 interestingly,	AI	 can	predict	 seemingly	unrelated	
characteristics	 such	as	age,	gender,	 smoking	 status,	 systolic	
blood	 pressure,	 refractive	 error,	 cognitive	 impairment,	
dementia,	neurological	diseases,	Alzheimer’s	disease,	risk	of	
stroke,	and	cardiac	arrest	from	only	the	fundus	photographs.[6]

AI	can	potentially	predict	the	future	progression	in	visual	
fields	of	glaucoma,	myopic	progression,	the	response	of	retinal	
edema	 to	 anti‑VEGF,	 expected	 surgical	 complications,	 and	
more.[6]

Great power, great responsibility
As	we	may	 develop	more	 powerful	 gadgets,	machines,	
software, and AI, patients may trust the AI more than they 
may	trust	the	doctor.	However,	that	trust	is	misplaced,	and	we	
should	be	wary	of	this.	Researchers	have	been	studying	how	to	
build	trust	in	AI.[7,8]	Even	if	trust	can	be	earned,	responsibility	
has	to	be	assigned	appropriately.	Medicolegally,	the	lines	are	
not	 clear	 about	 responsibility	 related	 to	 the	mistakes	of	AI.	
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