

Open Peer Review

Discuss this article

 (0)Comments

REVIEW

 General guidelines for biomedical software development
[version 2; referees: 2 approved]
Luis Bastiao Silva , Rafael C. Jimenez , Niklas Blomberg ,
José Luis Oliveira 3

BMD Software, Aveiro, Portugal
ELIXIR Hub, Wellcome Trust Genome Campus, Hinxton, UK
Institute of Electronics and Informatics Engineering of Aveiro, University of Aveiro, Aveiro, Portugal

Abstract
Most bioinformatics tools available today were not written by professional
software developers, but by people that wanted to solve their own problems,
using computational solutions and spending the minimum time and effort
possible, since these were just the means to an end. Consequently, a vast
number of software applications are currently available, hindering the task of
identifying the utility and quality of each. At the same time, this situation has
hindered regular adoption of these tools in clinical practice. Typically, they are
not sufficiently developed to be used by most clinical researchers and
practitioners. To address these issues, it is necessary to re-think how
biomedical applications are built and adopt new strategies that ensure quality,
efficiency, robustness, correctness and reusability of software components. We
also need to engage end-users during the development process to ensure that
applications fit their needs. In this review, we present a set of guidelines to
support biomedical software development, with an explanation of how they can
be implemented and what kind of open-source tools can be used for each
specific topic.

This article is included in the Bioinformatics

 collection.Training & Education

1 2 2

3

1

2

3

 Referee Status:

 Invited Referees

version 2
published
12 Jul 2017

version 1
published
15 Mar 2017

 1 2

report report

,João P. G. L. M. Rodrigues

Stanford University, USA
1

, Universidad Politecnica deVictor Maojo

Madrid, Spain
2

 15 Mar 2017, :273 (doi:)First published: 6 10.12688/f1000research.10750.1
 12 Jul 2017, :273 (doi:)Latest published: 6 10.12688/f1000research.10750.2

v2

Page 1 of 14

F1000Research 2017, 6:273 Last updated: 12 JUL 2017

https://f1000research.com/articles/6-273/v2
https://orcid.org/0000-0001-8513-7185
https://orcid.org/0000-0001-5404-7670
https://orcid.org/0000-0002-6672-6176
https://f1000research.com/collections/bioinformaticsedu
https://f1000research.com/collections/bioinformaticsedu
https://f1000research.com/collections/bioinformaticsedu
https://f1000research.com/articles/6-273/v2
https://f1000research.com/articles/6-273/v1
https://orcid.org/0000-0001-9796-3193
http://dx.doi.org/10.12688/f1000research.10750.1
http://dx.doi.org/10.12688/f1000research.10750.2
http://crossmark.crossref.org/dialog/?doi=10.12688/f1000research.10750.2&domain=pdf&date_stamp=2017-07-12

 Luis Bastiao Silva (), José Luis Oliveira ()Corresponding authors: bastiao@bmd-software.com jlo@ua.pt
 : Conceptualization, Writing – Original Draft Preparation, Writing – Review & Editing; : Conceptualization,Author roles: Silva LB Jimenez RC

Writing – Original Draft Preparation, Writing – Review & Editing; : Conceptualization, Writing – Original Draft Preparation, Writing –Blomberg N
Review & Editing; : Conceptualization, Writing – Original Draft Preparation, Writing – Review & EditingLuis Oliveira J

 Competing interests: No competing interests were disclosed.

 Silva LB, Jimenez RC, Blomberg N and Luis Oliveira J. How to cite this article: General guidelines for biomedical software development
 2017, :273 (doi:)[version 2; referees: 2 approved] F1000Research 6 10.12688/f1000research.10750.2

 © 2017 Silva LB . This is an open access article distributed under the terms of the , whichCopyright: et al Creative Commons Attribution Licence
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

 This work has partially received funding from the European Union’s Horizon 2020 Research and Innovation programme forGrant information:
2014-2020 under Grant Agreement n. 634143 (MedBioinformatics) and from the EU/EFPIA Innovative Medicines Initiative Joint Undertaking (EMIF
grant n° 115372).
The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

 15 Mar 2017, :273 (doi:) First published: 6 10.12688/f1000research.10750.1

Page 2 of 14

F1000Research 2017, 6:273 Last updated: 12 JUL 2017

http://dx.doi.org/10.12688/f1000research.10750.2
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.12688/f1000research.10750.1

Introduction
As an increasing number of scientific results are being gener-
ated from omics studies, new translational medicine applica-
tions and bioinformatics tools are needed to promote the flow of
these results into clinical practice, i.e. the knowledge needs to be
translated from the bench to the bedside, to foster development of new
biotechnological products and improve patients’ health. Biomedi-
cal informatics intends to support the integration and transfer of
knowledge across all major subject areas of translational medicine
– from the study of individual molecules to the study of whole
populations1. Translational medicine brings together many areas of
informatics, including bioinformatics, imaging informatics, clini-
cal informatics and public health informatics2,3. Bioinformaticians,
translational researchers and computational biologists identify the
molecular and cellular components that can be targeted for specific
clinical interventions and treatments for specific diseases. Imaging
informatics also plays a significant role in understanding pathogen-
esis and identifying treatments at the molecular, cellular, tissue and
organ level. Richer methods to visualize and analyse imaging data
are already being investigated and developed4. Other techniques
such as text and data mining have been applied to clinical reports.
Additionally, translational research teams need to focus on decision
support, natural language processing (NLP), standards, information
retrieval before applying these techniques to the electronic health
records.

The biomedical informatics landscape is pushing for the develop-
ment of more professional and easy-to-use software applications,
in order to address the pressing need to translate research outcomes
into clinical practice. To accomplish this, solid software engineer-
ing approaches must be adopted. Despite being a relatively young
discipline, biomedical informatics has evolved at an impressive
rate, constantly creating new software solutions and tools. How-
ever, due to their multidisciplinary nature, it is often difficult for
individual studies to gather solid knowledge in their various fields.
This problem has been flagged by several authors, who have pro-
posed general competences that undergraduate students should
acquire5,6. These competences can be obtained through introducing

complementary courses, such as software programming, in exist-
ing curricula, or by creating new academic degree courses7. While
these strategies have resulted in many new and successful gradu-
ates, the right balance between looking for strong expertise in a
single topic, or medium expertise in many topics, is not always easy
to find. Nonetheless, it is important to address that there is a clear
difference when software developers work for an academic thesis or
project, compared to working in software companies. The academia
projects are mostly frequent focused on the scientific novelty, while
companies are more focused on achieving concrete results for the
market needs. In both scenarios, software development methodolo-
gies need to be taken at distinct levels of complexity8.

Many researchers without training in software engineering have
found themselves faced with the intricate task of building their own
software solutions. Moreover, researchers and clinicians typically
perceive software development as an auxiliary task to serve sci-
ence, rather than a central goal9. The result is sometimes code-dif-
ficult and costly to maintain and re-use. This software dependency
is indeed a problem across all science, where concerns about the
reproducibility of research have raised the need for robust, open
access and open source software10,11. The development of software
projects requires effective collaboration between users and software
developers, and also between the users themselves.

Another common drawback of current bioinformatics and clinical
applications is the lack of user-friendly interfaces, making them
difficult to use and navigate. User-centered design has also been
proposed as a way to minimize this problem12. The development of
open source solutions has promoted software quality in the field,
since it encourages public review, reuse, correction and continuous
extension13.

In concrete for bioinformatics, most of the software is written by
researchers who use it for their own individual purposes, a process
long-identified as end-user programming14. However, these “new”
programmers face many software engineering challenges, such
as making decisions about design, reuse, integration, testing, and
debugging15. Several authors have tried to introduce software engi-
neering approaches in bioinformatics programming to address this
problem. Hastings et al.16 compiled several recommendations that
should be used to ensure the usability and sustainability of research
software. Most of these suggestions are part of fundamental pro-
gramming principles; e.g. keep simple, avoid repetitions, avoid spa-
ghetti code. By examining a group of software projects, Rother et al.
also identified a set of techniques that facilitate the introduction of
software engineering approaches in academic projects17. This work,
which came from the authors’ own experience in conducting soft-
ware projects, provided readers with a toolbox consisting of several
steps, starting with traditional ones such as user stories and CRC
cards. In a more specific study, Kamali et al. discussed several soft-
ware testing methodologies that can be used in bioinformatics, such
as simulators, testing in operational environment and cloud based
software testing18. Artaza et al. proposed 10 metrics for life science
software development, identified as the most relevant by a group
of experts19. They include topics such as version control and soft-
ware distribution or continuous integration. In a similar approach,
Wilson et al.20,21 described a set of “good enough” principles that
should be followed to better organize scientific computing projects,
starting at the data gathering phase and continuing up to the writing
of the manuscript.

            Amendments from Version 1

The authors are grateful for the suggestions of the two referees,
which we have addressed in this revision.

A better clarification of the terms bioinformatics and biomedical
informatics, is now provided. We have also compared the
differences, regarding software development, between the
academia and software companies.

Figure 1 was redrawn, according to the referee suggestion, with
examples of tools that can be used in the different development
phases.

The recommendation about source code management was also
clarified.

Overall, other improvements and minor corrections were also
addressed.

We also would like to thank to Peter Rijnbeek for provide us great
feedback that allow us to improve the manuscript.

See referee reports

REVISED

Page 3 of 14

F1000Research 2017, 6:273 Last updated: 12 JUL 2017

This paper leverages on the experience of the MedBioinformatics
project, which primary aim is to develop integrative bioinformat-
ics tools and software applications useful and autonomously usable
by translational scientists and clinical practitioners. We present a
set of recommendations for biomedical software development, with
an explanation of how they can be implemented and what kind of
open-source tools can be used for each specific topic. These recom-
mendations can be adopted in any kind of software development,
from user-interface applications up to scripts developed to support
biology and clinical research, which are very often ignored from the
software development point of view.

Why should we care about software development
recommendations?
Many research organizations and teams can create biomedical
software, but far too often, they are not sufficiently developed to be
used by most clinical researchers and practitioners, because they are
incomplete, lack user-friendly interfaces and software maintenance
is not guaranteed after project completion. So, the main question
we asked ourselves was how to ensure that the biomedical software
development process in research institutes remained reliable and
repeatable without them having to undertake major organizational
changes.

Developing high quality biomedical software that accomplishes
end-users’ expectations implies following a minimal set of software
engineering guidelines. We propose the following:

• �Team and project management

• �Tracking the development process

• �Software integration and interoperability

• �Test-Driven Development (TDD) and continuous integration
(CI)

• �Documentation

• �Software distribution

• �Licensing

Figure 1 presents a software development process that is
following this general set of key steps. The first step, team and
project management allows team members to keep track of group
tasks and schedules, and be involved in development decisions.
This encourages involvement of other users besides developers,
who can point out missing features, give feedback and report
bugs, helping communication between the whole team. Tracking
the software development process consists of a combination of
technologies and practices mostly used for source code manage-
ment, but applicable to other collaborative tasks such as writing
papers, product documentation, web site content, internal guide-
lines, and many more. Next, we have a cyclical pipeline between
software integration and interoperability, which starts with the
software specification phase and proceeds to the distribution phase,
consisting of development, validation and deployment stages. The
licensing of the software is one step that should be defined as
early as possible, because during the development process it is
often needed to include third-party dependency libraries, and the
licenses should be compatible.

This test-driven development process can be used throughout the
entire workflow, so that each unit is tested and the components’
integration is validated. Moreover, the documentation of each

Figure 1. Software development process: including the several stages of the process.

Page 4 of 14

F1000Research 2017, 6:273 Last updated: 12 JUL 2017

http://www.medbioinformatics.eu/
http://www.medbioinformatics.eu/

software module is important, and should be updated during all
development phases. Finally, after the software application is
distributed, appropriate maintenance and support is needed to
assure end-users can rely on someone to handle their requests and
help solve any problems.

To help the reader navigate through each of the following
guidelines, we have divided each one into three sub-sections:

1) A summary that describes what it is intended for

2) The process description that explains what benefits it provides

3) Examples of tools and services that help to implement the
guideline.

Team and project management
Summary:
Team and/or project management tools are essential for many
organizations, to help in planning and organizing teams, tasks,
and schedules. Implementing them during software development
allows teams to stay synchronized about task scheduling and mile-
stones, and helps track individual and general progress, identifying
difficulties early on so that the necessary adjustments can be made.
There are various software applications available that manage the
development process; they typically include a variety of features for
planning, scheduling, controlling costs, managing budgets, allocat-
ing resources, collaborating, and making decisions.

Process description:
Tracking and organizing the development process typically involves
the following main features:

• �Task management – To prioritize what functionality is devel-
oped over the different phases of project. It is often provided
as a graphical user interface tool that uses the drag and
drop functionality to facilitate project management, such as
Kanban boards – a method to visualize and manage the
workflow, where one can move the tasks between different
phases;

• �Code reviewing – This important practice is often used to
support teams of multiple developers, despite also being
very useful to track the progress of a single developer. These
tools allow the code to be audited by providing differential
views of code changes, normally web-based interfaces where
reviewers/auditors inspect the code independently, from
their own machines, as opposed to synchronous review ses-
sions where authors and reviewers meet to discuss changes;

• �Source code repositories – A source code repository is a web
hosting facility to store and manage source code and which
normally supports version control;

• �Bug tracking – Keeps track of all defects and problems with
the source code, using a predefined nomenclature to describe
each issue.

The process typically also includes document repositories, wikis,
discussion forums, time-tracking, Gantt mapping, file storage,
calendars and versioning control.

The principles behind team and project management tools have
been implemented in several software development methodologies,

such as Lean and Agile, and are important aspects of Scrum
methodology, Kanban and extreme programming (XP)22. Here,
team management relies on several types of meetings, such as sprint
planning meetings, daily Scrum meetings, sprint review meetings,
sprint retrospective meetings and backlog refinement meetings.
The Scrum Master is responsible for planning what will be dis-
cussed, namely what has been performed in the last sprint and what
are intended to be done for the next sprint - a sprint is a specific
period in which a set of tasks need to be accomplished. Developers
also need to be prepared to analyse their development process, and
negotiate future plans and potential deadlines. While Agile method-
ologies can lead to too many meetings, it is highly recommended to
meet periodically to coordinate the development process.

Examples:
Depending on the type of financial resources available, free or
open source management applications can be adopted, installed
locally or used as a service in the cloud. Some examples of man-
agement applications are: Phabricator, Redmine or JIRA, Github
and Bitbucket.

Tracking the development process
Summary:
A source control management system (SCM) provides coordi-
nation and management services between members of a software
development team. It could be implemented in many different
ways, and the most basic level, it could be a shared folder, and
only the newest versions of files are available for use. In software
programming, when there are several team members, the concept of
branches is very important. Quite often, projects are only supported
by a single researcher, but this is also very important for these small
projects. To correctly support the concept of branch, more complex
software is required.

Process description:
The more recent versions of SCMs allows developers to work
simultaneously on the same file, merge changes with other
developers’ changes and track and audit changes that were pull
requested. Nowadays, SCMs often include components to assist
the code revision and also to manage software process milestones
and roadmaps.

There are several strategies to develop with Git, and in this section
a short summary of Git Flow is presented – a well-known branch
model developed by Vincent Driessen1. The development process
includes two branches: master and dev. Master will be the most
stable branch. Only bug fixing can be merged in the master branch
and the bug fix branches should always be pull requested to master.
The Dev branch contains new features, and more unstable branches
may be pull requested to this branch. This is where the develop-
ers are creating new features for the planned next releases of the
software. Figure 2 shows an example of the bug fixing flux that
occurs while a new branch is created from the master.

The process usually starts with an issue being reported, and after a
decision has been made, it is assigned to a developer. Before going

1http://nvie.com/posts/a-successful-git-branching-model/

Page 5 of 14

F1000Research 2017, 6:273 Last updated: 12 JUL 2017

http://phabricator.org/
http://www.redmine.org/
https://www.atlassian.com/software/jira
https://github.com/
https://bitbucket.org/
http://nvie.com/posts/a-successful-git-branching-model/

Figure 2. Example of a strategy for SCM workflow based on Git. It is an example of a bug fix branch from master branch and created a
pull request with the changes against master branch.

to production, it needs to pass internal tests overseen by an internal
testing team. If the bug has been fixed according to requests, the
case is closed, or a report is sent back to the developer with a new
set of issues.

New features are developed according to users’ feedback. It is a
complex task that often involves re-engineering the applications.
This process may break some other features already in place. Thus,
the new features are implemented in a development branch, passing
through several analyses, tests and user feedback stages. Finally,
release management is also performed within the SCM. Generally,
it uses an incremental numbering schema to tag each version. In this
way, it is always possible to track older versions and roll back to a
previous version, which is mainly required to compare the behav-
iour of different versions.

The following best practices should be applied to software version
control:

• �Before committing, check for possible changes in the
repository

• �When committing a change to the repository, make sure the
change reflects a single purpose (E.g. Fixing a bug, adding
a new feature);

• �If possible, try to create change sets linked to the issue
tracker. Use the issue ID in the commit message;

• �After merging, run the unit tests to ensure that the merge
was successful;

• �After creating a tag, do not commit to it any more. Visual-
ize the tag as read-only. If it is necessary to resolve an issue
in that specific version, create a branch from that tag and
commit the changes to it;

• �Try not to merge a large number of changes between the
trunk and the branches. Use atomic commits;

• �Make at least one commit per day with all the day’s work.

Examples:
Several version control systems (VCS) can manage code develop-
ment, such as Git or Mercurial. Github or Bitbucket are some exam-
ples of ready-to-use SCM.

Page 6 of 14

F1000Research 2017, 6:273 Last updated: 12 JUL 2017

https://git-scm.com/
https://www.mercurial-scm.org/

Software integration and interoperability
Summary:
Software integration and interoperability with external systems
is a very important requirement in the biomedical domain, due
to the reusability of existing repositories, services, algorithms,
components and even applications. Designing an application
programming interface (API) is crucial in distributed system
development, so that the final solution can interconnect and
interoperate with other systems.

Process description:
A programming interface exposes part of a system behaviour, and
it is sometimes difficult to implement when different platforms
and programming languages are required. Since creating a new
interface for each specific service could be tiresome and error-
prone, it is often preferred to take a generic interface and express
application-specific semantics to them. This is often a trade-off
between performance, extensibility and stability of the API. To
collaborate with specifying new semantics and the development
of systems complying with such interfaces, Interface Description
Languages (IDLs) emerged as formal definition languages for
describing software interfaces, often coupled with facilities for
documenting the API and generating consumer and provider code
stubs for multiple platforms or programming languages.

Two of the most used types of API are SOAP2 and REST23:

• �The Simple Object Access Protocol (SOAP) is an Internet
protocol for messaging and remote procedure calls, using
Extended Markup Language (XML) as the base message
format and usually (although not necessarily) HTTP as
the transport protocol. Web Service Definition Language
(WSDL) is a commonly used IDL for describing a web
service using SOAP. This protocol was very popular in its
conception but is nowadays becoming replaced by other
solutions such as REST.

• �Representational State Transfer (REST) is an architectural
style that defines an interface as a means of accessing and
manipulating well-identified resources, using HTTP as the
transport protocol and a set of methods for reading and
writing resource state. REST is praised for its simplicity,
performance, scalability and reliability. In the scope of
web applications, client modules for consuming RESTful
services can be easily implemented without the need for
complex external libraries.

Defining an API is very important for software reusability, to
ensure that developers allow their services to be integrated in third-
party applications. In the biomedical domain, besides the existence
of REST web services, use of well-defined standards and vocabu-
lary is also crucial.

Examples:
Web service facilities are generally included in software develop-
ment toolkits and for several programming languages.

Test-Driven Development (TDD) and Continuous
Integration (CI)
Summary:
The Test-Driven Development methodology is a software develop-
ment technique based on short cycles. The basic idea is that the
developer creates a set of test cases and writes those test cases to
ensure a specific use case. A set of assertions should be establ-
ished in each test, helping developers to better identify the require-
ments for each component of the software. As a complement
to TDD, Continuous Integration (CI) is a development practice
that automates the build, allowing teams to detect early problems.

Process description:
In a software development journey, there are often several
strategies to bug fixing, and changing the behaviour of modules
may introduce problems in other parts of the software. There are
three strategies that could be used to tackle the issue:

• �Unit and integration tests - Tests written by the program-
mer to verify if that particular part of the code respects the
contract, i.e. what the input and the output is. Integration
tests are often built to verify if the different pieces of system
work together.

• �Continuous integration – A practice that incorporates
automatic builds, and allows the teams to detect problems
earlier.

• �TDD - The practice of writing the tests before writing the
code.

TDD can be applied not only with unit tests but also with interfaces.
To develop unit tests for the core of the application, it depends on
the programming language. The methodology is simple, but appli-
cation might be more complex. There is always a trade-off between
the overhead it introduces and its benefit, so it can be adapted
according to specific needs, e.g. validation of critical processes, as
is common in the biomedical domain. TDD allows writing of code
that automatically verifies if the produced output of an algorithm
is as expected24. These tests can be used at any time, allowing to
better deal with future changes in code, and saving time in future
updates.

TDD and CI make the development process smoother, more
predictable and less risky, even in advanced stages of the software
lifecycle. Additionally, bugs can be traced and solved sooner,
as they are continuously introduced into the project code. CI
proposes the following set of development guidelines:

• �Do not check in on a broken build;

• �Always run all commit tests locally before committing;

• �Commit your changes frequently (at least once a day);

• �Never go home with changes to commit;

• �Never go home on a broken build;

• �Always be prepared to revert to the previous revision;

• �Take responsibility for all breakages that result from your
changes;

• �Fix broken builds immediately.2https://www.w3.org/TR/soap

Page 7 of 14

F1000Research 2017, 6:273 Last updated: 12 JUL 2017

https://www.w3.org/TR/soap

Examples:
An example of a tools that can be used for TDD is JUnit for java. To
test web interfaces, there is the nightwatch.js tool, amongst others.
For CI there are tools such as Jenkins, Travis-CI or TeamCity.

Documentation
Summary:
Documentation is one of the most important aspects of long-term
software development. Building comprehensive documentation is
very important for software reusability and maintenance, helping
to mitigate the arrival/departure of team members Nevertheless,
biomedical research software is often born based on experiments
and scripts, and researchers are often not willing to document all
processes and source code.

Process description:
High-level requirements intend to depict what the system “will
be”, rather than what it “will do”. The emphasis is therefore on
non-functional or business requirements. As the project evolves,
these requirements will be progressively more detailed, and even-
tually converge with low-level requirements. Use case analysis is
important for any development project, and it is a task usually
shared with end-users. It is important to choose a simple and
comprehensive use case template, and sometimes a first iteration
with a key user can help refine it before distributing the template
among all users.

Other technical documentation needs are mostly related to the
project set-up, where a wiki system can be used for storing dis-
persed information in a controlled environment where everyone
is able to edit/comment. This repository can include use cases,
architecture/database diagrams, user interface mock-ups, and any
project-related documents.

Last but not least, inline source code documentation is very impor-
tant to define and explain the different parts of the source code,

making it easier for the programmers when they need to add extra
features or fix bugs. The code must be self-explanatory using an
adequate name convention. The inline source code documentation
must describe what the code does, how it works, and, when appli-
cable, how it can be integrated with other pieces of code. Nowadays
specific and automatic API generation documentation tools allow
creation of easy to read documentation based on inline source code
documentation.

Examples:
For general documentation, Markdown or Sphinx3 (also used for
Python) can be used. For Java language, there is Javadoc, while
other languages have their own documentation strategy that can be
followed. For software specification and requirement analysis there
are several templates in OpenUP4 (Open Unified Process) from
Eclipse Foundation.

Software distribution
Summary:
Web-based solutions can be deployed in web servers, which makes
life a lot easier for the application’s end-users who do not need
to deal with local installation. It is essential to handle updates
smoothly without disrupting the quality of service provided.

Process description:
The deployment stage of each new release must not be per-
formed in the production environment. It should follow three
release management steps: development, testing and production
(Figure 3). These distinct stages have similar conditions and they
are deployed over different servers. Also, the production data is
replicated in these environments to guarantee that the deployment

Figure 3. The deployment of each new release should follow three release management steps: development, testing and production.

3http://www.sphinx-doc.org/
4http://epf.eclipse.org/wikis/openup/

Page 8 of 14

F1000Research 2017, 6:273 Last updated: 12 JUL 2017

http://junit.org/
http://nightwatchjs.org/
https://jenkins.io/
https://travis-ci.org/
https://www.jetbrains.com/teamcity/
http://www.sphinx-doc.org/
http://www.sphinx-doc.org/
http://epf.eclipse.org/wikis/openup/

will be safely performed. Software engineers will often perform
the development deployment and test the new features in this
environment. When this milestone is reached, the release is per-
formed and updated in the test stage. This version will be passed
to a group responsible for testing, gathering feedback and
feature enhancement. Once it has passed this stage, the final release
will go into production to be used by the end-users.

Examples:
This is an organizational guideline, so no special tools are needed.
Nevertheless, there are auxiliary tools that help the deployment and
distribution process, mainly when the applications require complex
setup tools. For example, it is possible to use software containers
like Docker5 to distribute complex software and help deploy it,
ensuring the whole community can run the software25–27.

Licensing
Summary:
Licensing and copyright attribution is a subject that should be
addressed from the very beginning of the project. The goal is to
clarify the terms that will regulate future use of the software – e.g.
commercial, free use, open source. Open source software is cur-
rently a trend, even in bigger companies, as a way to credit the
authors and promote work dissemination and collaborative devel-
opment. Several kinds of licenses are available to regulate these
relationships, although an individual disclaimer can be written.
A commonly used license is the Free and Open Source Software
(FOSS) license, which allows the product to be modified and
redistributed without having to pay the original author.

Process description:
The license should be stated clearly on the project’s front page and
in the root of the source code. The full license text can be included
here in a file called COPYING or LICENSE, following the standard
format.

The copyrights should be assigned together with the license. The
common nomenclature adds the year and the organization owning
the copyright: Copyright (C) <year><name of organization>. The
year specification may be a range, such as 2014–2016, to restrict the
copyright to a period of time28. This line should be included in the
headers of all source code files, together with a short license.

Examples:
There are different types of open source licenses, that come
with different conditions and restrictions. We will list the most
commonly used open source licenses:

• �BSD License – It is the most permissive FOSS license.
Users that re-use the code can do whatever they want, except
in the case of redistributing source or binary, where they
must always retain the copyright notice.

• �Apache Public License 2.0 – This license is very permis-
sive. It allows the licensed source code to be used in open-
source and also in closed-source software.

• �GNU GPL – This license is restrictive. The users of the
licensed system are free to use the licensed system with-
out any usage restrictions; analyze it and use the results of
the analysis (the source code must be provided and cannot
be hidden); redistribute unchanged copies of the licensed
system, and also modify and redistribute modified copies of
the licensed system

• �GNU LGPL – It is trade-off between the restricted GNU
GPL and the permissive BSD. LGPL assumes that a library
licensed under LGPL can be used in a non-GPL applica-
tion. All the changes applied to the LGPL library must
remain under LGPL. It assumes that all copyrights reversed
on source code files, and not on the whole program.

Conclusion and future directions
In the biomedical domain, many new code scripts, algorithms,
tools and services are currently being developed on a worldwide
scale. However, the reuse of some of these software solutions
outside the research lab is being hindered by them not following
consolidated software developing methodologies. Early adop-
tion of these methodologies is important in the development of
biomedical tools so that they can reach a greater number of users;
not only researchers but also healthcare professionals. During
the development and distribution processes it is very important
to involve end-users, to collect as much feedback as possible and
create effective solutions during the development process.

We described a set of recommendations targeted at biomedical
software developers aimed at achieving a good balance between
fast prototyping, and robustness and long term maintenance. It
is important to keep in mind that these recommendations are
quite general and may not fit all cases, so adaptations may be
required. We hope they can help biomedical researchers to
reorganize their workflow, make their tools more visible, allow
reproducibility of their research, and most importantly, that the
outcome of that research can be more easily translated into daily
clinical practice.

Author contributions
All authors participated in the discussions to achieve the software
development recommendations. We believe all authors contrib-
uted equally to this work. All authors contributed to the writing
and reviewing of this article. All authors read and approved the
submitted manuscript.

Competing interests
No competing interests were disclosed.

Grant information
This work has partially received funding from the European Union’s
Horizon 2020 Research and Innovation programme for 2014–2020
under Grant Agreement n. 634143 (MedBioinformatics) and from
the EU/EFPIA Innovative Medicines Initiative Joint Undertaking
(EMIF grant n° 115372).

The funders had no role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript.5https://www.docker.com/

Page 9 of 14

F1000Research 2017, 6:273 Last updated: 12 JUL 2017

https://www.docker.com/
https://www.docker.com/

References

1.	 Sarkar IN: Biomedical informatics and translational medicine. J Transl Med.
2010; 8: 22.
PubMed Abstract | Publisher Full Text | Free Full Text

2.	 Han D, Wang S, Jiang C, et al.: Trends in biomedical informatics: automated
topic analysis of JAMIA articles. J Am Med Inform Assoc. 2015; 22(6):
1153–1163.
PubMed Abstract | Publisher Full Text | Free Full Text

3.	 Maojo V, Garcia-Remesal M, Bielza C, et al.: Biomedical informatics
publications: a global perspective. Part II: Journals. Methods Inf Med. 2012;
51(2): 131–137.
PubMed Abstract | Publisher Full Text

4.	 Gehlenborg N, O'Donoghue SI, Baliga NS, et al.: Visualization of omics data for
systems biology. Nat Methods. 2010; 7(3 Suppl): S56–S68.
PubMed Abstract | Publisher Full Text

5.	 He B, Baird R, Butera R, et al.: Grand challenges in interfacing engineering with
life sciences and medicine. IEEE Trans Biomed Eng. 2013; 60(3): 589–598.
PubMed Abstract | Publisher Full Text

6.	 Kulikowski CA, Shortliffe EH, Currie LM, et al.: AMIA Board white paper: definition
of biomedical informatics and specification of core competencies for graduate
education in the discipline. J Am Med Inform Assoc. 2012; 19(6): 931–938.
PubMed Abstract | Publisher Full Text | Free Full Text

7.	 Umarji M, Seaman C, Koru AG, et al.: Software engineering education for
bioinformatics. In 2009 22nd Conference on Software Engineering Education and
Training. IEEE. 2009; 216–223.
Publisher Full Text

8.	 Salman I, Misirli AT, Juristo N: Are students representatives of professionals
in software engineering experiments? Proceedings of the 37th International
Conference on, 2015.
Publisher Full Text

9.	 Kane DW, Hohman MM, Cerami EG, et al.: Agile methods in biomedical software
development: a multi-site experience report. BMC Bioinformatics. 2006; 7: 273.
PubMed Abstract | Publisher Full Text | Free Full Text

10.	 Joppa LN, McInerny G, Harper R, et al.: Computational science. Troubling trends
in scientific software use. Science. 2013; 340(6134): 814–815.
PubMed Abstract | Publisher Full Text

11.	 Gymrek M, Farjoun Y: Recommendations for open data science. Gigascience.
2016; 5(1): 22.
PubMed Abstract | Publisher Full Text | Free Full Text

12.	 Pavelin K, Cham JA, de Matos P, et al.: Bioinformatics meets user-centred
design: a perspective. PLoS Comput Biol. 2012; 8(7): e1002554.
PubMed Abstract | Publisher Full Text | Free Full Text

13.	 Gentleman RC, Carey VJ, Bates DM, et al.: Bioconductor: open software
development for computational biology and bioinformatics. Genome Biol. 2004;
5(10): R80.
PubMed Abstract | Publisher Full Text | Free Full Text

14.	 Nardi BA: A small matter of programming: perspectives on end user

computing. MIT press, 1993.
Reference Source

15.	 Ko AJ, Abraham R, Beckwith L, et al.: The state of the art in end-user software
engineering. ACM Computing Surveys (CSUR). 2011; 43(3): 1–44, 21.
Publisher Full Text

16.	 Hastings J, Haug K, Steinbeck C: Ten recommendations for software
engineering in research. GigaScience. 2014; 3(1): 31.
PubMed Abstract | Publisher Full Text | Free Full Text

17.	 Prlić A, Procter JB: Ten simple rules for the open development of scientific
software. PLoS Comput Biol. 2012; 8(12): e1002802.
PubMed Abstract | Publisher Full Text | Free Full Text

18.	 Kamali AH, Giannoulatou E, Chen TY, et al.: How to test bioinformatics
software? Biophys Rev. 2015; 7(3): 343–352.
PubMed Abstract | Publisher Full Text | Free Full Text

19.	 Artaza H, Hong NC, Corpas M, et al.: Top 10 metrics for life science software
good practices [version 1; referees: 2 approved]. F1000Res. 2016; 5:
pii: ELIXIR-2000.
PubMed Abstract | Publisher Full Text | Free Full Text

20.	 Wilson G, Bryan J, Cranston K, et al.: Good Enough Practices in Scientific
Computing. arXiv:1609.00037. 2016.
Reference Source

21.	 Wilson G, Aruliah DA, Brown CT, et al.: Best practices for scientific computing.
PLoS Biol. 2014; 12(1): e1001745.
PubMed Abstract | Publisher Full Text | Free Full Text

22.	 Schwaber K: Scrum development process. In Business Object Design and
Implementation. (eds. Sutherland, J., Casanave, C., Miller, J., Patel, P. & Hollowell, G.)
(Springer London). 1997; 117–134.
Publisher Full Text

23.	 Fielding RT, Taylor RN: Architectural styles and the design of network-based
software architectures. 2000.
Reference Source

24.	 Beck K: Test-driven development: by example. 2003.
Reference Source

25.	 Belmann P, Dröge J, Bremges A, et al.: Bioboxes: standardised containers for
interchangeable bioinformatics software. GigaScience. 2015; 4(1): 47.
PubMed Abstract | Publisher Full Text | Free Full Text

26.	 Boettiger C: An introduction to Docker for reproducible research. ACM SIGOPS
Operating Systems Review. 2015; 49(1): 71–79.
Publisher Full Text

27.	 Di Tommaso P, Palumbo E, Chatzou M, et al.: The impact of Docker containers
on the performance of genomic pipelines. PeerJ. 2015; 3: e1273.
PubMed Abstract | Publisher Full Text | Free Full Text

28.	 Fogel K: Producing open source software: How to run a successful free
software project. 2005.
Reference Source

Page 10 of 14

F1000Research 2017, 6:273 Last updated: 12 JUL 2017

http://www.ncbi.nlm.nih.gov/pubmed/20187952
http://dx.doi.org/10.1186/1479-5876-8-22
http://www.ncbi.nlm.nih.gov/pmc/articles/2837642
http://www.ncbi.nlm.nih.gov/pubmed/26555018
http://dx.doi.org/10.1093/jamia/ocv157
http://www.ncbi.nlm.nih.gov/pmc/articles/5009912
http://www.ncbi.nlm.nih.gov/pubmed/22311187
http://dx.doi.org/10.3414/ME11-01-0061
http://www.ncbi.nlm.nih.gov/pubmed/20195258
http://dx.doi.org/10.1038/nmeth.1436
http://www.ncbi.nlm.nih.gov/pubmed/23380847
http://dx.doi.org/10.1109/TBME.2013.2244886
http://www.ncbi.nlm.nih.gov/pubmed/22683918
http://dx.doi.org/10.1136/amiajnl-2012-001053
http://www.ncbi.nlm.nih.gov/pmc/articles/3534470
http://dx.doi.org/10.1109/CSEET.2009.44
http://dx.doi.org/10.1109/ICSE.2015.82
http://www.ncbi.nlm.nih.gov/pubmed/16734914
http://dx.doi.org/10.1186/1471-2105-7-273
http://www.ncbi.nlm.nih.gov/pmc/articles/1539031
http://www.ncbi.nlm.nih.gov/pubmed/23687031
http://dx.doi.org/10.1126/science.1231535
http://www.ncbi.nlm.nih.gov/pubmed/27195107
http://dx.doi.org/10.1186/s13742-016-0127-4
http://www.ncbi.nlm.nih.gov/pmc/articles/4870738
http://www.ncbi.nlm.nih.gov/pubmed/22807660
http://dx.doi.org/10.1371/journal.pcbi.1002554
http://www.ncbi.nlm.nih.gov/pmc/articles/3395592
http://www.ncbi.nlm.nih.gov/pubmed/15461798
http://dx.doi.org/10.1186/gb-2004-5-10-r80
http://www.ncbi.nlm.nih.gov/pmc/articles/545600
http://dx.doi.org/10.1145/1922649.1922658
http://www.ncbi.nlm.nih.gov/pubmed/25685331
http://dx.doi.org/10.1186/2047-217X-3-31
http://www.ncbi.nlm.nih.gov/pmc/articles/4326482
http://www.ncbi.nlm.nih.gov/pubmed/23236269
http://dx.doi.org/10.1371/journal.pcbi.1002802
http://www.ncbi.nlm.nih.gov/pmc/articles/3516539
http://www.ncbi.nlm.nih.gov/pubmed/28510230
http://dx.doi.org/10.1007/s12551-015-0177-3
http://www.ncbi.nlm.nih.gov/pmc/articles/5425734
http://www.ncbi.nlm.nih.gov/pubmed/27635232
http://dx.doi.org/10.12688/f1000research.9206.1
http://www.ncbi.nlm.nih.gov/pmc/articles/5007752
https://arxiv.org/pdf/1609.00037.pdf
http://www.ncbi.nlm.nih.gov/pubmed/24415924
http://dx.doi.org/10.1371/journal.pbio.1001745
http://www.ncbi.nlm.nih.gov/pmc/articles/3886731
http://dx.doi.org/10.1007/978-1-4471-0947-1_11
http://jpkc.fudan.edu.cn/picture/article/216/35/4b/22598d594e3d93239700ce79bce1/7ed3ec2a-03c2-49cb-8bf8-5a90ea42f523.pdf
https://books.google.co.in/books?id=CUlsAQAAQBAJ&lpg=PP1&pg=PP1#v=onepage&q&f=false
http://www.ncbi.nlm.nih.gov/pubmed/26473029
http://dx.doi.org/10.1186/s13742-015-0087-0
http://www.ncbi.nlm.nih.gov/pmc/articles/4607242
http://dx.doi.org/10.1145/2723872.2723882
http://www.ncbi.nlm.nih.gov/pubmed/26421241
http://dx.doi.org/10.7717/peerj.1273
http://www.ncbi.nlm.nih.gov/pmc/articles/4586803
http://www.immagic.com/eLibrary/ARCHIVES/GENERAL/OREILLY/O051019F.pdf
https://books.google.co.in/books?id=0drDRT370eoC&lpg=PP1&pg=PP1#v=onepage&q&f=false

1.

2.

3.

4.

5.

6.

Open Peer Review

 Current Referee Status:

Version 1

 05 April 2017Referee Report

doi:10.5256/f1000research.11591.r21000

 Victor Maojo
Biomedical Informatics Group, Artificial Intelligence Department, Universidad Politecnica de Madrid,
Madrid, Spain

This is a timely report, given the proliferation of all types of biomedical informatics applications (from
medical apps to laboratory or even complex clinical ones) delivered by software developers that do not
follow even simple criteria of solid software engineering. In fact, many of these applications are built to
carry out quite simple computational tasks (even, many times, quite successfully) but without a sound
rigorous computing basis, and then are prone to multiple subtle errors or they lack standardized
approaches and interoperability capacities. Besides the interest of the topic, the paper is well written, with
a solid analysis of the topic, useful recommendations and a selected reference section, which can be very
helpful to a broad range of readers, from public health informaticians to bioinformaticians. Below are some
comments.

Although the authors are usually careful with this issue, readers outside the field may have some
problems to understand the differences between medical informatics, bioinformatics,
computational biologists and biomedical informatics. Sometimes the words are used in an
interchangeable way in the paper, but this may lead to confusion. Some explanation might be
necessary.

When the authors refer to “focus on decision support, NLP, information retrieval and EHRs” they
mix techniques and a concrete system (EHR). They should explicit what technique they refer for
EHRs.

The authors begin to address, apparently, biomedical informatics (thus, including public health and
clinical topics) but they focus later in bioinformatics, which I believe it is the best target for the
paper. Differences are usually significant between clinical (for instance, EHRs, with many big
software companies dedicated to this field). Some example may be useful.

Besides the provided hyperlink, some reference should be added for the MedBioinformatics
project and a brief description.

The software engineering guidelines suggested are of interest, but some additional brief
comparison and similarities/differences with established methodologies (besides what is
presented for Test-driven) may provide additional insight.

As mentioned above, some brief, real example carried out by the authors may add some

Page 11 of 14

F1000Research 2017, 6:273 Last updated: 12 JUL 2017

http://dx.doi.org/10.5256/f1000research.11591.r21000

6.

7.

8.

As mentioned above, some brief, real example carried out by the authors may add some
information of interest, pointing out actual problems and possible approaches. In fact, the paper is
quite generic, but some specific case/application in the biomedical domain can be of interest.

Some differences may be pointed out when software developers work for an academic thesis or
project, compared to a software company? Some comment may be of interest, too. In fact, many
tools are quite simple, for a single task, and not intended for broader scenarios, where
interoperability is necessary. Some recommendations could differentiate both cases.

For this reviewer, the paper may require some more explanation about design and prerequisites
aspects, which are quite important, and some concrete example, but this is quite personal and the
decision should be up to the authors.

 I have worked, around a decade ago, with one of the authors (Jose Luis Oliveira).Competing Interests:

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

Author Response 07 Jul 2017
, Luis Bastiao Silva

Thank you for the positive assessment and helpful recommendations. We will answer point by
point for your comments:

1) We agree, this discussion is important. We have included in this revision two new references
where the explanation of the different fields is well addressed.

2) Done

3) Indeed, this is true and we tried to make it more clear along the article. Moreover, we included
new references that discuss this issue in detail.

4) Thank you for highlighting this. A brief introduction to the project is now provided.

5/6) Indeed, we agree with this remark. However, since these recommendations result from the
experience of several software projects, where many concrete use cases were explored, we also
feel that detailing those could be out of scope of the article.

7) Thank you for raising this, which is indeed a very important remark. We have now discussed this
in more detail in the introduction section.

8) We agree with your remark. The design and prerequisites aspects are briefly addressed in the
documentation process. We changed this section to highly better these issues.

 No competing interests were disclosed.Competing Interests:

 03 April 2017Referee Report

doi:10.5256/f1000research.11591.r21001

Page 12 of 14

F1000Research 2017, 6:273 Last updated: 12 JUL 2017

http://dx.doi.org/10.5256/f1000research.11591.r21001

doi:10.5256/f1000research.11591.r21001

 João P. G. L. M. Rodrigues
Department of Structural Biology, School of Medicine, Stanford University, Stanford, CA, USA

This review focuses on an important topic in modern bioinformatics: good practices for software
development. As the authors note, there is a growing body of data derived from experimental studies that
requires automated analysis. The analysis is often carried out using custom software, written by first-time
or inexperienced programmers, and results in unsupported, sub-optimal, or duplicated code. As the
authors also mention, several groups have tried to put forward a collection of tips and guidelines to help
researchers in developing ‘proper’ software. This review offers a similar set of guidelines, targeted
specifically at the field of biomedical informatics, and draws on the experience of the authors on building
their own tools.

The suggestions cover seven topics, from management to in-depth software development tips, and do a
very good job at explaining their importance and their take on what constitutes a good approach. The
authors also give very good examples of software tools to help readers setup a development
environment. These range from the usual ‘use GitHub’ to TravisCI, Sphinx, and Docker. One suggestion
would be to integrate some of these tools in Figure 1, to give readers a visual cue where these tools fit in
each topic/step. The authors also provide a very nice summarized view of the release process, namely
licensing and distribution (e.g. using Docker), and the follow-up maintainance.

There is one less positive aspect of this review, which is anyway transversal to most such attempts at
‘guidelines’ for bioinformatics software development. As the authors note, most of these tools are created
to solve one very specific problem, or process a very specific dataset. These are not amenable to
test-driven development, or to continuous integration. More importantly, most of the authors of these
tools/scripts are biologists, not programmers, which usually translates to a lack of interest in proper
programming etiquette. Thus, I believe that it is important to show and teach such users very very simple
programming rules, namely about how to make their code readable for others. For example, in the Python
world, a simple recommendation to use ‘flake8’ to check for PEP8 coding standards and an editor (e.g.
Atom, Sublime) that can do real-time code checks (typos, unused variables, indentation issues, etc).
There is no need to suggest quasi-professional IDEs, as these will likely scare users away!

All in all, as a biologist doing bioinformatics and doing his best to follow proper software guidelines, I find
reviews like this one very important to the field. They should probably feature in a ‘starting package’ to
new PhD students in many labs. As an added suggestion, the authors could think of putting these
guidelines in practice and follow up with a simple workshop/tutorial series, a la software carpentry, even if
in webinar format.

 No competing interests were disclosed.Competing Interests:

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

Author Response 07 Jul 2017
, Luis Bastiao Silva

Much obliged for your assessment and recommendations. We have redrawn Figure 1 following
your suggestion. Regarding the second point, we recognised the importance of the subject and
how recommendations vary according each developer/research profile and even programming

Page 13 of 14

F1000Research 2017, 6:273 Last updated: 12 JUL 2017

http://dx.doi.org/10.5256/f1000research.11591.r21001
http://orcid.org/0000-0001-9796-3193

your suggestion. Regarding the second point, we recognised the importance of the subject and
how recommendations vary according each developer/research profile and even programming
language. For beginners or sporadic developers, most of the recommendation may not apply.
However, this type of review creates the awareness of developing for the community, not just for
ourselves. Finally, regarding last comment, indeed, guidelines for a new comers is good idea. We
think this can be done at the institution level, since different methodologies may be used locally.

 No competing interests were disclosed.Competing Interests:

Page 14 of 14

F1000Research 2017, 6:273 Last updated: 12 JUL 2017

