
fphys-11-00090 February 19, 2020 Time: 15:9 # 1

ORIGINAL RESEARCH
published: 20 February 2020

doi: 10.3389/fphys.2020.00090

Edited by:
David Arthur Hart,

University of Calgary, Canada

Reviewed by:
Davy Laroche,

Centre Hospitalier Regional
Universitaire De Dijon, France

Monireh Ahmadi Bani,
University of Social Welfare

and Rehabilitation Sciences, Iran

*Correspondence:
Marianne Schmid Daners

marischm@ethz.ch

†These authors share senior
authorship

Specialty section:
This article was submitted to

Exercise Physiology,
a section of the journal
Frontiers in Physiology

Received: 02 November 2019
Accepted: 27 January 2020

Published: 20 February 2020

Citation:
Renggli D, Graf C, Tachatos N,

Singh N, Meboldt M, Taylor WR,
Stieglitz L and Schmid Daners M

(2020) Wearable Inertial Measurement
Units for Assessing Gait in Real-World

Environments. Front. Physiol. 11:90.
doi: 10.3389/fphys.2020.00090

Wearable Inertial Measurement Units
for Assessing Gait in Real-World
Environments
David Renggli1, Christina Graf1, Nikolaos Tachatos1, Navrag Singh2, Mirko Meboldt1,
William R. Taylor2, Lennart Stieglitz3† and Marianne Schmid Daners1*†

1 Product Development Group Zurich, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland,
2 Institute for Biomechanics, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland, 3 Department
of Neurosurgery, University Hospital Zurich, Zurich, Switzerland

Background: Walking patterns can provide important indications of a person’s health
status and be beneficial in the early diagnosis of individuals with a potential walking
disorder. For appropriate gait analysis, it is critical that natural functional walking
characteristics are captured, rather than those experienced in artificial or observed
settings. To better understand the extent to which setting influences gait patterns, and
particularly whether observation plays a varying role on subjects of different ages, the
current study investigates to what extent people walk differently in lab versus real-world
environments and whether age dependencies exist.

Methods: The walking patterns of 20 young and 20 elderly healthy subjects were
recorded with five wearable inertial measurement units (ZurichMOVE sensors) attached
to both ankles, both wrists and the chest. An automated detection process based
on dynamic time warping was developed to efficiently identify the relevant sequences.
From the ZurichMOVE recordings, 15 spatio-temporal gait parameters were extracted,
analyzed and compared between motion patterns captured in a controlled lab
environment (10 m walking test) and the non-controlled ecologically valid real-world
environment (72 h recording) in both groups.

Results: Several parameters (Cluster A) showed significant differences between the
two environments for both groups, including an increased outward foot rotation, step
width, number of steps per 180◦ turn, stance to swing ratio, and cycle time deviation in
the real-world. A number of parameters (Cluster B) showed only significant differences
between the two environments for elderly subjects, including a decreased gait velocity
(p = 0.0072), decreased cadence (p = 0.0051) and increased cycle time (p = 0.0051) in
real-world settings. Importantly, the real-world environment increased the differences in
several parameters between the young and elderly groups.

Conclusion: Elderly test subjects walked differently in controlled lab settings compared
to their real-world environments, which indicates the need to better understand
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natural walking patterns under ecologically valid conditions before clinically relevant
conclusions can be drawn on a subject’s functional status. Moreover, the greater inter-
group differences in real-world environments seem promising regarding the sensitive
identification of subjects with indications of a walking disorder.

Keywords: natural walking patterns, gait analysis, IMU sensors, ZurichMOVE, non-controlled settings, real-world
environment, walking disorder, hydrocephalus

INTRODUCTION

Important indications of a person’s health status can be
obtained through analysis of walking patterns (König et al.,
2014; Ravi et al., 2019). A variety of neurological disorders
show specific gait impairments such as dementia (Allan et al.,
2005; McArdle et al., 2019), normal pressure hydrocephalus
(NPH) (Stolze et al., 2000, 2001) or Parkinson’s disease (Stolze
et al., 2001; Del Din et al., 2016). The diagnosis of these
diseases is difficult, and misinterpretation is possible, especially
in NPH. Here, difficulties arise in distinguishing the disease
from other neurodegenerative diseases such as subcortical
arteriosclerotic encephalopathy, polyneuropathy, or spinal canal
stenosis (Bradley et al., 1991; Hebb and Cusimano, 2001; Relkin
et al., 2005). Early indications suggest that subtle characteristics
contained within a subject’s gait patterns are sufficient to
differentiate neurological pathologies at an early time point,
and could form a fundamental basis for aiding clinical decision
making (König et al., 2016a,b). With sufficient objectivity, such
information could therefore support the clinical diagnosis of e.g.,
NPH, where it is estimated that only one in ten cases is correctly
diagnosed and correctly treated (Jaraj et al., 2014). According
to literature, NPH exhibits specific gait characteristics such as
increased foot outward rotation, increased number of steps
needed for a 180◦ turnaround, increased cycle time deviation,
and impaired arm swing compared to asymptomatic controls
(Stolze et al., 2000, 2001; Relkin et al., 2005; Gallia et al., 2006;
Shrinivasan et al., 2011).

Medical examination of walking patterns is typically
performed in a hospital or doctor’s office environment by
visual inspection. If a disease is suspected, patients are sent
to specialized centers for further investigation. However, this
examination process shows three main deficits: (1) Examinations
in a doctor’s office are rather low in complexity and cover
only a small range of walking pattern characteristics. Subtle
characteristics within walking patterns are often not visible to
the naked eye, and can generally only be captured in specialized
centers. (2) Examinations in lab environments show temporal
and spatial restrictions. They cover a small time interval of the
subject’s performance in a predefined environment (flat floor,
no obstacles) as well as under a standardized inspection range.
(3) All examinations are performed in a strange environment
whilst being observed by a stranger (the doctor/investigator).
This is an unnatural situation for the test subject. Mental
pressure, an effort by the subject to perform well in the presence
of an investigator, and little or no acclimatization period to
the equipment and task are potential problems. Additionally,
the subject might get used to the procedure after several

task repetitions and then perform better during subsequent
repetitions. As a result, it is highly likely that people walk
differently in a controlled lab environment compared to a
non-controlled real-world setting. This circumstance would
hinder the extraction of a subject’s natural walking patterns and
may falsify observations which would lead to the false diagnosis
of particular diseases.

To address these issues, two main approaches have recently
matured for capturing a subject’s walking patterns objectively
and accurately in non-clinical settings: (1) Non-wearable systems,
such as camera-based optical motion capture, or ground
reaction force plates, and (2) wearable inertial measurement
unit (IMU) sensor systems (Muro-de-la-Herran et al., 2014).
The former requires considerable set-up time and equipment,
and is generally restricted to lab environments or specialized
centers. On the other hand, IMU sensors require less effort
to set up for data collection outside the lab, and studies
can be run without the need for direct observation of the
test subject, thus enabling various real-world investigations
to be undertaken (Yu et al., 2016; Figueiredo et al., 2018;
Wang and Adamczyk, 2019).

With correct application of such objective approaches,
it should therefore become possible to capture real-world
characteristics of natural walking patterns that are able to
inform clinical decision making through measurements in a non-
controlled environment. As a result, such novel technologies
could potentially support the early diagnosis of particular
diseases. To this aim, several researchers have reported significant
differences in gait parameters between controlled lab and
non-controlled real-world settings (Weiss et al., 2011; Robles-
García et al., 2015; Brodie et al., 2016; Del Din et al., 2016).
However, these studies are difficult to compare since they
all involve different parameters, test subjects and absolute
error values in the assessment methods used. Therefore, our
study aims to compare a broad spectrum of parameters using
a validated estimation process on both young and elderly
healthy subjects. We hypothesize that elderly subjects walk
differently in a controlled lab environment compared to non-
controlled real-world environments. Here, the young group
serves as a control cohort to assess both whether the chosen
IMU approach is sufficiently sensitive to detect differences
in gait patterns between lab and real-world environments,
but also whether any observed effect occurs across the entire
population or rather simply in elderly subjects. Differences
in walking patterns between the two environments would
indicate potentially unnatural walking characteristics under
lab conditions and can additionally emphasize differences
between the age groups.
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MATERIALS AND METHODS

Subject Groups
Twenty young subjects (10 female, 10 male, 24.9 ± 2.7 years)
and 20 elderly subjects (10 female, 10 male, 74.5 ± 8.6 years)
were included in this study (Table 1). Subject inclusion criteria
consisted of age (young: between 18 and 40 years, elderly:
between 65 and 100 years) as well as no visible symptoms of any
gait disorder, neurological disorder or cardiovascular disorder,
which might affect normal standing or walking. Furthermore,
female subjects during pregnancy or pre-menopausal state
were excluded. All subjects provided their written, informed
consent to participate in the study, which was approved by the
Cantonal Ethics Committee Zurich (BASEC-No. 2018-00051)
and Swissmedic (102597735).

Sensor Placement
Five wearable ZurichMOVE1 IMU sensors (Schneider et al.,
2018) were used for gait monitoring, with one attached to each
ankle, and each wrist, as well as the chest, using kinesiology tape
(Figure 1), to monitor axial acceleration a (t) and angular velocity
ω (t) for each segment. The global X-axis was defined as the
vertical axis, the global Y-axis as the anteroposterior axis and the
global Z-axis as the lateral axis. The chosen attachment sites and
taping method allowed the subjects to wear the sensors for several
days without removal and with full freedom of movement.

Tasks and Environment Under
Investigation
While wearing the IMU sensors, all test subjects performed a
calibration test for the step width estimation. They walked a
distance of five meters on two parallel lines, with a specified
spacing, repeating the procedure with a different line spacing
(see section Gait Parameters). To assess gait in the controlled lab
environment, subjects walked a marked distance of 10 m, four
times (180◦ turnaround in-between) at their preferred walking
speed. The test track in the lab was built on a flat floor with
marked lines fixed to the floor as guidance. Subsequently, the
sensors remained attached for 3 days to monitor the subjects’
walking patterns in their own real-world environment.

Data Processing
The ZurichMOVE sensors use radio frequency time
synchronization to prevent time-dependent drift between

1zurichmove.com

TABLE 1 | Subject characteristics (mean ± STD).

Young Elderly

Male n = 10 n = 10

Female n = 10 n = 10

Age (years) 24.9 ± 2.7 74.5 ± 8.6

Height (cm) 173.9 ± 9.5 171.4 ± 9.7

Weight (kg) 68.7 ± 13.4 70.7 ± 12.1

the individual sensors. The data were recorded at a frequency
of over 1000 Hz and resampled at 50 Hz. Additionally, the axial
acceleration values were low-pass filtered using a first-order
Butterworth filter with a cut-off frequency of 5 Hz, while
the angular velocity was filtered with a cut-off frequency of
12 Hz (settings adapted from Benoussaad et al., 2016). All data
processing and calculations were performed using MATLAB
(The MathWorks Inc., Natick, MA, United States).

Automated Detection of Relevant
Sequences
Out of the 3 days of recorded data, only sequences of walking, arm
swinging and body turning were used for our analysis. To identify
and extract these sequences efficiently, an automated detection
process was developed, as described in the following sections.

Walking
The monitoring of angular velocity in the z-direction of the foot
sensor ωfoot,z has been identified as a viable method to detect gait
events (Jasiewicz et al., 2006; Li et al., 2010), and was used in
this study. As a result, gait cycles were considered to consist of
a specific sequence of gait events (Figure 2A): (1) The gait cycle
started at the foot flat (FF) event, when the leg was in a vertical
position; (2) The start of swing phase started at the point when the
toe lost contact with the ground (Toe-off, TO); (3) The time point
when ωfoot,z was at its greatest was used to identify the maximum
angular velocity (MAX) event; (4) Heel strike (HS) was defined
as the point when the heel touched the ground, which terminated
the swing phase and started the stance phase; (5) A subsequent
FF event terminated the gait cycle.

The algorithm initially searched for local minima and maxima
in order to detect the gait events mentioned above using the
following restrictions: the time between two minima or maxima
had to be at least 0.7 s, a peak had to be more than 0.5 rad/s
larger in magnitude than the surrounding data, and the absolute
magnitude of all minima and maxima had to be greater than
0.5 rad/s. Minima and maxima were then assigned to the different
potential gait cycles. Sequences with unrealistic assignments
(e.g., more than 10 s time difference between the assigned
minima and maxima) were removed. These boundary conditions
were set empirically based on previously recorded test data
of normal walking.

At this stage, not all labeled movement patterns were
considered to be “true steps” (steps that were complete and
correctly met all criteria). To discard falsely classified steps, a
template matching approach based on dynamic time warping
(DTW) was applied, adapted from Li et al. (2012). Every potential
step was compared with a predefined template step. The DTW
procedure allows sequences of different magnitude and length to
be checked for their similarity by calculating the DTW distance
(see section “1. Dynamic time warping” in Supplementary
Material and Müller, 2007). If this distance was below a threshold
of 2.5, which was empirically set in our study based on our
previously recorded test data of normal walking (shown to work
reliably for straight walking, curvy walking as well as walking
with slight gradients; The applied algorithm is available at http:
//doi.org/10.5905/ethz-1007-243), the step was reported as a true
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FIGURE 1 | (A) ZurichMOVE sensor axis orientation for accelerometer and gyroscope as well as the three Euler Angles, together with positive turning direction, 2

around the x-axis, 8 around the y-axis and 9 around the z-axis. (B) ZurichMOVE sensor attachment on both ankles, both wrists and the chest including the axis
orientation. (C) Sensor attachment to the body using kinesiology tapes.

step and was included in the analysis (Figure 2A). Here, stairs
ascent and descent led to DTW distance values larger than
2.5 and were therefore discarded. Evaluation of other special
walking conditions was not performed since they did not occur
often and were therefore considered to have no major influence
on the averaged gait parameters over the 72 h time span of
the investigation.

Arm Swinging
The presence of arm swinging was checked for every true step
reported by the step detection algorithm. Similar to the step
detection algorithm, a DTW based matching approach (against
a predefined template arm swing) was applied to the angular
velocity signal in the z-direction of the wrist sensor ωarm,z . If the
DTW threshold was greater than 2.5, arm swinging was positively
identified and entered into the analysis (Figure 2B).

Turning
Sequences of turning were identified by local integration of
the angular velocity signal around the x-axis of the chest
sensor ωchest,x. A turning sequence 1θ(j) was summed as long
as no sign change of ωchest,x was detected (the subject was
turning in the same direction). If a sign change was observed
(the subject was turning in the opposite direction), 1θ(j) was
saved, and the integration process was reset such that a new
turning sequence 1(j+ 1) was initiated. However, not every
1θ(j) directly represented one complete turning event. Due
to interruptions while turning caused by e.g., step impacts, all
turning sequences, 1θ, belonging to the same turning event had
to be merged to obtain the full turning angle (Figure 2C), further
details are shown in the section “2. Merging process of several

turning sequences to full turning events” in Supplementary
Material. One of our estimated gait parameters was the number
of steps per 180◦ turn. To also compensate for errors during
integration and merging processes, all 1θ larger than 160◦ were
kept, and the number of steps during these turning events
normalized to the number of steps taken to 180◦.

Gait Parameters
Our set of relevant gait parameters mainly consisted of standard
spatial and temporal parameters commonly used in gait analysis
such as stride length, gait velocity or cadence (Roberts et al.,
2017). Since our gait analysis approach was motivated by the
aim to identify people with signs of a walking disorder, we
have included additional gait parameters that are indicative
of a specific neurodegenerative disease such as NPH. For
NPH patients, the following observations have been previously
reported: increased foot outward rotation, increased number
of steps needed for a 180◦ turnaround, increased cycle time
deviation, and impaired arm swing compared to asymptomatic
controls (Stolze et al., 2000, 2001; Relkin et al., 2005; Gallia
et al., 2006; Shrinivasan et al., 2011). As a result, 15 parameters
were used to capture the walking patterns of the subjects
in this investigation (Table 2). To avoid the accumulation
of errors due to the integration process, all parameters were
calculated independently for every gait cycle, i, and the start
position of integration was repetitively initialized to zero
(Hamacher et al., 2014).

Temporal parameters were directly calculated in the sensor
frame using the estimated gait events from the step detection.
All spatial parameters were assessed using accelerations in
the global (world) coordinate system as applied in similar
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FIGURE 2 | (A) Workflow of step detection based on a minima and maxima angular velocity search in the z-direction of the foot sensor followed by a dynamic time
warping (DTW) based template matching procedure. (B) For every reported step, the presence or not of arm swinging was checked using DTW template matching.
(C) The process of merging turning sequences 2(j), 2(j + 1) and 2(j + 2) belonging to the same turning event to get the full turning angle is illustrated. (D) Estimation
workflow of global acceleration A(t), velocity v(t), and position p(t) during one gait cycle [between two foot flat (FF) events] via double integration of IMU acceleration
data As(t). Rotation matrix RWS (t) then rotated the sensor position into global coordinates. Drift was linearly estimated and removed, including compensation for the
effect of gravity. Zero acceleration and velocity at FF events and ground-level walking were assumed. This Integration process was performed for each gait cycle
individually. BC, boundary conditions.
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TABLE 2 | Fifteen gait parameters were captured using the wearable ZurichMOVE IMU sensors.

Symbol Gait Parameter Unit Estimation Method

SL Stride length m Orientation estimation feet and double integration of afoot(t) during one gait cycle

FCmax Max foot clearance cm Orientation estimation feet and double integration of afoot(t) during one gait cycle

VGait Gait velocity m/s Orientation estimation feet and integration of afoot(t) during one gait cycle

2 Foot outward rotation ◦ Use the ratio of the traveled foot displacement dlateral and danteroposterior

SW Step width cm Check vertical tilting angle 8foot(t) at FF events and extra calibration

nStepsTurning Steps per 180◦ turn − Get turning sequences by local integration of ωchest,z(t) and detect steps in-between

Pstance Stance phase % of gait cycle Step detection algorithm based on ωfoot,z(t)

Pswing Swing phase % of gait cycle Step detection algorithm based on ωfoot,z(t)

PDL Double limb support phase % of gait cycle Step detection algorithm based on ωfoot,z(t)

RStanceToSwing Stance to swing ratio − Step detection algorithm based on ωfoot,z(t)

ncycle Cadence spm Step detection algorithm based on ωfoot,z(t)

Tcycle Cycle time s Step detection algorithm based on ωfoot,z(t)

dev{Tcycle} Cycle time deviation % Step detection algorithm based on ωfoot,z(t)

Aswing,arm Arm swing amplitude rad/s
√

ω2
arm,z (t)+ ω2

arm,y(t)

distarm Traveled arm distance m Orientation estimation arm and double integration of aarm(t) during one gait cycle

The estimation method of all parameters is briefly described in the last column.

successful approaches (Hamacher et al., 2014; Rampp et al., 2015;
Benoussaad et al., 2016; Hannink et al., 2017). As a result, the
sensor acceleration data as(t) had to be expressed in global
coordinates. This was achieved using a rotation matrix RWS(t)
that identified how the sensor frame was oriented with respect to
the global frame at every time instance, t. Orientation estimation
was applied individually for each gait cycle and combined
the acceleration and angular velocity measurements to obtain
the rotation matrices, RWS(t) [similar to gyroscope integration
(Hannink et al., 2017), described in section “3. Orientation
estimation” in Supplementary Material]. Additionally, the
effect of gravity was removed to obtain the global movement
component of acceleration a(t):

a (t) = (RWS(t) · as (t))+ [1, 0, 0]T (1)

To estimate the global position trajectory during the gait cycle
i, a (t) was integrated twice (trapezoidal integration) between
two FF events. In addition, the offset between foot and ankle
was neglected during application of the following boundary
conditions: the global acceleration a (tFF), velocity v (tFF) and
vertical position pX (tFF) at ground contact during the FF event
must be zero.

a
(
tFF,i

)
= a

(
tFF,i+1

)
= v

(
tFF,i

)
= v

(
tFF,i+1

)
= 0 &

pX
(
tFF,i

)
= pX

(
tFF,i+1

)
= 0 (2)

In order to ensure the constraint a
(
tFF,i

)
= a

(
tFF,i+1

)
= 0, a

drift estimation and removal (termed dedrifting) with a piecewise
linear function as explained by Rampp et al. (2015) was applied to
a(t) before the integration process. Due to inaccurate orientation
estimation, sensor drift, and integration errors, the integrated
signal v (t) does not necessarily satisfy the constraint v

(
tFF,i

)
=

v
(
tFF,i+1

)
= 0. Therefore, v (t) was dedrifted using the approach

of Benoussaad et al. (2016):

vdedrifted (t) = v (t)− v(tFF,i+1)
tFF,i+1−tFF,i

· t (3)

where t is the time, tFF,i+1 − tFF,i is the entire duration of the
current gait cycle, and v(tFF,i+1) is the calculated velocity at the
end of the current gait cycle. After the second integration, pX(t)
was dedrifted to fulfill the constraint pX

(
tFF,i

)
= pX

(
tFF,i+1

)
=

0. The complete global position, p (t), estimation process is
summarized in Figure 2D. All spatial feet parameters were
estimated using p (t), except for step width, which required
an additional calibration procedure due to the missing relative
spatial relation between the IMU sensors. As an approximation, a
linear reference line was defined to match sensor tilting angles at
FF events 8(tFF) to the width d between the heels:

d = w ·8 (tFF)+ c (4)

To define such a line, a calibration measurement was set up where
the test subject walked on two lines with a known line spacing
d, and the tilting angle 8(tFF) of the sensors was evaluated for
this walking sequence (Figure 3). The procedure was performed
twice with different line spacings, dtight (individual to subject),
and dbroad (predefined upper limit of 35 cm). The two resulting
calibration pairs dtight, 8tight and dbroad, 8broad determined the
parameters w and c of the reference line. To avoid unnatural gait
patterns during these calibration trials, dtight was not predefined
but was rather found by visual inspection of the subject’s gait
during a test walk of 5 m length. Furthermore, dbroad was
visually corrected if the subject did not hold the default line
spacing of 35 cm. The calibration was performed for every subject
due to differences in anatomy and sensor alignment. After the
calibration process, the step width (SW) was evaluated using the
reference line:

SW = w ·8 (tFF)+ c (5)

Finally, the global coordinates p (t) of the wrist sensors were
calculated by applying a workflow similar to that applied
using the foot sensors (see Figure 2D), but without boundary
conditions. The relative traveled arm distance was calculated
in both the lateral (z) and anteroposterior (y) directions
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using the approach presented by Lewek et al. (2010). Details
about the estimation of each parameter can be found in
the section “4. Estimation of the 15 gait parameters” in
Supplementary Material.

Validation Experiment
We compared and verified our developed gait parameter
estimation method against measurements using an opto-
electronic motion capture system (Vicon motion analysis system,
Oxford Metrics Group, United Kingdom) using 10 cameras to
capture the movement trajectories of 61 markers attached to the
body (see section “5. Validation measurement with Vicon” in
Supplementary Material). For validation, three subjects with a
total of 60 gait cycles were assessed. Here, each subject walked
around a predefined test track in the shape of an eight around two
cones (König et al., 2014) at their own preferred walking speed
(normal walking conditions) while wearing the 61 markers as well
as the five ZurichMOVE sensors. The two systems were time-
synchronized and gait parameters were estimated independently
for both systems.

The validation experiment revealed an accuracy of between 1%
and 6% for most parameters, which was only slightly worse than
attaching ZurichMOVE sensors directly to the foot (Mohammadi
et al., 2017). Measured parameters with larger error values were
checked using additional walking conditions (short, long, and
broad walking). On completion of these verification activities,
it became clear that all parameters and the corresponding error
behavior could be described using a constant offset throughout
the different conditions [SW: 39.3±5.7 cm (IMU), 31.6±4.7 cm
(Vicon), 7.2±4.0 cm (abs diff) during broad walking; TDL:
{0.29±0.08 s, 0.25±0.06 s} (IMU), {0.18±0.05 s, 0.14±0.03 s}
(Vicon), {0.11±0.05 s, 0.10±0.03 s} (abs diff) during {short,
long} step walking]. The reason for the constant offset of 1–
2 steps in nStepsTurning between IMU estimation and visual
inspection was differences in start and stop time definition of
turning events: IMU estimation considered trunk rotation while
visual inspection was focused on the feet only. As a result, all
parameters developed were considered suitably verified to be
used for relative comparisons between different test subjects
and/or environments (Table 3).

Statistical Analyses
Each gait parameter was determined as the average of the left
and right foot median values. For the evaluated gait parameters
in the real-world environment, the following outlier removal
was applied before the median calculation: (1) Walking phases
were only considered if seven or more steps were performed
in a row. (2) Times of special activities (e.g., sports) were
reported by the test subjects in a protocol and removed from the
analysis. (3) Values that deviated more than three times from
the median value were discarded. Differences between the two
environments and groups were evaluated as absolute difference
(abs diff), calculated as ParameterReal−world − ParameterLab,
while mean relative difference (mean rel diff) was
calculated as the mean of the relative differences
(ParameterReal−world−ParameterLab)/( ParameterReal−world). All
analyses were performed using MATLAB (The MathWorks Inc.,

FIGURE 3 | Principle of step width (SW) calibration procedure. The subject
walked on two parallel lines, spaced by dtight or dbroad , for which the tilting
angles 8tight and 8broad were evaluated. These four values were used to
define a linear reference line for the SW estimation where the 8 values were
matched to d values between the feet.

Natick, MA, United States). The resulting median values of each
subject were then compared between the different environments,
and tested for significance using the Wilcoxon signed-rank
test, while differences between the two test groups (young and
elderly) were examined using the Mann–Whitney U-Test. To
ensure symmetrical data distribution (assumption of Wilcoxon
signed-rank test), parameters with a skewed distribution were
log transformed before p-value calculation. Since our hypotheses
include several parameters, resulting p-values were corrected for
false discovery by applying the Benjamini-Hochberg correction.
All statistical tests were performed in R (R Core Team, 2017,
Vienna, Austria), with p-values smaller than 0.05 considered to
be statistically significant.

RESULTS

Non-controlled Real-World Versus
Controlled Lab Environment
Based on the results (Table 4 and Figure 4), the parameters were
divided into three clusters: (A) Significant differences between
the two environments for both groups; (B) Significant differences
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TABLE 3 | Results of the validation experiment during normal walking.

Parameter* Values Absolute Error Relative Error

IMU Vicon Mean ± STD Mean ± STD

SL (m) 1.37 ± 0.14 1.33 ± 0.14 0.02 ± 0.03 1.6 ± 2.1%

FCmax (cm) 11.7 ± 1.2 12.4 ± 1.7 −0.7 ± 1.4 −5.6 ± 11.2%

VGait (m/s) 1.17 ± 0.22 1.19 ± 0.24 −0.01 ± 0.02 −0.8 ± 1.6%

2 (◦) 9.3 ± 2.6 9.5 ± 2.8 −0.2 ± 3.3 −1.9 ± 34.9%

SW (cm) 16.5 ± 4.7 7.6 ± 2.7 9.1 ± 4.4 118.4 ± 57.8%

nStepsTurning** (−) 7.2 ± 2.6 5.5 ± 3.0 1.7 ± 0.6 30.9 ± 10.9%

Tstance*** (s) 0.69 ± 0.10 0.72 ± 0.09 −0.02 ± 0.03 −2.9 ± 4.5%

Tswing*** (s) 0.46 ± 0.04 0.44 ± 0.03 0.02 ± 0.04 4.4 ± 8.5%

TDL*** (s) 0.24 ± 0.10 0.16 ± 0.04 0.09 ± 0.07 56.5 ± 43.3%

ncycle (spm) 105.3 ± 9.9 105.5 ± 8.6 −0.9 ± 4.5 −0.9 ± 4.3%

Tcycle (s) 1.15 ± 0.12 1.16 ± 0.11 0.00 ± 0.03 −0.1 ± 2.9%

distarm (m) 0.66 ± 0.19 0.67 ± 0.22 −0.01 ± 0.11 −0.8 ± 16.8%

The IMU sensors and Vicon markers were all attached to the body and the gait parameters were calculated independently with both systems. The absolute error± standard
deviation (STD) is presented as the difference between IMU and Vicon. Abbreviations are listed in Table 2. *RStanceToSwing, dev{Tcycle} and Aswing,arm need no validation,
directly calculated from validated parameters/sensor readings. **Visual inspection as reference. ***Period T is validated instead of P =T/Tcycle (% of gait cycle).

between the two environments for the elderly subjects only; (C)
Remaining differences.

Cluster A: Significant Differences Between the Two
Environments for Both Groups
In the real-world settings, both groups showed a significantly
increased foot outward rotation [young: 19% (p= 0.0122); elderly:
16% (p = 0.0025)], a step width increase [young: 32% (p = 0.0001);
elderly: 24% (p = 0.0049)], an increased number of steps per 180◦
turn [young: 14% (p = 0.0145); elderly: 15% (p = 0.0019)] for
elderly subjects, an increased cycle time deviation [young: 51%
(p = 0.0007); elderly: 58% (p < 0.0001)] and an increased stance
to swing ratio [young: 3% (p = 0.0237); elderly: 2% (p = 0.0429)].

Cluster B: Significant Differences Between the Two
Environments for Elderly Group Only
Several parameters showed a larger difference between the two
environments for elderly subjects than for the young. For the
elderly, we observed a 12% decrease in gait velocity (p = 0.0072),
a 5% increase in cycle time (p = 0.0051) and a 6% decrease
in cadence (p = 0.0051) in the real-world compared with
the lab environment. For the young subjects, these differences
were minor and non-significant with values of −2, −1, and
±0%, respectively.

Cluster C: Remaining Differences
The double limb support phase showed significant differences
between the two environments for young subjects [7%
(p = 0.0237)] in real-world settings while the increase for
elderly subjects was not statistically significant (5%). Although
not significant in both groups, similarity to the parameters of
Cluster A is present. Furthermore, non-significant differences
between the two environments were an increased traveled arm
distance (young: 6%; elderly: 4%) as well as a decreased stride
length (young: −1%; elderly: −6%) in real-world settings. The
p-values of the stride length are much smaller in elderly subjects

compared with the young which indicates a potential link to
Cluster B. The arm swing amplitude was the only parameter
that was considerably increased in young subjects (7%) in the
real-world environment compared to a decrease in elderly
subjects (−1%). Foot clearance, stance phase, and swing phase
did not show relevant differences between the two environments
for either group (smaller than 1.5%).

Young Versus Elderly Test Subjects
Overall, the non-controlled real-world environment enlarged
the inter-group differences. In both environments, young test
subjects took significantly longer strides (p = 0.0047 real-
world, p = 0.0063 lab) and walked faster (p = 0.0001 in real-
world, p = 0.0063 in lab environment) than elderly subjects. In
real-world settings, young subjects also took significantly less
steps per 180◦ turn (p = 0.0024), walked with higher cadence
(p = 0.0120), and showed an increased cycle time (p = 0.0110)
compared with elderly subjects. The remaining parameters did
not show significant differences between the two test groups in
either environment.

DISCUSSION

The current study compared the walking patterns of young
and elderly subjects in a controlled lab environment against
those captured in a non-controlled real-world environment
over 72 h. Significant differences were present between the
two environments for both groups, including increased foot
outward rotation, step width, number of steps per 180◦ turn,
stance to swing ratio, and cycle time deviation in real-world
settings. Although only significant in young subjects, both
groups also exhibited an increased double limb support phase in
real-world environments. Furthermore, we observed significant
differences between the two environments only in the elderly
subjects, including decreased gait velocity, decreased cadence,
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FIGURE 4 | Comparison between gait parameters collected in lab (10-m walking test) versus real-world (72 h investigation) environments for young and elderly
subjects (n = 20 each). The boxplots indicate the absolute differences between the two environments (ParameterReal−world - ParameterLab) for both groups. The
median value is illustrated as a line, the mean value as a cross and outliers as dots. The line indicating zero difference between the two settings is depicted in bold.
Abbreviations are listed in Table 2.

and increased cycle time in real-world settings. In general, the
young subjects showed only minor differences in their walking
patterns between the two environments. Additionally, the gait
parameters were compared between the two test groups for both
environments, where the non-controlled real-world environment
enlarged the inter-group differences.

The significant differences in several gait parameters between
the two environments confirm our hypothesis that people walk
differently in a controlled lab environment. The differences in

walking patterns between the two environments were minor
for young test subjects compared to the elderly, suggesting that
elderly subjects tend to be more influenced in their walking
patterns by their environment (Del Din et al., 2016) as well as
the possible surveillance of an independent audience (Robles-
García et al., 2015; Brodie et al., 2016). This observation may
indicate that elderly subjects in particular tend to perform better
in a controlled lab environment because they try not to stand
out negatively during a test or survey (Del Din et al., 2016).
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The observed differences in Cluster B match several results of
other studies. Brodie et al. (2016) observed a trend toward lower
cadence in real-world environments for elderly people, while Del
Din et al. (2016) reported a decreased stride length, decreased
gait velocity, and increased cycle time for elderly subjects and
subjects suffering from Parkinson’s disease in real-world settings.
Furthermore, an increased cycle time deviation in real-world
environments has been reported for elderly people (Brodie et al.,
2016; Del Din et al., 2016) as well as an increased variability in
cadence (Weiss et al., 2011). For Cluster A, no reports about
similar behavior between the two environments were found in
the literature, possibly reflective the bias toward reporting only
positive results.

We see two main reasons for the observed differences: a
mental and a physical influence of the environment. The mental
status of the subject is known to influence walking behavior
(Prohaska et al., 2009), while the physical influence is given by
the various path characteristics, such as surface type, length and
type of walking distance (e.g., straight/curved). For Cluster A, it
is plausible that the physical influence of the environment plays
a dominant role, since similar differences in gait parameters were
present in both test groups. Perfect straight walking is possible
within a controlled lab environment, but such conditions can
rarely be assumed in ecologically valid real-world settings. It is
likely that the differences observed in Cluster B were driven by the
mental influence of the environment, as differences between the
two environments were observed only in the elderly population.
It is clear that the differences observed in Cluster B necessitate
an improved understanding of natural walking patterns under
ecologically valid conditions, including the role they play in
clinical decision making.

Several parameters showed larger differences between
young and elderly subjects for the non-controlled real-world
environment. If this effect is also present in people with
indications of a walking disorder, the enlarged separation
between groups would be beneficial for diagnostic processes.
Del Din et al. (2016) have already reported enlarged inter-
group differences between elderly healthy controls and subjects
suffering from Parkinson’s disease in real-world settings.
However, further studies including people with various
indications of walking disorder are needed to investigate
this topic.

To ensure exact sensor positioning throughout the entire
recordings, the subjects did not remove the sensors at any time.
To allow wearing the sensors without removal and guarantee full
freedom of movement, the sensors were attached to the ankles
instead of the feet. Although the accuracy of gait parameter
estimation of ankle mounted sensors is lower than of foot
mounted sensors (mainly due to the lack of a stationary instant
during the gait cycle) several researchers have investigated
ankle mounted gait analysis and confirmed its validity for gait
parameter estimation. Jasiewicz et al. (2006) estimated HS and
TO events similar to our approach and reported high levels of
accuracy for normal gait, but showed inaccuracies for abnormal
gait e.g., using walking aids. Li et al. (2010) used an ankle
mounted IMU sensor to estimate the gait velocity, Benoussaad
et al. (2016) estimated the foot clearance and Sijobert et al. (2015)

estimated stride length, all of them with comparable accuracy to
our approach. Our findings regarding the comparison of walking
patterns of young and elderly subjects agree with several reports
from literature. For young subjects, an increased stride length and
gait velocity (Whittle, 1991; Öberg et al., 1993; Prince et al., 1997;
Menz et al., 2004; Janeh et al., 2018), an increased heel clearance
in young subjects (Mariani et al., 2010), less time for double limb
support phase (Aminian et al., 2002; Janeh et al., 2018), and more
steps taken for turning in elderly subjects (Thigpen et al., 2000;
Akram et al., 2010) have all been reported and are in agreement
with the results of our study. Consequently, we are confident not
only that our metrics determined in ecologically valid settings are
reliable, but also that the comparison against lab-based settings
has revealed valid differences between the settings. As a result,
clinicians should be aware of the reported changes in movement
patterns, especially in cases where gait metrics play a role in
the diagnosis of a patient’s functional status e.g., fall risk, or
when therapies require tuning to optimize muscle function and
coordination e.g., deep brain stimulation.

One limitation during the assessment of the subjects’ walking
patterns was the range of considered gait parameters. The current
study mainly focused on gait parameters that capture the gait
rhythm and pace of a subject. To extend the captured walking
pattern range, asymmetry or variability could be included or
investigated in parameters other than only cycle time (König
et al., 2014; Del Din et al., 2016; McArdle et al., 2019).
Additionally, variability in real-world environments could be
captured in more detail by individual evaluation and averaging of
every walking sequence, as proposed by Del Din et al. (2016). On
the estimation side, the following deficiencies were present in our
study: (1) The parameters with relative error values larger than
6% (SW, TDL and nStepsTurning) have to be used with caution. (2)
Our approach needs a calibration procedure for the step width
estimation for every subject, which may be a potential source of
error. (3) Although our predefined line spacing during step width
measurement calibration only acted as guidance, some subjects
still focused too much on them, which may have falsified their
natural walking pattern. This might be a potential reason for the
large error in the step width estimation. (4) The foot outward
rotation estimation was prone to sensor misalignment. Therefore,
the sensors need to be attached to the body precisely, with their
position maintained throughout the measurement period. (5) To
avoid bias of the findings, we did not observe subjects in the real-
world environment as we hypothesized that such observations
may influence the gait patterns. However, potential differences
in daily activities between the subjects remain unknown and
the ability to extrapolate results beyond the examined metrics
is therefore limited. In order to minimize this influence, we
recorded activity over an extended 3 days period, but also ensured
that the subjects filled in an activity protocol so that we were
able to ignore all non-continuous walking sequences (less than
seven steps in a row). (6) Our step detection approach did not
differentiate between normal walking and slope ascent/descent
walking. While such gait patterns could influence the event
recognition, we expected most steps to be performed under
conditions with negligible slope effects, with any exclusion of
such steps serving to present conservative results. Finally, besides
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the considered influence of the environment on the walking
pattern, further factors may exist, such as the influence of the
attached sensors on the movement or a potential feeling of being
surveyed by the sensors. Despite these limitations, we could show
that people walk differently in a controlled lab environment,
which should be considered during future examinations on gait
characteristics regarding natural walking pattern extraction.

CONCLUSION

We conclude that especially elderly subjects walked differently
in controlled lab settings compared to their real-world
environments. Elderly subjects tend to walk faster and take less
time per step (increased cadence and decreased cycle time) in
the controlled lab environment, whereas for young people, these
differences were minor. The findings indicate the need to better
understand natural walking patterns under ecologically valid
conditions before clinically relevant conclusions can be drawn
on a subject’s functional status. Moreover, the greater inter-
group differences in real-world environments seem promising
regarding the identification of subjects with indications of a
walking disorder.
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