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Mesoscopic oscillatory reaction systems, for example in cell biology, can exhibit stochastic oscillations in the
form of cyclic random walks even if the corresponding macroscopic system does not oscillate. We study how
the intrinsic noise from molecular discreteness influences the frequency spectrum of mesoscopic oscillators
using as a model system a cascade of coupled Brusselators away from the Hopf bifurcation. The results show
that the spectrum of an oscillator depends on the level of noise. In particular, the peak frequency of the
oscillator is reduced by increasing noise, and the bandwidth increased. Along a cascade of coupled
oscillators, the peak frequency is further reduced with every stage and also the bandwidth is reduced. These
effects can help understand the role of noise in chemical oscillators and provide fingerprints for more
reliable parameter identification and volume measurement from experimental spectra.

I
n mesoscopic reaction systems the copy numbers of the reacting molecules are low enough for molecular
discreteness to become relevant. This induces intrinsic noise and replaces the deterministic kinetics by a
stochastic model, potentially leading to quantitative and qualitative differences in the system behavior.
Oscillatory chemical reaction networks are appealing systems to study as they can exhibit a wide range of

complex behaviors, such as bifurcations, limit cycles, and chaos in different parts of their phase spaces.
Consequently, they have been shown to be involved in a number of fundamental phenomena, including
pattern formation1, turbulence2,3, chemical waves3, and vortex dynamics4. Chemical oscillators also play
important roles in biological systems, ranging from circadian clocks5,6 to rhythmic gene expression and
metabolism7, glycolytic oscillators8, embryonic segmentation clocks9, and cell-division control in both space
and time10–12.

Oscillatory chemical reaction networks have traditionally been studied using deterministic, macroscopic
reaction rate equations (RRE) in the form of ordinary differential equations. While this enables the application
of a wealth of bifurcation and stability analysis tools from dynamical systems theory, it is only valid in the limit
of large numbers of molecules, which typically requires that the reactions progress in a reactor of large
(macroscopic) volume13–15. If the reactions are confined to smaller (mesoscopic) volumes, such as intracellular
organelles, nano-reactors, or porous foams, the number of reactive molecules within any well-mixed subspace is
typically too small for RRE to be generally valid. In these regimes, molecular discreteness, and hence intrinsic
noise, needs to be accounted for. It has been shown in numerous studies that intrinsic noise can lead to non-trivial
chemical kinetics that cannot be predicted by RRE15–21.

The effect of intrinsic noise manifests itself differently in different types of chemical reaction networks: In linear
reaction networks RRE predictions of the mean concentrations are always correct, regardless of the reactor
volume14. In nonlinear reaction networks, however, noise induces quantitative differences from the concentra-
tions predicted by RRE14,15. A fingerprint of these differences is the relaxation kinetics of the steady-state
concentration fluctuations22. In monostable nonlinear systems, the relaxation kinetics of the concentration
fluctuations around a non-equilibrium steady state is altered by intrinsic noise through an increase in the lifetimes
of species that are reactants in any nonlinear reaction22. In frequency space, this corresponds to an increase in the
bandwidth of the concentration fluctuation spectrum with increasing intrinsic noise. This quantitative difference
can become large enough to render RRE invalid in certain regimes20. In multi-stable systems, intrinsic noise can
lead to switching behavior between the multiple fixed points of the system14,15. This phenomenon has been used to
explain spontaneous switching behavior in biochemical systems23–25 and the switching of gene-expression pat-
terns in response to environmental changes26. More remarkably, intrinsic noise can induce oscillatory behavior at
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steady state, even when the corresponding RRE are away from Hopf
bifurcation and hence do not exhibit oscillatory behavior27,21. This
has, e.g., been used to explain circadian rhythms in biological organ-
isms28,5,6.

Analysis and prediction of noise-induced effects in multi-stable
and oscillatory systems is impeded by the fact that many analytical
methods, such as van Kampen’s system-volume expansion15 or the
effective mesoscopic rate equations (EMRE)29, are limited to asymp-
totically (in a Lyapunov sense) monostable systems15. Consequently,
understanding mesoscopic oscillatory systems requires other theor-
etical approaches, such as the stochastic normal form equations30,
Gaussian approximation methods31, the Mori-Zwanzig projection
method32, or the Hamilton-Jacobi method33,34. These methods have
been used to understand stochastic fluctuations around a limit cycle
in the weak-noise limit, and they have led to a wealth of results
about the radius of the limit cycle, correlation times, and the min-
imum number of molecules required for sustained time-correlated
oscillations.

All these approaches are based on approximations of the chemical
master equation (CME)35, which governs the stochastic kinetics of
chemical reaction networks in mesoscopic and macroscopic
volumes. While analytically intractable, the CME renders these sys-
tems amenable to simulation studies by numerically sampling tra-
jectories from the exact solution of the CME using an exact stochastic
simulation algorithm (SSA)36. These algorithms are exact in the sense
that they reproduce the correct fluctuation spectrum of the species
concentrations to arbitrarily high order.

In this paper, we use an exact SSA and a mesoscopic oscillatory
model system away from Hopf bifurcation to characterize the effect
of intrinsic noise on the frequency spectrum of the steady-state con-
centration fluctuations. Extending previous work on monostable
systems22, we study the fingerprints of noise in the frequency spec-
trum of the stochastic chemical oscillations as a function of the
magnitude of intrinsic noise. For this, we study the fluctuation–
relaxation kinetics of the concentrations of species in an open, meso-
scopic chemical model system. We use Gillespie’s original exact
SSA36 to sample trajectories governed by the corresponding CME.
The impact of noise is quantified by changes in the power spectral
density (PSD) of the concentration fluctuations at a non-equilibrium
steady state. Larger intrinsic noise is realized by decreasing the
reactor volume V at constant mean concentration, hence decreasing
the total number of reactive molecules in the system. We observe that
the PSD has a Lorentzian-like form, confirming an earlier study30.
Further, we show that the frequency at which the PSD is maximum
depends on the reactor volume and hence the noise magnitude. We

observe that the peak shifts toward lower frequencies with increasing
intrinsic noise. This shift is also accompanied by an increase in
bandwidth of the fluctuation spectrum, similar to the observation
in monostable systems22.

Interactions between several oscillatory systems may lead to non-
trivial effects37. We hence also study cascades of downstream-
coupled mesoscopic chemical systems and compare the results to a
single-stage system and to the linear-noise regime38,15. We show that
due to intrinsic noise, each cascade stage further amplifies the shift in
the peak of the PSD toward lower frequencies. For a fixed volume,
the bandwidth decreases along the cascade, rendering the peak
sharper and more relevant with every additional stage. In biology,
downstream-coupled cascades of reaction networks are found, e.g.,
as cascades of autocatalytic reactions or in signaling cascades. This
includes the up to six downstream-coupled autocatalytic stages of
MAPK signaling cascades39,40, which can exhibit oscillatory behavior
under global feedback41. Another example of an oscillatory autoca-
talytic biochemical system is found in cell cycle control11,12.

We believe that our findings shed light on the effect of intrinsic
noise on mesoscopic oscillatory chemical reaction systems. We
show that intrinsic noise can not only induce oscillatory behavior
in systems away from Hopf bifurcation27,21, but that it also alters
the frequency spectrum of the oscillations. The key novelty in our
findings is the shift of the peak of the Lorentzian-like PSD with
increasing intrinsic noise. Our findings can be used to understand
the fundamental effects of intrinsic noise in (cascades of) mesoscopic
chemical reaction networks. Furthermore, it has been shown that
steady-state fluctuation spectra can aid parameter identification
of stochastic chemical reaction networks42. Under this premise, our
results can be used to more reliably identify the parameters of
mesoscopic chemical reaction networks by using the corrected
fluctuation–relaxation kinetics as an additional fingerprint of the
effects of intrinsic noise, where the time series of steady-state fluctua-
tions can, e.g., be obtained using fluorescence correlation spectro-
scopy (FCS)43–45.

Results
Model. We consider a chain of dowstream-coupled Brusselators38

in a reactor of volume V (see Fig. 1) as a model system. The
Brusselator is a model system for autocatalytic reactions. Exam-
ples of autocatalytic reactions include the Belousov-Zhabotinsky
reaction, MAPK signaling cascades39,40, and activation of the M-
phase promoting factor in cell-cycle control11,12. The reaction
network of our model system is:

Figure 1 | Illustration of the model system of a cascade of N downstream-coupled Brusselators. The cascade of Brusselator reactions progresses in a

mesoscopic reactor volume V.
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where n denotes the stage of the cascade and N $ 1 the total number
of stages. The k’s are the macroscopic reaction rates. Each stage n $ 1
involves reactions between two species, Xn and Yn. The first stage of
the cascade is driven by a buffer (species X0) whose concentration is
fixed at all times. Every subsequent stage of the cascade is driven by
species Xn21 of the previous stage. Therefore, the first stage n 5 1 is
independent of the subsequent downstream stages (n . 1). In
general, any stage n 5 q is independent of all the subsequent
downstream stages (n . q).

The CME corresponding to the reaction system in Eq. 1 is given by
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where Xn and Yn are the populations (copy numbers) of species
Xn and Yn, respectively, x0 is the concentration of the buffer X0,
P(Xn,Yn) is the probability of having Xn molecules of species
Xn and Yn molecules of species Yn, and EX is a step operator
defined as Em

X f X,Yð Þ~f Xzm,Yð Þ for any function f(?). The
corresponding RRE describing the deterministic time evolution of
the concentrations xn 5 Xn/V and yn 5 Yn/V is given in Eq. 6 (see
Methods section).

For simplicity, we set k2 5 k4 5 1. We also enforce the concen-
tration x0 of the buffer X0 to be 1 at all times. Under these conditions,
the fixed point of the deterministic RRE (Eq. 6) is given by xn(t R ‘)
5 k1 and yn(t R ‘) 5 k3/k1 for all n $ 1. This fixed point is
exponentially stable if k3vk2

1z1, undergoes a Hopf bifurcation
at k3~k2

1z1, and becomes unstable for k3wk2
1z1. In the latter

case, xn(t) and yn(t) exhibit oscillations for each n 5 1,…,N. In the
deterministic RRE description, the condition for a limit cycle has to
be strictly fulfilled in order to observe oscillatory behavior, whereas
in the stochastic description oscillations can be observed even when
the limit-cycle condition is not fulfilled27,5.

We numerically sample trajectories from the CME (Eq. 2) using
the direct method46, an exact formulation of Gillespie’s stochastic
simulation algorithm36, for different reactor volumes V. The reactor
volume determines the magnitude of intrinsic noise, as smaller V
decrease the total number of reactive molecules in the system and
hence increase the intrinsic noise magnitude. We set N 5 20, thus
simulating a cascade of 20 Brusselator stages, which includes the
single-stage case when looking at the concentrations in stage 1, since
they are independent of any subsequent stages. This value for N is
chosen arbitrarily and the results would not change if a different N
were chosen. The concentrations of all species are 0 at time t 5 0. We
also set k1 5 1 and k3 5 1. For these parameters, the fixed point of the
system is stable, and the deterministic system does hence not exhibit
limit-cycle oscillations, reaching the fixed point (xn, yn) 5 (1,1) for all
n 5 1,…,N. The mesoscopic system, however, shows oscillations due
to the concentration fluctuations from intrinsic noise. This can be
seen in Fig. 2, where the deterministic RRE trajectories from the first
and last cascade stages are shown in panels (b) and (d), respectively,
and a single trajectory sampled from the CME in panels (a) and (c).
Starting from the above initial condition, the stochastic trajectory

shows sustained oscillations, whereas the deterministic trajectory
reaches the stable fixed point.

We study the normalized steady-state PSD Sn(v) of the concen-
tration fluctuations of species Xn (species X of the n-th stage) for n 5

1,…,N as a function of the angular frequency v for different reactor
volumes V. The normalized steady-state PSD Sn(v) is defined as the
Fourier transform of the time-autocorrelation function Cn(t):

Sn vð Þ~F Cn tð Þð Þ, ð3Þ

where the time autocorrelation in function of the time lag t is given
by

Cn tð Þ~ ~xn 0ð Þ~xn tð Þh is
�

s2
n: ð4Þ

The subscript s denotes quantities computed at steady state,
~xn~xn{ xnh is, and the variance at steady state s2

n~

~xn 0ð Þ~xn 0ð Þh is. The normalization of Cn(t) with s2
n factors out the

energy of the fluctuations, so that
Ð?

0 Sn vð Þdv~1. We hence call
Sn(v) the normalized steady-state PSD. It quantifies the fraction of
energy of the fluctuations around a specific frequency, namely,
Sn(v)dv gives the fraction of energy of the fluctuations between v
and v 1 dv. We compute Sn(v) by recording a single long trajectory
of xn(t) at steady state. We sample 8 404 992 (223 1 214) data points of
xn(t) starting from t 5 2000 with a time resolution of dt 5 0.1. We
then compute the time-autocorrelation function (Eq. 4) from a min-
imum lag of t 5 0.1 up to a maximum lag of t 5 214dt. Sn(v) is
obtained by fast Fourier transform (Eq. 3).

We quantify the effect of intrinsic noise by the PSD’s peak fre-
quency and bandwidth. The peak frequency vm

n is defined as the
angular frequency at which Sn(v) is maximum, hence

vm
n ~arg max

v
Sn vð Þð Þ: ð5Þ

Since Sn(v) is generated by a stochastic process and hence is noisy,
we smooth Sn(v) before computing vm

n . Smoothing is done using a
moving-average filter with a window diameter of 10 data points,
corresponding to a frequency-space resolution of dv 5 2 ? 1022 (data
points in frequency space are uniformly spaced with a distance of
2 ? 1023).

The bandwidth vb
n of the steady-state PSD is defined as the dif-

ference between the two frequencies (v1, v2) where the steady-state
PSD drops to half of its maximum value, i.e., vb

n~v2{v1 so that
Sn v1ð Þ~Sn v2ð Þ~ 1

2 Sn vm
n

� �
with v2 . v1. Also vb

n is computed on
the smoothed PSD.

In the linear-noise (large volume) regime, the quantities Sn(v) and
vm

n can be calculated analytically38,15 (see Methods section). We use
the results from the linear-noise regime as a baseline to understand
the effect of intrinsic noise on our model system.

Effect of noise. We present the normalized steady-state PSD Sn(v),
the peak frequency vm

n , and the bandwidth vb
n for different reactor

volumes V of our model system. These quantities are numerically
computed from exact SSA trajectories46,35 as described above. In
the linear-noise limit, the quantities are analytically computed as
described in the Methods section.

First, we assess Sn(v) as a function of reactor volume V for the
stage n 5 1 alone and then extend our results to cascades of coupled
Brusselators. Figure 3(a) shows S1(v) for three different reactor
volumes V 5 1, 5, 50 and in the linear-noise limit. It can be seen
that the steady-state PSD is indeed a function of V and that it has a
Lorentzian-like form with a peak frequency and an associated band-
width. This form of the steady-state PSD is expected, since the time-
autocorrelation function is Cn tð Þ!e{antcos bntð Þ 30. As the volume
V is reduced, the peak vm

1 shifts to lower frequencies. The linear-
noise regime is the weak-noise limit for large V. For V 5 50 the peak
frequency is vn

1~0:86. This reduces to vm
1 ~0:73 and vm

1 ~0:45 for
V 5 5 and V 5 1, respectively.
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The bandwidth for V 5 50 is vb
1~1:19. For V 5 5, it increases to

vb
1~1:29, and for V 5 1 further to vb

1~1:46. The bandwidth of the
steady-state PSD hence increases with decreasing reactor volume V.

We now consider how these results change along a cascade of down-
stream-coupled Brusselators. Figure 3(b) shows S20(v) at stage n 5 20
for the same three reactor volumes V 5 1, 5, 50 and in the linear-noise
limit. Similar to what is observed in the first stage, the peak vm

20 also
shifts toward lower frequencies as V decreases. For V 5 50 the peak
frequency is vm

20~0:72, which reduces to vm
20~0:51 and vm

20~0:28
for V 5 5 and V 5 1, respectively. For a given V, the peak frequency is
successively reduced by each cascade stage, hence vm

nz1vvm
n .

The bandwidth vb
n at stage n 5 20 also increases with decreasing

volume, just as it did for the first stage (see Fig. 3(b)). For V 5 50, 5,
and 1, we find vb

20~0:37, vb
20~0:48, and vb

20~0:50, respectively.
Comparing vb

1 and vb
20, we observe that for fixed reactor volume V

the bandwidth decreases with every stage along the cascade.
These results are summarized in Table 1 and shown also for inter-

mediate cascade stages in Fig. 4. We observe that for a given cascade
stage n the peak frequency decreases with decreasing reactor volume
and that for a given reactor volume the peak frequency also decreases
with every stage along the cascade. In the linearized approximation
(valid for large volumes), the peak frequency is independent of
the reactor volume and also of the cascade stage (see Eq. 14). This

indicates that the effects observed for smaller volumes are indeed
caused by intrinsic noise in the system.

Discussion
We have studied the effect of intrinsic noise due to molecular dis-
creteness on mesoscopic oscillatory chemical reaction networks. We
considered the model system of a Brusselator away from the Hopf
bifurcation, where the deterministic reaction rate equations (RRE)
do not exhibit oscillatory behavior. Oscillations can nevertheless be
induced by intrinsic noise, the magnitude of which was tuned by
changing the reactor volume. We also studied propagation of
noise-induced effects along a downstream-coupled cascade of
Brusselators. Noise-induced effects were quantified using the fre-
quency spectrum of concentration fluctuations, given by the normal-
ized power spectral density (PSD), at a non-equilibrium steady state.
Specifically, we used the peak frequency and the bandwidth of the
PSD as fingerprints of noise-induced effects. We used an exact stoch-
astic simulation algorithm46,35 to study the kinetics of the system as
governed by the corresponding chemical master equation.

The results have shown that the frequency at which the steady-
state PSD is maximal decreases with decreasing reactor volume. This
effect is further amplified by every stage of a cascade of coupled
Brusselators, leading to a further decrease along the cascade. This

Figure 2 | Plot of a single trajectory in phase space (xn, yn) for the first and last stages, n 5 1 and n 5 20, of the model system (Eq. 1) with N 5 20
and reactor volume V 5 100. For this system, the RRE predict an exponentially stable fixed point at (xn, yn) 5 (1, 1). (a) A single stochastic trajectory

sampled from the CME for stage n 5 1; (b) the corresponding deterministic RRE prediction for the same parameters. (c, d) Stochastic and deterministic

trajectories, respectively, for the last stage of the cascade.

www.nature.com/scientificreports
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is in contrast to the linearized approximation, which does not predict
any effect of intrinsic noise on the normalized steady-state PSD. We
also showed that for a given cascade stage the bandwidth of concen-
tration fluctuations decreases with increasing reactor volume, which
is in agreement with observations in non-oscillatory monostable22

and oscillatory34,30 chemical reaction systems. For a fixed volume,
the bandwidth also decreases along the cascade, rendering the peak
sharper and more pronounced with every stage. One may hence
speculate whether intrinsic noise plays any role in ‘‘tuning’’ the out-
put frequency of biochemical oscillators. This tuned output fre-
quency could in turn drive further downstream reaction networks,
qualitatively changing their behavior. It is for example known that
the behavior of glycolytic oscillators can change from periodic to
quasi-periodic to chaotic upon small changes in the driving input
frequency (see p. 33, Fig. 2.24, in Ref. 47, or Refs. 48, 49).

We believe that our study sheds light on the role of intrinsic
noise in chemical oscillators. Even though we studied a simple
model system, the results show how intrinsic noise qualitatively
influences the frequency spectrum of the oscillations. We have
shown that mesoscopic chemical reaction networks, and cascades
thereof, exhibit different output spectra depending on the mag-
nitude of intrinsic noise. We expect this effect to be present also in
mesoscopic oscillatory reaction systems where the RRE show
oscillatory behavior. This is because there is no qualitative differ-
ence in the concentration trajectories of mesoscopic systems just
before and after a Hopf bifurcation27.

Our findings are relevant for identifying the reactor volumes of
(cascades of) mesoscopic reaction networks when the concentration
fluctuations are measured experimentally, e.g., using fluorescence
correction spectroscopy. In addition, we believe that the effects
reported here can be used as fingerprints to more reliably identify
parameters of stochastic chemical reaction networks in systems bio-
logy models. Finally, the results presented here might contribute
towards developing a general understanding of how noise influe-
nces the kinetics of different chemical systems, when deterministic
RRE predictions are valid, and what deviations are to be expected
otherwise.

Methods
Flutuations around the linearized RRE. We analytically derive the normalized
steady-state PSD Sn(v) and its peak frequency vm

n for each cascade stage n in the
linear-noise regime. The derivation follows that of Shibata [38] and is valid in the
weak-noise limit at large (macroscopic) volumes V.

Figure 3 | Effect of intrinsic noise on the frequency spectrum of non-equilibrium steady-state concentration fluctuations. (a) Normalized steady-state

power spectral density S1(v) of the fluctuations of species X1 (see Eq. 3) for a single Brusselator in different reactor volumes V5 1, 5, 50 and in the linear-

noise limit for large, macroscopic V (see Methods section), the latter reflecting the baseline. (b) Normalized steady-state power spectral density S20(v) of

the fluctuations of species X20 at the last stage of a cascade of 20 downstream-coupled Brusselators in different reactor volumes V 5 1, 5, 50 and in the

linear-noise limit for large V.

Table 1 | The effect of intrinsic noise, realized by decreasing the
reactor volume V, on the peak frequency vm

n (see Eq. 5) and the
bandwidth vb

n of the normalized steady-state PSD Sn(v ) (see Eq. 3)
for stages n 5 1 and n 5 20 of a cascade of downstream-coupled
Brusselators (see Eq. 1).

Stage 1 (n 5 1) Stage 20 (n 5 20)

V vm
1 vb

1 vm
20 vb

20

Large (linear noise) 0.86 1.18 0.86 0.19
50 0.86 1.19 0.72 0.37
5 0.73 1.29 0.51 0.48
1 0.45 1.46 0.28 0.50

Figure 4 | Peak frequency vm
n of the normalized steady-state power

spectral density Sn(v) as a function of cascade stage n in different reactor
volumes V. The results for ‘‘large V’’ are obtained from the analytical

expressions in the linear-noise limit (see Methods section).
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The deterministic RRE for the reaction system given in Eq. 1 are

dx1

dt
~k1x0{k3x1{k2x1zk4x2

1y1

dxn

dt
~k2xn{1{k3xn{k2xnzk4x2

nyn n~2, . . . ,N

dyn

dt
~k3xn{k4x2

nyn n~2, . . . ,N,

ð6Þ

where xn and yn are the concentrations of species Xn and Yn, respectively. As in
the numerical study for mesoscopic volumes, we set k2 5 k4 5 x0 5 1. Let dxn and
dyn be small perturbations around the steady state (xn, yn) 5 (k1, k3/k1). The linear
equations for the perturbations around the steady state are given by

ddxn
dt

ddyn
dt

0
B@

1
CA~

k3{1 k2
1

{k3 {k2
1

� �
dxn

dyn

� �
z

1 0

0 0

� �
dxn{1

dyn{1

� �
: ð7Þ

This expression for the perturbations around the fixed point of the RRE is the
same as the one that can be obtained from the linear-noise approximation using
van-Kampen expansion.

Taking the Fourier transform on both sides, we obtain

jv 0

0 jv

� � Xn

Yn

� �
~

k3{1 k2
1

{k3 {k2
1

� � Xn

Yn

� �
z

1 0

0 0

� � Xn{1

Yn{1

� �
, ð8Þ

where Xn and Yn are the Fourier transforms of xn(t) and yn(t), respectively.
Simplifying the above equation leads to

Xn~F vð ÞXn{1, ð9Þ

where

F vð Þ~ jvzk2
1

{v2zj k2
1{k3z1ð Þvzk2

1
: ð10Þ

Since we consider a linearized version of the macroscopic system, the normalized
PSD is invariant to the input noise excitation used to quantify the correlations intro-
duced by the system. We here use the simple input noise dx0 5 0(t), which is uncorre-
lated white noise with Æ 0(t)æ 5 0 and 0 tð Þ 0 tztð Þh i~s2

0d tð Þ, where d(t) is the
Dirac delta distribution. The PSD P0(v) of the input buffer to the first stage is then
given by

P0 vð Þ~ X 0 vð Þj j2
	 


~
s2

0

2p
:

ð11Þ

The PSD Pn(v) of the output of cascade stage n $ 1 is given by

Pn vð Þ~ Xn vð Þj j2
	 


: ð12Þ

Substituting Eqs. 9 and 11 into Eq. 12 we get

Pn vð Þ~ F vð Þj j2n s2
0

2p
:

The normalized steady-state PSD Sn(v) is then

Sn vð Þ~ Pn vð Þ
Ð?

0
Pn v0ð Þdv0

~
F vð Þj j2n

Ð?
0

F v0ð Þj j2ndv0
:

ð13Þ

Given the expression for F(v) (Eq. 10), the normalized steady-state PSD Sn(v) has
a Lorentzian-like form with peak frequency

vm
n ~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
{k4

1zk2
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k2

1k3z2k3{k2
3

qr
Vn: ð14Þ

It is therefore evident that in the linear-noise regime the peak frequency vm
n is

independent of V and of the stage number n. The bandwidth vb
n in the linear-noise

limit is computed directly from Eq. 13.
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