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Abstract

Background: Germinomas (IG) account for up to 50% of all intracranial germ cell tumours. These tumours are reputed
to be more prevalent in Oriental populations in comparison to Western cohorts. Biological characteristics of 1G in other
ethnic groups are unknown. Singapore is a multi-ethnic country with diverse cultures. Owing to inter-racial
heterogeneity, the authors hypothesize there are molecular differences between paediatric IG patients in our local
population. The aims of this study are exploratory: firstly, to identify molecular characteristics in this tumour type and
circulating CSF unique to different racial cohorts; and next, to corroborate our findings with published literature.

Methods: This is a single-institution, retrospective study of prospectively collected data. Inclusion criteria encompass all
paediatric patients with histologically confirmed IG. Excess CSF and brain tumour tissues are collected for molecular
analysis. Tumour tissues are subjected to a next generation sequencing (NGS) targeted panel for KIT and PDGRA. All CSF
samples are profiled via a high-throughput miRNA multiplexed workflow. Results are then corroborated with existing
literature and public databases.

Results: In our cohort of 14 patients, there are KIT exon variants in the tumour tissues and CSF miRNAs corroborative
with published studies. Separately, there are also KIT exon variants and miRNAs not previously highlighted in 1G. A
subgroup analysis demonstrates differential CSF miRNAs between Chinese and Malay IG patients.

Conclusion: This is the first in-depth molecular study of a mixed ethnic population of paediatric IGs from a Southeast
Asian cohort. Validation studies are required to assess the relevance of novel findings in our study.
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Background

Intracranial germ cell tumours are a diverse group of le-
sions that are thought to arise from nests of primordial
germ cells that instead of migrating towards the develop-
ing gonads, aberrate to the central nervous system
(CNS) [1]. Within the germ cell tumour subtypes, intra-
cranial germinomas (IG) account for up to 41 to 50% of
all such tumours [2]. For uncertain reasons, these tu-
mours are more prevalent in Oriental populations [3, 4],
accounting for up to 11% of all paediatric brain tumours
[5]. Conversely, they make up to 0.4 to 3.4% for the
same disease in the Western cohort [6, 7]. Owing to this
racial predilection, several IG-related studies are based
on Far Eastern populations [6, 8, 9]. The proto-
oncogene c¢-KIT (KIT), which is highly expressed in all
IG, encodes a transmembrane tyrosine kinase receptor
for stem cell factor that is related to the platelet-derived
growth factor receptor A (PDGFRA) [10]. Advancements
in genomic technology has offered significant insights
into IG biology. These include the identification of vari-
ous KIT mutations and specific miRNAs that may
harbour functions in IG tumorigenesis [11-13]. Despite
such noteworthy efforts, knowledge gaps remain in the
management of IG patients. Firstly, given the racially
homogeneous results from previous studies [12, 14, 15],
molecular characteristics of IGs from non-Oriental eth-
nic populations are still unknown. Next, in comparison
to other subtypes of germ cell tumours, diagnostic blood
and cerebrospinal fluid (CSF) biomarkers in IGs remain
elusive hic et nunc.

Singapore is a multi-ethnic island city-state with di-
verse cultures. She serves as a microcosm of East, South
and Southeast Asia ethnic groups [16]. Her people con-
sist of Chinese (74.1%), Malay (13.4%), Indians (9.2%)
and other races [17]. The KK Women’s and Children’s
Hospital is Singapore’s largest specialist paediatric hos-
pital. In clinical practice, IG is the most common germ
cell tumour encountered. Owing to inter-racial hetero-
geneity, the authors hypothesize there are molecular dif-
ferences between paediatric IG patients in our local
population. Building on this, the aims of this study are
exploratory: firstly, to identify potential clinical and mo-
lecular characteristics in the tumour and CSF unique to
different racial cohorts; and next, to corroborate our
findings with published literature.

Methods

Study design and patient demographics

This is an ethics-approved, single-institution, retrospect-
ive study of prospectively collected data (Singhealth
CIRB 2011/314/A). All patients and their legal guardians
provided informed consent for the research use of their
medical data and biomaterials. Inclusion criteria encom-
pass all patients less than 18years old who have
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histologically confirmed IGs from surgical specimens,
under the care of the Neurosurgical Service, KKH. A
separate group of patients with hydrocephalus secondary
to non-neoplastic conditions who require CSF diversion
surgery are recruited under the control arm. All CSF
samples are taken from consented subjects at the time
of surgery. Upon collection, each CSF sample is centri-
fuged, and its supernatant extracted to maintain a cell-
free state. Excess brain tumour tissue taken during the
same surgery is collected. For the patients in the control
group, they only had CSF samples collected, as their sur-
gical interventions did not require any brain tissue re-
moval. Exclusion criteria included patients with
incomplete medical data, insufficient or poor-quality
CSF and, or inadequate tumour tissue. Figure 1 provides
an overview of the study’s workflow.

Next-generation sequencing

Ampliseq targeted gene sequencing panel comprising of
KIT (NM_000222) and PDGFRA (NM_006206) is de-
signed using Ion Ampliseq designer tool (version 6.0)
(https://www.ampliseq.com) with the coverage of 100
and 97.69% respectively. Ten ng of FFPE DNA is used
for automated library preparation using the Hi-QTM
view chef DL kit (Life Technologies, USA) and the Ion
chef (Life Technologies, USA). The library is enriched
using the HI-QTM view Chef kit (Life Technologies,
USA) in the Ion Chef. Eight libraries are multiplexed in
an Ion 314 chip and sequenced in the ion-torrent se-
quencer (Life Technologies, USA). Base calling and map-
ping (hgl9) are performed in the Torrent Suite (version
5.0), and Variant Calling plugin was applied to generate
variant call format files. Variant annotation is done on-
line wANNOVAR (http://www.wannovar.wglab.org).
Only exonic variants with minimum 10% of variant allele
frequency are selected for further validation. Confirma-
tory real-time polymerase chain reaction (RT-PCR) and
subsequent Sanger Sequencing are performed to confirm
NGS findings.

High throughput miRNA profiling

This method has been previously described [18, 19].
Briefly, Qiagen miRNeasy Serum/ Plasma kit (Qiagen,
Netherlands) is used to isolate miRNA from CSF. Isola-
tion spike-in (3 synthetic small RNAs) is added in Pro-
teinase K buffer and QIAzol during CSF isolation. Next,
isolated total RNAs are reverse-transcribed using the
IDEAL miRNA reverse-transcription (RT) kit (MiRXES,
Singapore) and modified stem-loop RT primer pools.
The reaction mixtures are incubated in a Veriti™ Ther-
mal Cycler (Applied Biosystems, USA) at 42°C for 30
min, followed by 90 °C for 5 min. For all miRNA profil-
ing experiments conducted in this study, a 6-log serial
dilution of synthetic templates (1027 to 10”2 copies) for
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each miRNA and a non-template control are concurrently
reversed-transcribed along with the isolated total RNA. Fol-
lowing that, all cDNAs are pre-amplified through a 14-
cycle PCR reaction using the Augmentation Master Mix
(MIiRXES, Singapore) and Augmentation Primer Pools
(MIRXES, Singapore) in the Veriti™ Thermal Cycler. A total
of 360 candidate miRNAs (miRBase-annotated) were mea-
sured in each amplified cDNA sample using miRNA-
specific quantitative PCR assays (MiRXES, Singapore). Each
amplified ¢cDNA sample is diluted 100 times in poly-A
water. Five pul of diluted cDNA was then transferred into
each well on a 384-well PCR plate. Polymerase chain reac-
tion amplification reactions are performed in a total reac-
tion volume of 15 pl that contains 5 pl of diluted cDNA,
7.5ul of IDEAL SYBR Green qPCR Master Mix (2x,
MIRXES, Singapore), 1.5 ul of miRNA specific qPCR pri-
mer pair (10x, MiRXES, Singapore)) and 1 pl of nuclease-
free water. Quantitative PCR (qPCR) amplification and de-
tection on QS5 qPCR system (Applied Biosystems, USA) is
performed with the following cycling conditions: 95 °C for
10 min, followed by 40 cycles of 95 °C for 10's and 60 °C for
30s. Raw Cycle Threshold (Ct) values are read from the
ViiA 7 RUO software with automatic baseline setting and a
threshold of 0.5. RT-qPCR efficiency. Next, potential cDNA
amplification bias are assessed by analysing the Ct values of
serially diluted synthetic miRNA templates, which are con-
currently reverse-transcribed, amplified and detected with
the isolated CSF miRNAs. Absolute quantification of
miRNA expression copy numbers is achieved through
interpolation of synthetic miRNA standard curves. Copy
numbers interpolated from standard curves are normalized
by spike-ins before other downstream processing. Obtained
copy numbers are then compared against non-template
controls. When copy numbers are lower than non-template
controls, the miRNA in the sample is considered a non-
detect. Biological normalization is performed. Copy Num-
bers are log, transformed and the mean of all miRNAs in
all samples is levelled. Normalized miRNA expression

values are used to compare the expression levels of individ-
ual miRNAs between IG patients and controls. Unsuper-
vised hierarchical clustering was carried out based on
Euclidean distance.

Statistical analysis of miRNA results

The following methodology has been previously de-
scribed [20]. To summarise, foldchange in absolute
miRNA expression (copy number is standardized using a
z-score {standard score} is calculated using the formula:
z-score = log, (FC/SD); where FC is the foldchange of
miRNA expression between IG and control patients, and
SD is standard deviation of expression levels for each
miRNA. Differences between sample means (i.e. changes
in miRNA expression) are considered statistically signifi-
cant when the p-value is less than 0.05 via Student’s t
test. All p-values are 2-sided and corrected for multiple
hypothesis testing using the FDR adjustment [21, 22].
All statistical analyses are performed using MATLAB
Toolbox (MathWorks, USA).

Predictive analysis of miRNA-mRNA mapping

To facilitate the process of selecting functional targets, on-
line interactive resources are used for individual miRNA
target prediction and functional annotations. These in-
cluded miRDB version 6.0 (http://www.mirdb.org), and
TargetScan 7.2 (http://targetscan.org). The top 50 pre-
dicted mRNA targets from each database are cross-
referenced against each other, and subsequently, matched
to common genes reported in germ cell tumours (K17,
PLAP, OCT 3/4, KLF4 and NANOG) [23].

Results

Overview of patient demographics and clinical features

A total of 19 patients were recruited for this study from
01 January 2009 to 31 December 2017. Fourteen (10
males and 4 females) were under the investigative arm
and 5 (3 males and 2 females) were in the control group.
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For the 14 patients, all of them underwent surgical biop-
sies and had histologically proven IGs. Brain tumour
specimens from these patients had their diagnosis of 1G
reviewed in accordance to the latest WHO classification
[6]. Every patient had serum and CSF levels negative or
inconclusive for oFP and BhCG. Their ages ranged from
7 to 15 years old (median age 12.4 years old). Nine were
Chinese and 5 were of Malay ethnicity. Interestingly, we
did not encounter Indians or other racial groups with
IGs at our institution. In our study cohort, 6 had their
tumours located in the pineal region, 3 suprasellar, 2
basal ganglia, 2 intraventricular and 1 in the cerebral
peduncle. Evidence of tumour seeding was demonstrated
in 6 patients. The latter was confirmed via CSF cyto-
logical positivity for malignant cells and, or radiological
presence of metastasis distant from the primary tumour.
Separately, there were 2 patients with tumour recurrence
in our study. Both had initial suprasellar tumours that
were treated successfully. One presented with tumour
recurrence in the same site 8 years later and the other
presented with neck pain secondary to a intramedullary
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IG in her cervical spine 10 years later. For both patients,
surgical biopsy was performed. Histology reported fea-
tures of IG, consistent with their earlier suprasellar tu-
mours. These findings are summarised in Table 1.

Next generating sequencing identifies KIT mutations in a
subset of patients in our study cohort

Based on NGS testing, 6 out of 14 patients reported KIT
variants that were confirmed to be pathogenic on COS-
MIC (https://cancer.sanger.ac.uk/cosmic). Of interest, 5
of them (3 Malay and 2 Chinese) harboured KIT exon
10 variant (c.1621A > C). Two patients had more than
coding variant in different KIT exons in their tumours.
This included a Chinese patient who had KIT exon 2
(c.251C>T) and exon 17 (c.2447A > T) variants; and an-
other Malay male who was found to have variants in
KIT exon 10 (c.1621A > C), exon 11 (c.1658A > G) and
exon 13 (c.1965T > A). Conversely, all of our patients
did not show any meaningful PDGFRA exonic variants
from the NGS interrogation (Table 2).

Table 1 Summary of study cohort’s patient clinical and demographical details

Variable Number of patients
Gender Male 10
(IG patients) Female 4
Gender Male 3
(Control group) Female 2
Ethnicity Chinese 9
Malay 5
Others 0
Age IG patients 14 (range 7 to 15 years old; median 12.4 years old)
Control group 5 (range 1 month to 7 years old; median 1.62 years old)
Location of tumour Pineal 6
Suprasellar 3
Basal ganglia 2
Intraventricular 2
Cerebral peduncle 1
Tumour seeding Yes 6
(at initial diagnosis) No 8
Tumour recurrence Yes 2
(at> 5 years) No 12
Serum aFP (< 8 pg/L) < 2ug/L 11
> 2 ug/L 3 (range 3 to 5 pg/L; median 3.67 pg/L)
Serum Bhcg (< 51U/L) < 1.21U/L 9
> 1.21U/L 4 (range 1.4 to 141U/L; median 6.6 1U/L)
CSF aFP (< 2 pug/L) < 2ug/L 14
CSF Bhcg (< 1.21U/L) < 1.21U/L 6
>1.2I1U/L 8 (range 1.6 to 20 1U/L; median 9.32 1U/L)
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Table 2 Summary of KIT exonic variants from NGS results after cross-referencing from COSMIC. Of note, one patient had 2 KIT

variants, and another had 3 KIT variants

KIT AA mutation  CDS mutation FATHMM score ~ COSM identifier = Reported in human cancers Number of patients
(Yes or No) with variant

Exon 2 p.T84M c251C>T 0.01 (neutral) COSM3380948 Yes; mixed germ cell tumour, 1
pancreatic cancer

Exon 10 p.M541L c1621A>C 0.74 COSM28026 Yes; primary CNS lymphoma, 5
breast cancer

Exon 11 p.Y553C C.1658A > G 0.96 COSM4413463 Yes; mixed germ cell tumour 1

Exon 13 p.N655K c1965T > A 0.82 COSM4413464 Yes; germ cell tumour, AML 1

Exon 17 p.D816V C2447A>T 0.99 COSM1314 Yes; germ cell tumour, malignant 1

melanoma

Cerebrospinal fluid in intracranial germinoma patients
express miRNAs that are both novel and corroborative
with published literature

For the CSF miRNA profiling, our results showed sta-
tistically significantly higher expression of miR-373-
3p, miR-373-5p, miR-455-5p, miR-650 and miR-183-

5p; and lower expression of miR-571, miR-503-5p,
miR-324-5p, miR-221-3p and miR-132-3p for the IG
cohort, in comparison to the control group. The
remaining miRNAs in the multiplex panel had nega-
tive or equivocal findings for the same analysis.
(Fig. 2a).

A . . . .
Relative miRNA Expression in CSF:
IG versus NT (control)
miR-650
miR-455-5p -
*miR-373-5p
*miR-373-3p
miR-183-5p
miR-571 —
miR-503-5p - —
miR-324-5p - —
— MiR-221-3p - —
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| L] | 1
-4 -2 0 2 4 6
log, foldchange
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miRDB version 6.0
miRNA TargetScan 7.2
miR-221-3p ¢ ' KIT
(NM_000222)
Fig. 2 a Graph illustration of differentially expressed miRNAs in the CSF between |G patients and non-tumour (NT) controls. Of note, miR-373 has
been previously reported to have higher expression in patients with germ cell tumours [13]. In addition, mir-503-5p has been shown to have a
lower expression in the tissue of germinomas compared to non-germinatous tumours [23]. b Using online databases (miRDB version 6.0 and
TargetScan 7.2), in silico prediction reports that mir-221-3p is associated with KIT
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MiR-221-3p is downregulated in intracranial germinomas
and is a predicted target of KIT

Owing to the inverse relationship in the miRNA-
mRNA connection, downregulation of a miRNA im-
plies an increase in expression of its related mRNA,
either via direct or indirect regulation. Our results
show that miR-221-3p has a significantly lower ex-
pression for IG patients in comparison to the control
group. Based on in silico prediction, mir-221-3p is
found to be consistently associated with KIT using
miRDB version 6.0 and TargetScan 7.2. (Supplemen-
tary Data A and B, respectively). At this point in
time, a validated link between miR-221-3p and KIT is
not yet established in germ cell tumours. The
remaining miRNAs did not show any correlation with
the established genes of interest in IG. (Fig. 2b).
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Subgroup analysis shows some differences in CSF miRNA
expression between Chinese and Malay patients

A separate in-depth analysis of the CSF miRNA profiles
between the Chinese and Malay IG patients was per-
formed. Results showed there were a total of 39 miRNAs
differentially expressed between both ethnic groups that
were statistically significant. (Fig. 3).

Discussion

Intracranial germinomas: knowledge gaps

At present, there are 2 clinical gaps in the management
for IGs: firstly, it is a tumour that does not express
highly elevated BhCG and, or oFP levels in the patient’s
serum or CSF. Surgical biopsy is usually recommended
for diagnosis, and to exclude it from other lesions, such
as teratoma. For most patients, the deep, midline

Fig. 3 a Top 10 highest and lowest differentially expressed miRNAs between Malay and Chinese patients. b Volcano plot of expression
differences between Malay and Chinese patients for all the profiled miRNAs. ¢ Left-skewed histogram illustrating degree of overall difference
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structures, such as the pineal or suprasellar regions are
most commonly affected [1]. Although histological diag-
nosis is advocated prior to adjuvant treatment, many
global centres practice a trial of radiotherapy to the cra-
nial lesion if the radiological findings, patient demo-
graphics and, or clinical presentation is convincing [24,
25]. This is because deeply seated tumours, especially
those in the pineal region are close to critical vascular
and brain structures. Historically, operative morbidity
for lesions in such locations is notoriously high [26-29].
Taken together, a specific circulating biomarker for 1Gs
will be diagnostically relevant for affected patients. Next,
there is a paucity of established pre-clinical models com-
mercially available for IG research. At the time of this
writing, there is only 1 published study involving the
successful establishment of patient-derived IG cell lines
in the laboratory [30]. As part of the effort to overcome
such knowledge gaps, ongoing work in our laboratory is
underway to develop such translationally relevant
models, especially to elucidate the relationship demon-
strated by our in silico findings.

Overall, biological factors responsible for the different
ethnic incidences of IG are poorly understood [31].
Current evidence suggests that IGs, together with other
types of intracranial germ cell tumours, tend to be more
common in people with Asian/ Oriental descent [3, 32,
33]. In Singapore, various epidemiological studies have
reported inter-racial differences between ethnic groups
in the prevalence, tumour biology, treatment patterns
and patient survival for several diseases, including can-
cers [34—38]. Building on these observations, the authors
postulate that molecular variations possibly exist be-
tween ethnic populations within our study cohort. Al-
though our preliminary findings suggest there are
differentially expressed miRNAs between our Chinese
and Malay patients, we reiterate that confirmatory inves-
tigations in a larger Southeast Asian population are ne-
cessary to confirm their clinical significance. Research
collaborations with our neighbouring countries are in-
cluded in the future work of this study.

Identification of KIT mutations in intracranial germinomas
The KIT gene encodes the stem cell growth factor recep-
tor, a type III transmembrane receptor tyrosine kinase
that has been involved in the pathogenesis of various
malignancies, including gastro-intestinal stromal tu-
mours, acute myelogenous leukaemia and testicular
seminomas [39-41]. KIT signalling is upstream of RAS-
MAPK signalling and the PI3K pathway. Activating mu-
tations in KIT and other genes in MAPK and PI3K path-
ways are the most common genomic variations found in
IG [42, 43]. Furthermore, a recent targeted sequencing
study confirms that activating mutations in KIT and
RAS are frequent and mutually exclusive in pure

Page 7 of 10

germinoma, suggesting that changes in the KIT signal-
ling pathway plays an important role in the development
of IG [44]. Aside from gain-of-function mutations of
KIT in approximately 25% of IG, little is known about
other oncogenic factors that partake in its pathogenesis
[45, 46]. From a clinical perspective, this is significant as
up to 10% of IG remain refractory to standard therapy
[8]. In congruency with publications on IGs, our cohort
too, has IG patients with KIT mutations in exon 11 and
17 [46]. However, KIT exon 10 (c.1621A > C) is the most
common variant in our study group. Based on COSMIC
referencing, this variant has been previously reported in
primary CNS lymphoma [47] and brain metastases from
breast carcinoma [48]. To our knowledge, this is the first
report of KIT mutations involving paediatric IG of Malay
ethnicity.

Recent advances in genomic technology have enabled
detection of circulating tumour DNA (ctDNA) in the
CSF of patients with CNS tumours [49, 50]. Circulating
tumour DNA refers to the DNA that directly comes
from tumour cells and stably circulates in body fluids
[51]. Previous reports have demonstrated that ctDNA
with a series of gene mutations can be successfully ex-
tracted from CSF of patients with brain tumours [49].
Under such circumstances, it is attractive to extrapolate
the same approach to our paediatric IG patients. A word
of caution though, there are noteworthy challenges for
this process that need to be addressed. To begin with,
absolute quantities of ctDNA in the CSF are reputed to
be low. This implies that a significantly higher volume of
CSF is required per patient which may be difficult to ob-
tain from young children. Furthermore, highly sensitive
methods such as WGS and NGS require additional tech-
nical and bioinformatic approaches to facilitate en-
hanced the ability to detect tumour mutations in CSF
cfDNA. Hence, they can be costly and time-consuming
[52]. Although there is an alternative option of using
droplet digital PCR, users require prior knowledge of the
specific mutations they want to test for, and the technol-
ogy may be only limited up to 4 targets per assay [53].
Nonetheless, the development of a targeted panel for
CSF ctDNA to complement our miRNA findings is cer-
tainly a consideration in time to come.

Role of miRNAs in intracranial germinomas: towards
disease diagnosis and better understanding?

MicroRNAs (miRNAs) are a class of small, noncoding
RNA molecules typically 22 nucleotides in length [54].
They modulate protein expression through base pairing
with a complementary sequence in the 3’-untranslated
region of messenger RNA (mRNA) and are involved in
the regulation of gene expression at a post-
transcriptional level [55]. Established roles of miRNAs
include the regulation of important processes including
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tumorigenesis [56—58]. In contrast to mRNA and pro-
teins, they are inherently stable and remain conserved
under most circumstances [59]. Circulating miRNAs in
body fluids have been extensively explored as novel bio-
markers for various diseases [60]. For instance, Murray
et al show that certain miRNAs can be reliably detected
in CSF as biomarkers for germ cell tumours [13]. Coin-
cidently, his series included 2 IG patients that showed
high expression of miR-373-3p in their CSF samples,
which was also demonstrated in our study cohort. Next,
Wang et al’s publication reports differentially expressed
miRNAs between IGs and non-germinomatous germ cell
tumours. In his study, miR-503 is one of the miRNAs
with low expression in IG [23]. The downregulation of
miR-503-5p is also observed in our study. Nonetheless,
the remaining miRNAs, including miR-221-3p that was
predicted to be a target of KIT, require deeper functional
assessment and clinical validation.

The inherent properties of miRNAs deem them highly
desirable for use as disease markers; hence, initiating the
interest in the expression of profiles of miRNAs. Micro-
RNA profiling represents an important first-step in
deducting individual RNA-based regulatory function in
cells, tissues and circulation [61]. Nevertheless, there is
no standardized clinical-grade platform for detection of
circulating miRNAs. At present, real-time quantitative
PCR remains as the most sensitive method for the quan-
tification of the RNA species [62, 63]. Our project uti-
lizes an innovative hemi-nested real-time quantitative
PCR multiplex assay which is simple to design, shows
excellent performance and provides design flexibility of
any miRNA [64]. As our study is exploratory at this
point, the use of a such a corroborative platform offers
advantages of high throughput, sensitive and accurate
examination of small CSF sample volumes. Such endeav-
ours are particularly important in a limited patient co-
hort, like ours.

Study critiques and future directions

The authors acknowledge that there are limitations that
should be highlighted. First and foremost, this is a retro-
spective study with a small patient number. This is inev-
itable as data completeness, sufficient biomaterial per
patient and adherence to a strict criterion for the pur-
poses of this multimodality study are required. Owing to
the infrequency of surgical biopsy and the small size of
specimens (even if biopsies are performed), studies in-
volving molecular and cytogenetic characteristics of IG
are comparatively less common [31]. This challenge is
also experienced in our study, whereby most of our co-
hort’s biopsies are performed via neuroendoscopic tech-
niques. Under such circumstances, the specimens are
already subcentimetre in size. After accounting for tissue
prioritised for histopathological diagnosis, any remnant
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excess for further studies becomes even more limited.
Nonetheless, this is the first in-depth molecular study of
a mixed ethnic population of paediatric IGs from a
uniquely Southeast Asian cohort. Highlights of this study
includes profiling of tissue and corresponding CSF in
the same patient via different genomic techniques. We
observe findings that are both new and previously being
published. Although our results are preliminary, they
offer proof-of-concept for continued work in a larger co-
hort of patients to assess the relevance of novel findings
in our study. A key consideration is to include germline
testing as part of our study. This is because recent in-
sights have highlighted novel germline variants in the
gene JMJDIC in some overseas patients, and the exist-
ence of such remains unknown in our local cohort [12].
In meantime, a prospective, longitudinal study that in-
cludes the collection of blood as part of each patient’s
biomaterial is already in place. Moving forward, efforts
to include specific miRNAs and ctDNAs as part of a
multimodality, targeted panel for individuals is certainly
in the horizon. Putting it all together, in this era of tar-
geted therapy, being cognizant of combining knowledge
of genetic disposition and disease-driving mechanisms to
tailor selective drugs should be a priority for affected
patients.

Conclusion

In summary, the authors describe an exploratory study
in a selected group of multi-ethnic paediatric IG pa-
tients. Our findings add to the growing body of literature
for this challenging brain tumour. Most importantly,
international collaborations with like-minded researchers
is paramount for better disease understanding and holis-
tic patient care, especially in Southeast Asia.
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