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ABSTRACT

Short linear motifs (SLiMs) in proteins are self-
sufficient functional sequences that specify inter-
action sites for other molecules and thus mediate
a multitude of functions. Computational, as well as
experimental biological research would significantly
benefit, if SLiMs in proteins could be correctly pre-
dicted de novo with high sensitivity. However, de
novo SLiM prediction is a difficult computational
task. When considering recall and precision, the per-
formances of published methods indicate remain-
ing challenges in SLiM discovery. We have devel-
oped HH-MOTiF, a web-based method for SLiM dis-
covery in sets of mainly unrelated proteins. HH-
MOTiF makes use of evolutionary information by
creating Hidden Markov Models (HMMs) for each
input sequence and its closely related orthologs.
HMMs are compared against each other to retrieve
short stretches of homology that represent potential
SLiMs. These are transformed to hierarchical struc-
tures, which we refer to as motif trees, for further
processing and evaluation. Our approach allows us
to identify degenerate SLiMs, while still maintaining a
reasonably high precision. When considering a bal-
anced measure for recall and precision, HH-MOTiF
performs better on test data compared to other SLiM
discovery methods. HH-MOTiF is freely available as
a web-server at http://hh-motif.biochem.mpg.de.

INTRODUCTION

Short linear motifs (SLiMs) are small, context-
independent, functional motifs of three to ∼20 amino
acids within proteins that are sufficient to fulfill certain
functions. Their best characterized activities include:
binding to other (macro-)molecules such as nucleic acids,
proteins, lipids or other small chemicals; serving as spots

for protein modifications; encoding cleavage signals or
being required for proper protein localization (1,2). Both,
computational, as well as wet lab biological research
would considerably profit, if we could reliably predict
all relevant SLiMs in proteins de novo. Bench scientists
typically want to know SLiMs in a small set of proteins
for further experimental testing, addressing questions like
protein localization, modification, or interaction with
(macro-)molecules. In computational biology, especially
in the research field of network biology, comprehensive
knowledge of functional SLiMs would for instance allow
us to better understand and represent dynamical processes
in protein interaction networks by identifying mutually
exclusive binding partners of hub proteins. However, de
novo SLiM prediction is computationally difficult, due to
their shortness and their typically very poor conservation
(3). The fact that short, recurrent sequence motifs may
play a role in the structural maintenance and stability of
structurally unrelated proteins (4) is an additional difficulty.
It necessitates the discrimination between short sequence
stretches that are relevant for a particular function (such as
binding to another molecule) and those that are needed to
maintain the overall fold of a protein. As a consequence,
one has to anticipate a high number of false positive
predictions when searching for SLiMs de novo.

A SLiM is not perfectly conserved between proteins
but rather represents the set of its evolutionary possible,
still functional variants. Consequently, simplified models
to characterize motifs exist. The regular expression (regex)
is the simplest form of representing and working with se-
quence motifs. However, a regex represents only highly con-
served positions well and is not able to capture positions
with a low, but still significant conservation. Profile-based
approaches such as weighted regexes (5) or Hidden Markov
Models (HMMs, (6)) overcome these limitations and have
more recently been used in de novo SLiM prediction (7–10).

Several methods have been published that offer de
novo prediction of SLiMs using either regexes or profile-
based methods. Regex-based tools include DILIMOT (11),
SLiMFinder (12) or MotifHound (8). The popular MEME
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suite (13), which includes MEME and GLAM2 (14) for
SLiM discovery, uses position weight matrices and Gibbs
sampling, respectively. Several algorithms based on HMMs
were also reported (NestedMICA (7), whmm (10) and
dhmm (9)). However, the latter three all lack web-server ac-
cess and are more difficult to use for bench scientists. More
recently, de Brujin graphs were tested for SLiM discovery in
proteins (15).

De novo SLiM search methods can also be classified
as either non-discriminative, which only require a set of
putative SLiM-containing proteins as input (these include
SLiMFinder, MEME, DILIMOT and whmm); or discrim-
inative, which in addition require a negative dataset of pro-
teins that do not contain the putative SLiM. Therefore, ad-
ditional biological knowledge is necessary for these meth-
ods in order to define a negative dataset for the sought-after
SLiM. However, this knowledge does not always exist. Mo-
tifHound and dhmm are examples of discriminative de novo
SLiM predictors. Several papers and reviews provide a com-
prehensive overview on SLiM discovery methods, as well as
the inherent problems in finding novel SLiMs (8,16,17).

As SLiM discovery is computationally a difficult prob-
lem, none of the de novo SLiM search methods reported to
date are able to discover SLiMs in proteins with reasonably
good recall and precision. In fact, in de novo SLiM predic-
tion, one has to typically trade off one for the other, reach-
ing either high recall (e.g. GLAM2 with default settings) or
high precision (e.g. SLiMFinder with default settings). It is
therefore evident that finding novel SLiMs in proteins re-
mains an important computational challenge.

We have developed HH-MOTiF (for HH-MOtif-Tree-
Finder), a web-server for finding novel SLiMs in sets of
mainly unrelated proteins. HH-MOTiF makes use of evolu-
tionary information by creating HMMs for each input se-
quence and its orthologs. We then combine HMM–HMM
(HH–) comparisons using a customized version of HH-
suite (18) with a hierarchical motif representation, which
we refer to as motif trees. We evaluate identified motif
trees prior to assembly at several levels including its sur-
face accessibility and apply a novel algorithm for correct-
ing for conserved domains or larger homologous regions in
SLiM detection. HMMs are restricted to closely related or-
thologs, ensuring the presence of the relevant SLiM in the
HMM. HH-MOTiF works non-discriminatively, thus the
only input required is a set of––ideally unrelated––protein
sequences that should share one functional feature charac-
terized by a common, sought-after SLiM. The web-server
version of HH-MOTiF was designed for datasets >50 pro-
teins, coming for instance from wet-lab studies on protein
interaction or localization.

The HH-MOTiF workflow

The workflow of HH-MOTiF is summarized in Figure 1 A.
The input of an HH-MOTiF search is a set of FASTA

formatted protein sequences. For each sequence, close or-
thologs are first searched; then a multiple sequence align-
ment and the HMM of selected orthologs is computed. All
HMMs are compared against each other with an adapted
version of HH-suite. As high-scoring alignments reflect
overall homology between input sequences, only short

alignment hits are further evaluated. Overlapping align-
ment hits are integrated using a model to which we refer
as motif trees (Figure 1 B). These are evaluated and if se-
lected, they are used for further regex-based motif definition
and evaluation. Finally, SLiMs that pass all quality criteria
are reported to the user. Details of individual steps are as
follows.

Selection of closely related orthologs. As SLiMs can either
be lost, gained or move along the sequence in evolution,
we decided to only include closely related orthologs to the
queries for building HMMs. BLAST searches (19) against
the NCBI non-redundant (nr-) protein database are carried
out to identify close homologs of each input sequence that
fulfill the following criteria: e-value ≤ 1e–10; identity ≥ 70%
and ≤ 95%; coverage ≥ 90%. These settings exclude too sim-
ilar, as well as too distant orthology candidates. For candi-
dates fulfilling these criteria, reciprocal BLASTs are used to
verify orthology relationships; we consider all isoforms of
the query for verification of orthologs. In advanced mode,
users can provide their own lists of orthologs for further
processing.

Residue masking. As motifs are expected to be on a pro-
tein’s surface, only surface residues are considered for mo-
tif prediction. Surface accessibility is computed using Net-
SurfP (20). Residues with a relative solvent accessibility
(RSA) of at least 0.16 are considered exposed (21); all other
residues are masked. To allow motif discovery in buried re-
gions, residue masking is optional and can be switched off
in advanced mode. Alternatively, users can activate disor-
der masking using IUPred (22) with the option ‘short’, as
many types of SLiMs are located predominantly in disor-
dered regions (23). As in SLiMFinder, which uses IUPred
for disorder masking, residues below the threshold of 0.20
are considered ordered. Users can furthermore specify their
own regions of interest by provide a masking file, which is
merged with surface accessibility and/or disorder masking,
if the checkboxes of the latter are activated. If both check-
boxes are deactivated and no file is provided, motif predic-
tion proceeds with unmasked sequences.

Hidden Markov Model creation and comparison. At the
core of HH-MOTiF is the comparison of Hidden Markov
Models realized with the HH-suite. First, a multiple se-
quence alignment (MSA) is constructed for each input se-
quence and its selected orthologs using MAFFT (24); then
a HMM for each query is created using hhmake. An all-
against-all, pairwise HH-comparison is carried out using
hhalign from the HH-suite. Reporting multiple, also sub-
optimal hits is allowed by using the ‘-smin 0 –alt 100′ op-
tion in hhalign. Furthermore, the ‘-template excl’ option
was added to hhalign to permit exclusion of masked residues
in both HMMs of a pair. For each HMM pair, the four best
hits with a Viterbi score ≥11.0 and ≤40.0 and number of
columns ≥ 3 and ≤30 are retained for further evaluation.
These hits are used to create the motif trees in the next step
(Figure 1B). Longer alignment hits and those with a Viterbi
score >40.0 are considered to reflect sequence homology
and are therefore not relevant for SLiM detection.
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Figure 1. (A) Workflow of HH-MOTiF. Starting from a set of input queries, HH-MOTiF first searches for closely related orthologs, builds HMMs and
performs an all against all, short linear motif-adapted HH-comparison. Identified motif trees are further evaluated and trimmed prior to reporting (for
details, see main text). (B) Motif tree assembly from HMM–HMM alignments. Overlapping alignment hits (red-shaded boxes) are joined into hierarchical
motif trees. Each tree has a root (overlapping part of black-framed boxes) and leaves (corresponding aligned parts of light gray-framed boxes). Motif leaves
are independent. Alignment hits that fail to show a sufficiently strong overlap (non-framed boxes) are ignored. (C) Motif tree evaluation. Shown is the
iterative process of motif tree evaluation and trimming based on an example of a motif tree with initial 6 leaves in different proteins, assuming Nmin = 3.
The score of each position in the whole tree is derived from the alignment sign in hhalign (‘+’,’|’ 2 points; ‘.’ 1 point; ‘-‘,’ = ’, or gap 0 points). The score at a
given position in a leaf cannot be higher than the respective overall position score in the whole tree. Leaves with a score <6 are removed, after which each
position is re-evaluated for Nmin, and if necessary, removed from the motif tree. In the given example, discarding leaf 5 leads to removal of one position and
re-assignment of the score for another position in the motif. Consequently, leaf 1 does not fulfill the minimal score requirements and is eliminated from
the motif tree. The motif is trimmed to the last conserved position at each of its borders.
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Motif tree assembly and evaluation. After all-against-all,
pairwise HH-comparisons, we first define so-called motif
trees (Figure 1B) as follows: each HH-pair has a maximum
set of four retained alignment hits from hhalign. If multi-
ple alignment hits overlap by at least three residues, they
are joined in a so-called motif root. Each motif root has a
set of motif leaves, which are its alignment hits with other
HMMs. Together the motif root and its leaves form a motif
tree, which is a simplified representation of the underlying
putative sequence motif. There can be multiple leaves in the
same protein; in this case, the one with the higher score is
used for further motif evaluation. To be considered further,
a motif tree must be present in a minimum number (Nmin)
of HMMs (Figure 1B). Nmin is computed on the basis of
the dataset size using a dynamically estimated false positive
rate (FPR) on negative data that lack a common motif: Nmin
is chosen such that the FPR is <1% for each set size (for
details, see Supplementary Data and Supplementary Table
S1). This low FPR is consistent with the >99% specificity
that HH-MOTiF demonstrates on ELM data. However, a
motif occupies only a small fraction of a protein’s sequence.
Therefore, owing to the false positive paradox (25), a high
specificity in this case does not ensure an equally high pre-
cision.

Motif definition and evaluation. In the next step, positions
with significant conservation in the motif tree are identified
and evaluated. First, a score for each position in the motif
tree must be calculated. We derive this position score from
the conservation signs in the hhalign output between the
motif root and its leaves: motif tree positions with at least
Nmin – 1 alignment hits of high conservation (indicated by ‘|’
or ‘+’) score two points; whereas those, where this require-
ment is fulfilled by also considering moderate conservation
(indicated by ‘.’) score 1 point. 0 points are given, when less
than Nmin – 1 alignment hits in a position are conserved. The
motif is trimmed to the borders defined by the first and last
conserved position. The position scores are used for evalu-
ating both, motif leaves, as well as the motif tree itself (Fig-
ure 1C). Weak motif leaves are discarded, the motif tree is
iteratively re-evaluated and if necessary, the whole tree is
trimmed or even discarded. Motif leaves are evaluated by
the sum S of all their position scores. For a leaf to be ac-
cepted, its S must be at least 6 (corresponding to e.g. three
highly conserved columns). S is also used to evaluate the
motif tree itself: for a motif tree to persist, S ≥ 6 and leaves
in Ntree – 1 proteins must exist, where Ntree ≥ Nmin.

A motif tree can also have leaves localizing to a larger re-
gion of homology, which we can mark, as the corresponding
alignment hits have an exceedingly high Viterbi score. Root-
leaf pairs, which both locate to the same overall homology
region are already discarded at an earlier stage. However,
two leaves can still appear within a shared conserved do-
main or larger homologous region between two query pro-
teins. In this case, only one of the two leaves will be used for
scoring, but both will be reported in the results. Thus, the
effective number of proteins corrected for homology Ncorr
is used for further calculations instead of the total number
Ntree of proteins, which participate in a specific motif tree.

Regex generation and statistical evaluation. For motif trees
that pass, a regex is generated from its conserved columns
for further motif evaluation and final reporting to the user.
For each regex, the probability to occur by chance within
the submitted dataset is calculated. We have adapted the
Šidák correction (26) for multiple testing. In brief, we con-
struct all possible dimers Dij separated by their exact linker
lengths as found in all proteins (Ntree) that are part of the
evaluated motif tree and correct for the product of the sums
of the background counts of all Dij in these proteins. This
penalizes too vague motifs, low complexity regions, motif
occurrences dependent on and reported in long proteins, as
well as too long motifs with too many conserved positions,
which are in fact rather conserved domains.

A more detailed description of the workflow can be found
in Supplementary Data.

The HH-MOTiF web-server

HH-MOTiF is freely available at http://hh-motif.biochem.
mpg.de.

For starting an HH-MOTiF search, the user can choose
between standard (Supplementary Figure S1A) and ad-
vanced mode (Supplementary Figure S1B). In standard
mode, the input is a set of FASTA-formatted protein
queries. Providing an e-mail address is optional. The ad-
vanced mode preferably takes as an input a set of FASTA-
formatted protein sequence files in a zip-archive; submis-
sion of a single FASTA-file is also possible. Sequences can
be submitted with or without orthologs. In the latter case,
the orthology search should be activated. The user can pro-
vide information on the region of the SLiM, if it has been
identified in one of the input proteins. It should be noted at
this point that prior knowledge on the approximate local-
ization of a SLiM in a protein sequence––as for instance
determined by deletion studies––will greatly enhance the
chance to detect the wanted SLiM. Other parameters that
can be adapted include restriction of gap length, surface
accessibility prediction, disorder masking, homology filter-
ing, as well as the maximal p-value for the regex evalu-
ation (regex p-value). Again, providing an e-mail address
is optional, however recommended due to long processing
times, especially when orthology searches are activated. The
proteome-wide search (Supplementary Figure S1C) allows
users to search for known SLiMs in selected proteomes.
A multiple FASTA-file of the SLiM is required as input.
The proteome-wide search launches an HMM-to-sequence
comparison against the entire proteome.

After submission, the user is forwarded to the results
page, which should be bookmarked for future viewing of
results. Results are saved for seven days prior to deletion.

The output of an HH-MOTiF search is shown in Figure
2. All identified motif roots are displayed at the top of the
page with its associated protein query, as well as the posi-
tion within the query. This is followed by the full-length se-
quences of all input queries with the identified motif roots
highlighted in red. Corresponding motif leaves, as are found
in our chosen example, are highlighted in pink. All elements
of a motif tree are linked via a dashed line upon selection
of one element. At the right-hand side of the input query
with the selected motif, the WebLogo (27), the regular ex-

http://hh-motif.biochem.mpg.de
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Figure 2. Output web page of HH-MOTiF. Identified SLiMs are reported in association with their input query and their position within the query. Motif
trees are highlighted in red in the full-length sequences. Upon selection, a motif is connected to its tree. Next to the full-length sequences, the sequence
logo, as well as the Pseudo-MSA of the selected motif is displayed. Results can also be downloaded in FASTA-format.

pression (regex) as well as the pseudo-MSA of the motif are
displayed.

To demonstrate the functionality of our web-server, we
chose the LysEnd APsAcLL signal from the TRG class,
which is a lysosomal–endosomal targeting signal found
in the C-terminus of proteins (28). HH-MOTiF correctly
identifies this motif in the three sample proteins QNR-71,
SCRAB2 and Tyrosinase and finds no additional shared
motif. Next to HH-MOTiF, GLAM2 and SLiMFinder were
able to also predict this targeting signal correctly (see Sup-
plementary Data for details).

Optimization and evaluation of HH-MOTiF and comparison
with other de novo SLiM search tools

First, we used all experimentally verified SLiMs from the
ELM database (29), which occur in at least three proteins to
optimize HH-MOTiF. These included 176 motifs (classes)
grouped into six types. The types CLV and DEG were used
as training set; all other types (DOC, LIG, MOD and TRG)
were used as test set.

It would be tempting to introduce a simple evaluation
protocol, where each annotated SLiM is either ‘rediscov-
ered’ (true positive) or ‘missed’ (false negative), as well as
each predicted motif is either ‘correct’ (true positive) or ‘in-
correct’ (false positive). However, in reality, predicted mo-
tifs are usually correct only to some extent, as they contain
true positive residues or sequence stretches with varying de-

grees of additional false negatives and false positives. There-
fore, we did not rely on a binary classification on motif-
level for performance evaluation. Instead, we used perfor-
mance measures calculated residue-wise and site-wise for
all selected 176 SLiMs in the ELM database. We primar-
ily used the balanced F1-score (F1) for evaluating perfor-
mance, which offers a balanced measure between sensitivity
and specificity. We calculated an overall F1 based on simple
averaging across all 176 SLiMs from the ELM database. As
an approximate binary classification on motif-level, we also
counted how many ELM classes out of the 176 reached a
residue-wise F1 of at least 0.5. To allow comparison with
other statistical evaluations, we also provide data on bal-
anced accuracy (BA) and the performance coefficient (PC)
for all tested methods in Supplementary Data, where read-
ers can also find the details on calculating F1, BA and PC.

Being fairly balanced between recall and precision, HH-
MOTiF reached a site-based F1 of 0.333 and a residue-
based F1 of 0.280 (Table 1 top row, Figure 3 and Sup-
plementary Tables S2, and S3). We used the same dataset
to compare our method to other, published de novo SLiM
search tools. We focused on methods that work non-
discriminatively and which provide a stand-alone ver-
sion for local usage. Software packages considered in-
cluded MEME (v4.0), GLAM2 (v4.11.1) and SLiMFinder
(v5.2.3). The downloadable version of the HMM-based
method whmm did not work in our hands. We could there-
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Table 1. Performance measures of de novo SLiM prediction methods. For details, see main text and Supplementary Tables S2–S6

Site-based Residue-based

Recall Precision F1 Recall Precision F1

HH-MOTiF 0.236 0.564 0.333 0.210 0.420 0.280
MEME 0.249 0.099 0.142 0.219 0.061 0.095
GLAM2 0.413 0.164 0.235 0.380 0.073 0.123
SLiMFinder 0.272 0.389 0.320 0.203 0.350 0.257

Figure 3. Performance as measured by F1 of HH-MOTiF and other
tested de novo SLiM search methods. HH-MOTiF was compared against
MEME, GLAM2 and SLiMFinder. Both, site- (blue) and residue-based
(red) F1 were calculated based on recall and precision of the software suites
in discovering SLiMs from the SLiM collection of the ELM database. For
details, see Supplementary Tables S2–S6.

fore only compare our results to the originally published
data ((10), see Supplementary Data). We tested different
parameter values for all selected tools and chose those set-
tings, which yielded the highest F1 (performance measures
for all selected settings are available in Supplementary Ta-
ble S2; performance dependencies of HH-MOTiF on sev-
eral parameters are discussed in Supplementary Data and
are shown in Supplementary Figure S2).

HH-MOTiF had the best F1 compared to all other
tested tools, closely followed by SLiMFinder (see Table 1,
Figure 3 and Supplementary Tables S2–S6). Our method
reached a reasonable recall with a fairly good precision. For
SLiMFinder, we used settings that turned the tool more sen-
sitive, at the cost of its otherwise high precision with stan-
dard settings (see Supplementary Table S2). GLAM2, on
the other hand, scored highest of all in recall, however per-
formed poorly in precision. HH-MOTiF scored also better
in site-wise PC than others, while GLAM2 performed bet-
ter in BA. SLiMFinder had the best residue-wise PC, which
could be explained by the fact that it tends to predict SLiMs
that are shorter than the ELM annotation and no false pos-
itives due to flanking residues are produced. We also ob-
served a dependency of F1 on the size of the dataset for
some tools (Supplementary Table S7). HH-MOTiF showed
no strong dependency on the set size. SLiMFinder, on the
other hand, performed only moderately on small set sizes,
however notably outperformed all other tested methods on
motif sets containing 11–15 proteins.

Motif sets in ELM are highly variable. They have dif-
ferent lengths, they occur in many or only a few proteins,

or they occur more than once in the same protein, repre-
senting so-called tandem repeats. These factors could influ-
ence the performance of de novo motif predictors. There-
fore, we also calculated weighted performance measures for
all tested tools (Supplementary Table S8). In general, in-
troducing weights for either the number of proteins, the
number of sites or the number of residues increased the
performance measures for all tools. HH-MOTiF showed
a slight bias towards the number of sites; weighting the
number of residues per motif exhibited strongest influence
on MEME; finally, consistent with our observation that
SLiMFinder displayed varying performance on different
set sizes, weighting performance measures based on set
sizes showed the largest positive influence on SLiMFinder.
These data indicate that SLiMFinder performs best on
more abundant motifs, MEME on the longest ones, and
HH-MOTiF on repeated motifs. Nevertheless, we think that
simple averaging is the most useful approach for perfor-
mance evaluation, as it is reasonably unbiased: it does not
allow for ‘easy’ cases (long, abundant and protein tandem
repeats) to outweigh the ‘hard’ ones (short and less frequent
motifs).

DISCUSSION

Our tool combines the to-date most sensitive sequence sim-
ilarity search method, HH-comparisons, with a representa-
tion of SLiMs as motif trees.

HMMs can capture the conservation profile of SLiMs
more comprehensively than regexes and outperform pure
sequence-based methods in the twilight zone of sequence
similarity (18), in which functional SLiMs are to be ex-
pected. Moreover, we restrict our HMMs to closely related
orthologs. This ensures that the function of the selected or-
thologs is maintained and that the relevant SLiM is con-
served and at the same position in the included sequences.

Treating SLiMs as hierarchical motif trees has two advan-
tages: first, motif trees allow a higher degree of degeneration
of SLiMs. While the conservation of the motif-root to each
motif-leaf must be over a certain threshold, the conserva-
tion between leaves is less critical: a lower conservation be-
tween motif-leaves does not disqualify the entire motif tree.
Second, the motif-tree structure also allows us to consider
flanking residues to a higher degree, even though they will
not appear in the reported SLiM. The final SLiM is scored
based on the initial pairwise alignment scores, not only on
the regions of the SLiM, which is conserved in the minimum
set of sequence queries. As a result, flanking regions con-
tribute substantially to identifying SLiMs in HH-MOTiF.
Finally, HH-MOTiF can detect several independent motif
trees that occur in independent, possibly overlapping sub-
sets of the provided input sequences (data not shown).
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HH-MOTiF does not filter full-length sequences for ho-
mology, but rather candidate SLiMs at the level of their
HMM-alignments. Therefore, it allows for graceful han-
dling of homologous regions, conserved domains, and low
complexity regions in the input proteins. As an example, due
to extended low complexity regions of proteins containing
the ELM motif LIG EF ALG2 ABM 2, SLiMFinder clas-
sified the whole dataset as too homologous and returned no
results, while GLAM2 with default settings returned exces-
sive putative positives, resulting in a precision <1%; with
our optimized settings, it failed to find this SLiM. HH-
MOTiF on the other hand correctly identified this SLiM
as the only hit in the dataset. Consequently, users must not
remove too closely related sequences prior to submission to
the HH-MOTiF web-server. Furthermore, the fact that we
do not explicitly filter for low complexity regions enables
HH-MOTiF to distinguish between low complexity SLiMs
and unrelated low complexity regions (see exemplary mo-
tifs LIG SH3 3 and LIG AP GAE 1 on the Tests site of
our web-server).

It becomes evident from our tests of different motif dis-
covery tools including our own that their performance de-
pends greatly on the chosen parameter settings, leading ei-
ther to higher recall or higher precision. A user must there-
fore carefully evaluate, which settings to choose. Which per-
formance measure is more important might depend on the
availability of experimental assays for further verification:
if a large-scale assay for testing motif function exists, one
might choose a higher recall. If only a very time-consuming
assay is at hand, which cannot be scaled up, a higher preci-
sion might be desirable.

None of the currently existing SLiM predictors reach an
accuracy of more than 35%, including our own method,
which again reflects the difficulty of discovering novel
SLiMs in proteins and is perhaps inherent to the problem
itself. Even unrelated proteins with no functional similar-
ity may share similar motifs (4) and our knowledge on the
function of many proteins – and thus the SLiMs they may
harbor – is still incomplete: a presumable false positive pre-
diction in the ELM dataset might in fact not be ‘false posi-
tive’. It is therefore important to note that de novo predicted
SLiMs should be experimentally verified, which make them
difficult to use for purely in silico purposes.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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