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Abstract 

Pancreatic ductal adenocarcinoma (PDAC) carries an extremely poor prognosis, in part resulting from 

cellular heterogeneity that supports overall tumorigenicity. Cancer associated fibroblasts (CAF) are key 

determinants of PDAC biology and response to systemic therapy. While CAF subtypes have been defined, 

the effects of patient-specific CAF heterogeneity and plasticity on tumor cell behavior remain unclear. 

Here, multi-omics was used to characterize the tumor microenvironment (TME) in tumors from patients 

undergoing curative-intent surgery for PDAC. In these same patients, matched tumor organoid and CAF 

lines were established to functionally validate the impact of CAFs on the tumor cells. CAFs were found to 

drive epithelial-mesenchymal transition (EMT) and a switch in tumor cell classificiaton from classical to 

basal subtype. Furthermore, we identified CAF-specific interleukin 8 (IL-8) as an important modulator of 

tumor cell subtype. Finally, we defined neighborhood relationships between tumor cell and T cell 

subsets.  

 

Statement of Significance  

This multidimensional analysis highlights the diverse role CAFs have in influencing other cell types in the 

TME, including epithelial-derived tumor and infiltrating immune cells. Our methods provide a platform 

for evaluating emerging therapeutic approaches and for studying mechanisms that dictate tumor 

behavior in a manner that reflects patient-specific heterogeneity.   
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Introduction 

Pancreatic ductal adenocarcinoma (PDAC) is a debilitating disease with a dismal five–year survival rate of 

13% 1. These poor outcomes are due to numerous factors, including late–stage diagnosis, resistance to 

current therapeutic regimens, and importantly, a complex heterogenous tumor microenvironment 

(TME)2–5. The TME consists of a diverse and evolving ecosystem of epithelial, endothelial, immune cells, 

and cancer associated fibroblasts (CAFs)6–8. CAFs are present in abundance in the PDAC TME and have 

been implicated as drivers of an immunosuppressive milieu that provides a niche for tumor cells, 

promotes tumor growth and ultimately supports metastasis6,9–14.  

  

Molecular and cellular classification, including both CAF and tumor cell subtypes, may influence clinical 

decision making with both current and emerging therapeutic approaches15. Two main subtypes of tumor 

cells have been described; a classical subtype that retains epithelial markers and is often well-

differentiated, and a basal subtype that is quasi-mesenchymal with poorer responses to chemotherapy 

and worse overall survival16. Additionally, CAF subtyping has associated unique gene expression programs 

with specific roles within the TME. The most common CAF classifications include inflammatory (iCAF) 

with the capacity to secrete IL-6, a myofibroblastic (myCAF) subtype defined by high levels of alpha 

smooth muscle actin (αSMA) expression, and an antigen presenting (apCAF) subtype defined by 

expression of HLA-DR and antigen processing and presentation capacity14,15,17–20. While these distinctions 

underscore TME complexity in PDAC, the dynamic and nuanced interactions between CAFs and epithelial 

tumor cells remain incompletely understood. 

 

In an effort to start to untangle these relationships, we used multi-omics platforms (transcriptomics and 

spatial proteomics) to examine how CAFs alter tumor biology through signaling mechanisms within the 

PDAC TME. We developed an approach to integrate multiplex imaging data from patient tissue slides 

with functional in vitro study of patient-derived organoid (PDO) – CAF cocultures. This approach 

demonstrated a spatial relationship between iCAFs to classical tumor cells and myCAFs to basal tumor 

cells. These data suggest that CAF proximity to tumor cells can promote a classical to basal phenotype 

switch and drive epithelial-mesenchymal transition (EMT) signaling. This switch was associated with 

decreased CAF-derived IL-8 secretion and impaired maintenance of a classical tumor cell phenotype 

amongst the tumor epithelial cells. Additionally, tumor regions with increased basal gene expression 

were associated with increased infiltration of activated T cells, suggesting that CAF-epithelial cross-talk 

serves to define the immune landscape in this disease. Thus, this study provides new data supporting 
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CAF signaling in  shaping the cellular and behavioral heterogeneity in the PDAC TME. These findings can 

be used to explore rational approaches to improve therapies for this difficult-to-treat disease.    

 

 

Results 

Spatial proteomics of patient tumors defines distinct CAF and tumor cell neighborhoods  

Two subtypes of tumor cells (classical and basal) and three subtypes of CAFs (iCAF, myCAF, and apCAF) 

are accepted as important contributors to PDAC heterogeneity16,18. To further delineate these subtypes 

in a patient-specific manner, we comprehensively analyzed tumor specimens from 15 patients with PDAC 

who underwent surgical resection at our institution (Table 1). Imaging mass cytometry (IMC) was utilized 

to label human tissue with a panel of 43 antibodies (Supplemental Table 1) designed to capture spatially 

resolved profiles of CAFs, epithelial cells, and immune cells. Specific regions of interest (ROI) were 

selected for annotation by an expert pathologist (J.W.L.) (Supplemental Figure 1). To ensure similar 

sampling of the TME from every patient, ROIs were selected for malignant epithelial rich or stroma rich 

areas, and then further divided as immune rich or immune poor (Figure 1A). To annotate immune rich or 

poor regions, dual immunohistochemistry staining for CD3 (T cells) and CD68 (myeloid cells) was 

performed on sequential slides and a grid system was applied to account for size of ROI to be ablated for 

IMC (Supplemental Figure 1). We intentionally avoided tertiary lymphoid structures (TLS) when selecting 

ROIs, as these regions have been shown to be restricted to tumor edges21. The IMC panel was curated to 

ensure comprehensive analysis of CAF subtypes as well as endothelial, epithelial, and immune cell 

subtypes (NK, B, myeloid, and multiple subsets of T cells)(Figure 1B). All cell types were analyzed by 

relative expression of each marker included in the panel (Figure 1C). Clustering analysis identified groups 

of epithelial cells (CK+), CAFs (αSMA+, VIM+, PDGFR+, and/or FAP+, and CKlo), immune cells (both myeloid 

[CD68+] and lymphoid [CD3+ and CD20+]) as the most highly identified clusters (Figure 1C). The total 

number of cells and distribution of cell types acquired for each patient reflected patient-specific 

heterogeneity, and importantly, all of the broad cell types were represented in every patient sample 

(Figure 1D). Proportionally, CAFs (αSMA+, VIM+) and tumor cells (basal [KRT17+] or classical [TFF1+]) were 

the most prevalent cell types across our heterogenous patient cohort (Figure 1D-E). 

 

With the primary goal of directly evaluating the relationship between CAFs and tumor cells, we clustered 

our data to look exclusively at CAF and tumor cell populations, both across the cohort and at the level of 

individual patients (Figure 2A-B). We performed nearest neighbor analysis to understand interactions 
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between CAF and tumor cell subsets (basal, classical, or mixed). Mixed tumor cell designation was 

assigned to tumor cells expressing both basal and classical markers with these data suggesting plasticity 

of the epithelial cohort between subsets and a transitional state. Upon enumerating the top 3 nearest 

cells within a 4-μm distance radius from each of the basal, classical, or mixed tumor cells and filtering the 

counts by CAF subtypes only, we found that iCAFs were the most frequent cell type nearest in distance to 

classical tumor cells while myCAFs were most frequently nearest to basal cells (Figure 2C). apCAFs, which 

represented a smaller minority of CAFs (Figure 2D), were also observed frequently as a nearest neighbor 

of basal cells (Figure 2C).  These data suggest CAF and epithelial subtypes are paired together uniquely in 

spatial neighborhoods (iCAF/classical and myCAF/basal) across a more broadly heterogenous TME 

(Figure 2D). These associations were also visually confirmed within ROIs displaying both classical-rich 

and basal-rich areas of tumor cells (Figure 2E). Taken together, these data demonstrate a distinct spatial 

coordination among CAF and tumor cell subtypes, suggesting CAF subtypes are influencing the 

phenotypes of nearby tumor cells. 

 

 

Bulk RNAseq of patient-matched PDO and CAF cocultures define CAFs as drivers of EMT in PDOs  

To more comprehensively evaluate CAF-tumor cell crosstalk within the IMC defined neighborhoods, we 

completed bulk RNA sequencing of flow-sorted CAF and PDO cocultures from 12 patients with PDAC. 

Generalizability of these data to diverse PDAC patient cohorts were preserved given that the current set 

of samples represents 3 untreated patients, 6 previously treated with neoadjuvant FOLFIRINOX (5-FU, 

irinotecan, oxaliplatin, leucovorin), and 3 having received gemcitabine and other neoadjuvant 

treatments (Figure 3A-3B, Table 1). Data were first evaluated by computing principal components, which 

demonstrated that cell type was the predominate source of variation in the data and distinguish CAFs 

from organoids (Figure 3C). Further visualization of coavariates on the principal component analysis did 

not find significant variation in the transcriptional data related either to culture conditions (coculture or 

monoculture as control, Figure 3D) or individual patients (Figure 3E).  While not a dominant source of 

variation at a global transcriptional level in the principal component analysis, we still hypothesized that 

the co-culture would impact the transcriptional profiles relative to monoculture. Differential analysis of 

gene expression compared cocultured PDOs to monoculture PDOs to identify CAF-mediated effects 

(Figure 3F). Following PDO-CAF coculture, there was a significant increase in the expression of genes 

associated with fibrogenesis and malignant progression, including POSTN, DCN, COL1A2, and CHD1 and 

MMP2, respectively (Figure 3F). We further identified enrichment of epithelial-mesenchymal transition 
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(EMT), TNFα response, E2F targets, KRAS and MYC targets in in coculture PDOs relative to monoculture 

using the Hallmark gene sets from the Molecular Signatures Database22 (Figure 3G).  

 

These findings of enhanced EMT in coculture support our prior work examining the global transcriptional 

impact of CAFs on tumor cells23. In this study, analysis of a comprehensive atlas of public-domain single-

cell RNA sequencing data of PDAC tumors identified a gene expression pattern in tumor cells associated 

with elevated inflammatory, fibrogenic, and EMT pathway activity23. We referred to this as the 

“Inflammatory/EMT” pattern, and enrichment of this pattern appeared to be driven by the presence of, 

and regulation by, CAF signaling that was observed in co-culture data of PDOs from three treatement-

naïve patients. In the full 12 patient cohort explored here, we identified CAF-PDO coculture as inducing 

increased expression of Inflammatory/EMT gene pathways, as compared to those from monoculture 

(Figure 3H). This suggests that CAFs signaling to epithelial tumor cells plays a critical role in the 

promotion of tumor inflammation, fibrogenesis and EMT. In addition to the broader transcriptomic 

findings, we observed morphologic changes consistent with EMT in cocultured PDOs compared to 

monoculture counterparts (Figure 3I). Further evidence to support CAF-directed EMT was found by 

directly evaluating patient tissues by IMC-staining for expression of E-cadherin, N-cadherin, and vimentin 

(Figure 3J). We hypothesized tumor cells in close proximity to CAFs would demonstrate increased 

evidence of EMT through loss of E-cadherin and increased vimentin. Based on IMC analysis, E-cadherin 

expression was in fact greater in tumor cells distant from a nearby CAF (Figure 3K), while vimentin 

expression was greater in tumor cells near a CAF (Figure 3L). There was limited difference in N-cadherin 

expression amongst tumor cells evaluated.  Our previous study showed that at a single-cell level 

induction of EMT from fibroblasts is mutually-exclusive with proliferation in the neoplastic cells23. 

Nonetheless, prior work suggests CAFs may also promote a proliferative phenotype in tumor epithelial 

cells24. We therefore examined PDO proliferative capacity in coculture by adapting a luciferase 

transduction protocol to accommodate PDOs. In our coculture there was increased proliferation of the 

PDOs, as compared to monoculture PDO controls (Figure 3M). Taken together, these data support the 

hypothesis that CAFs are critical to and controlling drivers of EMT and proliferation in PDAC tumor cells 

at a population level. 
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CAFs promote changes in PDO gene expression from classical to basal tumor cell classification 

We next returned to the classical/basal tumor cell classification system, first described by Moffitt and 

colleagues, to examine gene signatures in our PDOs and the tumor-specific heterogeneity in the capacity 

of CAFs to alter tumor cell classification24,25. In PDO monoculture there was heterogeneity in relative 

expression of key classical and basal classifier genes (Figure 4A). As CAFs were introduced into cultures, 

PDO gene expression was often altered and profiling revealed plasticity of gene expression in the 

epithelial compartment in a manner dependent on the presence of CAFs (Figure 4B). In contrast to the 

increase of EMT in the Inflammatory/EMT pattern defined from our atlas, transition to a more basal-like 

phenotype was only observed in a subset of the organoids. In the 5 patients for whom the gene 

expression was most dynamic, there was a significant shift toward increased basal gene expression  

(Figure 4C). There were no patient samples in which tumor cell exposure to CAFs through coculture 

induced a more classical gene expression pattern. Morover, this state transition appeared independent 

of the initial subtype classification of the organoid monoculture, although the 4 lines with the highest 

basal scores in monoculture did not significantly change subtype.  

 

A quantitative assessment of gene expression signatures identified a strong basal shift in these 5 

patients, with increased relative basal expression of global gene programs by at least 14% and up to 28% 

(Figure 4C). Assessment of the expression of specific basal genes such as KRT6A, COL1A2, and cadherins, 

as well as cancer stem cell genes such as CD44, demonstrated increased pathway signaling with CAF 

coculture suggesting CAFs are driving a more basal and more aggressive PDO phenotype in part through 

these critical genes (Figure 4D). In these samples, and in keeping with a more basal phenotype, 

increased PDO tumorgenicity was inferred by Hallmark pathway analysis, showing upregulation of EMT 

and proliferation by E2F targets, as well as upregulation of angiogenesis and hypoxia signaling pathways 

(Figure 4E). To validate our coculture findings as relevant to patient disease, we returned to primary 

patient tissues and used multi-plex RNAscope to probe for basal (KRT17 and KRT6a) and classical (TFF1 

and GATA6) RNA transcripts (Supplemental Figure 2A) on tissue sections. Similar to our coculture 

findings, there was a range of expression of representative basal and classical genes across patients at 

baseline. Additionally, there was a direct correlation between the selected basal RNAs and classical RNAs 

reinforcing their co-expression and validity as markers to designate tumor cell subtype (Supplemental 

Figure 2B). To determine if the basal phenotype was associated with an abundance of CAFs as seen in 

our coculture, we used trichrome staining to infer CAF density also at a whole-tissue scale. In samples 

demonstrating heavy trichrome staining, and therefore a high CAF presence, the patient-specific PDO 
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subtype was more likely to be either strongly basal at baseline or to be a PDO that could be induced 

towards a basal phenotype with CAF coculture (Supplemental Figure 3). These data further reinforce the 

hypothesis that dynamic CAF-driven signaling helps to regulate epithelial gene expression that is 

reflected in clinically-impactful tumor cell classification.  

 

We then sought to determine whether co-culture with PDOs also led to changes within the CAFs (mean 

myCAF signature of approximately 0.985 vs. 0.975, respectively; Supplemental Figure 4A-B). We 

hypothesized that this could be due to the limitations of bulk RNA sequencing and, therefore, queried 

specific CAF markers with qPCR to examine gene expression from cocultures relative to monocultures. 

Using this more granular approach, we identified significant changes in expression of ACTA2 (αSMA), VIM 

(vimentin), and COL1A1 suggesting increased myCAF gene programming in coculture (Supplemental 

Figure 4C).  

 

 

CAFs drive basal gene expression in PDOs through secreted proteins  

While our data suggest proximity between CAFs and tumor cells alters tumor cell classification and 

drives tumor EMT, it remained unclear if this epithelial cell plasticity was due to direct cell-cell 

interaction or a result of signaling mediated by the CAF secretome. To evaluate the role of CAF-secreted 

factors on tumor cell molecular states, we treated PDOs with CAF-conditioned media and queried 

classical and basal gene expression changes using qPCR. Overall, culturing in CAF conditioned media 

induced altered PDO gene expression from classical towards increased basal programming (Figure 5A). In 

exploring the functional implications of CAF-conditioned media, and to examine the capacity of the 

secretome to alter cell migration, we performed a wound healing assay using Panc 10.05 cells25. Cells 

treated with CAF conditioned media from basal patient lines demonstrated an increased rate of wound 

closure as compared to those cultured with conditioned media from CAFs matched to pateints with 

classical PDO lines (Supplemental Figure 5A-B), suggestive of a more basal-like behavior.  

 

To identify secreted proteins that may be responsible for these classical vs. basal molecular and 

functional differences, we analyzed the secretome of conditioned media from patient-derived CAFs, 

comparing media from 3 CAF lines: CAFs from a line that maintains a classical PDO, CAFs from a line that 

maintains a basal PDO, and CAFs that drive classical-to-basal shift in their matched corresponding PDO. 

Upon profiling the CAF secretomes, we found 49 secreted proteins unique to patients that change from 
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classical to basal gene expression (Figure 5B). We input these data into String DB to infer specific 

networks of cell crosstalk driven by protein interactions and selected 3 dominant clusters26. These 

included immune related proteins, growth factor related proteins, and cell mobility and protein-protein 

interaction proteins (Figure 5C). Further pathway-specific analysis suggested that 14 proteins were 

significantly enriched in this patient group compared to other groups. However, while these results infer  

proteins distinctly enriched in the group with plasticity, they do not indicate whether the proteins favor 

classical or basal. To determine the functional roles of these enriched proteins, we treated PDOs with 

recombinant proteins for these 14 hits to evaluate their capacity to alter PDO gene programming from a 

classical to basal phenotype (Supplemental Figure 5C-D). Of the 14 proteins screened, we identified IL-8 

as a key protein in the secretome that maintains gene expression corresponding to a classical phenotype 

in tumor cells (Figure 5D). Yet, IL-8 exposure resulted in no meaningful change to the epithelial cell gene 

expression of basal targets KRT17 and S100A2 (Figure 5D). Thus, it appears that CAF-derived IL-8 

signaling in classical phenotype tumors, when lost, can induce basal gene expression. When we went 

back to our screening data to compare IL-8 secretion across CAF lines, IL-8 secretion was the highest in 

the CAF line that was associated with classical epithelial gene expression, diminished in the CAFs that 

induced basal gene expression in their corresponding PDO, and nearly undetectable in the basal CAF line 

(Figure 5E). This suggests that CAF secreted IL-8 is required to keep tumor cells in a classical tumor 

designation when evaluated within the context of a competent 3D model of the TME. Upon transition 

from our reductionist coculture to patient tissue sections, we found that FAP+, CXCL12+, IL6+, IL-8+ CAFs 

were nearest to classical tumor and mixed tumors (Figure 5F-5G). These data show that IL-8 secreted by 

CAFs promotes preservation of the classical tumor subtype and identify an additional avenue of 

regulatory function for IL-8 within the TME.   

 

Activated T cells are associated with basal tumors  

Finally, since the CAF secretome analysis identified differences in expression of immunomodulatory 

ligands, we broadly examined the relationship between immune cell type in the TME and the 

heterogeneity in myCAF/basal and iCAF/classical neighborhoods. There has been limited clinical success 

employing immune checkpoint blockade to treat PDAC27. The ineffectiveness of immune checkpoint 

blockade has been attributed to immune evasion, low neoantigen burden, and immunoediting; recently, 

CAFs have been hypothesized to affect the immune landscape of the disease28,29. IMC analysis showed 

that among the immune cells, T cells were the nearest immune cells to all tumor cell subtypes (Figure 

6A). Based on our results showing that IL-8, a cytokine involved in T cell suppression and resistance to 
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checkpoint immunotherapy30, is an important determinant of classical phenotype, we hypothesized that 

the T cell frequency may be lower near classical cells. Indeed, T cells were seen at highest frequency 

near basal tumors, at intermediate levels near mixed tumor cells, and at lowest frequency near classical 

tumors (Figure 6B). Effector CD4 and CD8 T cells comprised the largest fractions of T cells, most 

noticeably in the basal and mixed neighborhoods (Figure 6B-C). Collectively, these data demonstrate that 

the character of the adaptive immune infiltration in the TME is heterogenous and associated with 

distinct tumor cell subtype. Future investigation examining immune recognition and function of those 

cells nearest to basal cells and the spatial coordination of immune cells nearest to classical cells could aid 

in better understanding cellular infiltration, recognition, and immunotherapy resistance in PDAC. 

Furthermore, exploring the direct impact of CAF-derived secreted factors including IL-8 on adaptive 

immune populations is warranted. 

 

 

Discussion   

Here, we report a multidisciplinary study using comprehensive IMC to complement novel TME culture 

methods. We employed a living biobank of patient-matched CAFs and PDOs enabling us to broadly 

recapitulate the functional biology of CAFs in vitro and explore CAFs as critical regulators of the PDAC 

TME. By leveraging a combination of high dimensional data and patient-derived coculture, we identified 

CAF driven EMT, a neighborhood specific association of IL-8 secreting iCAF cells with classical tumor cell 

designation and loss of IL-8 expression associated with basal tumor designation. Finally, we identified T 

cells as the most abundant immune cell type associated with tumor-CAF neighborhods, with increased 

abundance in the basal cell and myCAF neighborhoods.  

 

CAF promoted EMT is a complex phenomenon that can occur across tumor types. Prior work has shown 

that epithelial cells can lose expression of E-cadherin and transform into mesenchymal cells with a 

greater ability to migrate through the basement membrane, promote extracellular matrix deposition by 

stromal cells, and increase resistance to chemotherapeutics31–33. These malignant epithelial cells can 

then reach distant organs such as the liver or lung and establish metastatic deposits34,35. These data 

further support a therapeutic emphasis on reprogramming CAFs to limit EMT and therefore prevent 

metastatic spread.  In this current study, we found that our transcriptional signature of CAF-induced EMT 

observed in previously human tumors33,34 is also associated with EMT transitions in PDO CAF co-culture 

independent of prior treatment or subtype. Additional studies were needed to identify specific 
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mechanisms responsible for these pro-tumorigenic changes, and to distinguish EMT induction from 

subtype switching in PDAC. Here in our PDO model we identified one mechanism utilized specifically by 

CAFs to promote a transition from classical to basal tumor cell phenotype in a heterogenous manner 

with the capacity to influence patient-specific outcomes. We identified IL-8 as an important factor 

secreted by classical CAFs that acts to maintain the classical tumor cell phenotype. As the loss of CAF-

derived IL-8 in the TME was associated with a basal tumor cell phenotype, and basal PDAC prognosis is 

particularly bleak, it is reasonable to explore the role of IL-8 maintenance in next-generation therapeutic 

studies.  

 

The role of IL-8 in tumor behavior is complex and incompletely understood, particularly in PDAC. IL-8 has 

been implicated as an important chemokine in PDAC aggressiveness through in vitro work, with studies 

suggesting  tumor cell expression of IL-8 as a hallmark of cells undergoing EMT36. However, there are 

fewer studies examining the impact of IL-8 that is secreted from stromal cells in the TME. Our findings 

suggest IL-8 is central to maintaining a classical tumor cell phenotype, implying that (1) IL-8 in the PDAC 

TME may have more of a functional duality than previously appreciated and (2) the source of IL-8 in the 

TME is not exclusively epithelial cancer cells. Consistent with our findings, Carpenter and colleagues 

previously described KRT17highCXCL8+ (an alternative name for IL-8) tumor cells as an intermediary 

phenotype between classical and basal and correlated with intratumoral myeloid abundance37. Unlike 

the work from Carpenter and colleagues, we exclusively examined the impact of IL-8 on tumor cell 

subtype. This is a critical caveat, as extensive literature supports an immuosuppressive role for IL-8 

through the recruitment of neutrophils and other myeloid derived suppressor cells38,39.  

 

Characterization of CAF heterogeneity remains challenging, given their diverse molecular functions and 

limitations of available model systems9,18,40–42. For example, CAFs have been implicated as having both 

tumor promoting and tumor restraining properties, furthering the challenges associated with 

classification43,44. These collective works demonstrate changes in stromal composition can have many 

effects on tumor development and phenotype. Additionally, PDAC tumor subtypes can be classified 

transcriptionally and can correlate with different types of stroma16,45,46. Our work, collectively with 

others, further reveals the heterogeneous landscape and spatial relevance of both tumor and non-

epithelial cells in the environment, providing an additional source of gene expression, secreted proteins 

and other drivers of the dynamic behavior in the PDAC TME19,47–51. 
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Understanding CAF – tumor cell relationships at a single cell level is critical to more reliably represent the 

inherent intra-tumoral heterogeneity. This is particularly important when considering that many of the 

genes we have focused on are shared between CAFs and tumor cells, such as EMT markers like vimentin. 

While the results from this study further resolve the spatial relationships in the TME, there are also 

shortcomings to this study. Our IMC data are restricted to a panel that looks at these dynamic 

relationships broadly rather than explicitly in a single cell fashion. This presents a challenge when trying 

to relate cellular dynamics to cellular function more deeply and importantly, we were limited in the cell 

types we could comprehensively analyze. While myeloid cells are significant contributors to the TME, we 

were unable to fully characterize myeloid populations due to technical and antibody number limitations. 

Additionally, our CAF – PDO coculture system is an exemplary system to further study the TME. But, it is 

reductionist, and we did not explicitly explore immune interactions in these cocultures. Further immune 

phenotyping and therapeutic intervention opportunities warrant future exploration and provide an 

avenue for next steps integrating immune cells into this system.  

 

Altogether, these findings demonstrate the importance of understanding the complex interplay between 

CAFs and tumor cells in the PDAC TME. We have defined a relationship whereby CAFs drive EMT and 

basal gene expression and also form distinct cellular neighborhoods of iCAFs/classical cells and 

myCAFs/basal cells. We also identified greater activated T cell presence within basal tumor regions, a 

finding that warrants additional exploration as we aim to improve immunotherapeutic strategies for 

PDAC. Future work will prioritize understanding the immunofunctional implications of these tumor cell 

and CAF relationships.  

 

 

Materials and methods 

Imaging Mass Cytometry (IMC) 

Resected pancreas slides were baked at 60°C for 2 hours, dewaxed in histological grade xylene, then 

rehydrated in a descending alcohol gradient. Slides were incubated in Antigen Retrieval Agent pH 9 

(Agilent,® S2367) at 96°C for 1 hour and blocked with 3% BSA in Maxpar® PBS at room temperature for 

45 minutes. Immunohistochemical staining was done through individually conjugated mass cytometry 

antibodies. An antibody cocktail was prepared, detailed in Supplemental Table 1, and used to stain the 

slides at 4°C overnight. Custom antibodies were conjugated in-house, diluted to a concentration of 0.25 

mg/mL to 0.5 mg/mL, then titrated empirically. Cell-ID™ Intercalator-Ir (Standard BioTools, 201192A) was 
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diluted at 1:400 in Maxpar® PBS and used for DNA labeling. Ruthenium tetroxide 0.5% Aqueous Solution 

(Electron Microscopy Sciences, 20700-05) was diluted at 1:2000 in Maxpar® PBS and used as a 

counterstain. Images were acquired through the Hyperion Imaging System (Standard BioTools) at the 

Johns Hopkins Mass Cytometry Facility.  

  

Images were prepared for analysis similarly to prior description52.  In brief, images were segmented using 

nuclear (Ir191 and Ir193) and plasma membrane staining (IMC Segmentation Kit, Standard BioTools, TIS-

00001).  Sixty images were evaluated to assign pixel classifications and establish probability maps using 

Ilastik
53. CellProfiler (v 4.2.4)54,55 was then used to generate segmentation masks for these images based 

on the resulting probability maps. The quality of segmentation was explored visually, and per-cell data 

were exported using histoCAT
56. Clustering of individual cells was achieved using the relative expression 

of cell subtyping and functional markers using Phenograph52. Density of cell types was determined by 

dividing the number of cells detected per cluster by the area of tissue analyzed. Top neighbor analysis 

was performed by compiling the top 3 neighbors to each cell. Heatmaps were generated to display 

aggregated data and clearly label defined clusters. Representative images were prepared using MCD™ 

Viewer (Standard BioTools), overlaying multiple stains and adjusting the threshold to minimize 

background.  These were then exported as 16-bit images. Box plots were generated in R v 3.6.3. using 

ggplot2.   

 

Patient sample acquisition and organoid and CAF line generation  

Patients with PDAC undergoing surgical resection were enrolled in IRB-approved tissue acquisition 

protocols at Johns Hopkins Hospital, Table 1 (IRB: NA_00001584). PDOs were generated from patient 

surgical specimens following a combination of mechanical and enzymatic dissociation as previously 

described57,58. Organoid lines were maintained in Matrigel (Corning, 356234) with Human Complete 

Feeding Media (HCPLT media), detailed in Supplemental Table 2. For organoid passaging, media was 

aspirated and then Matrigel domes were resuspended in Cell Recovery Solution (Corning, 354253) and 

incubated on ice at 4°C for 45 minutes to allow Matrigel depolymerization. Cells were then pelleted and 

washed in human organoid wash media (Advanced DMEM/F12, 10mM HEPES, 1x GlutaMAX, 100µg/mL 

Primocin, 0.1% BSA) prior to pelleting again. Cell pellets were passaged at a ratio of 1:2 and replated in 

Matrigel in new 24-well plates and placed in the incubator for 10 minutes to allow Matrigel to harden. 

500µl Human Complete Feeding Media was added on top of Matrigel domes and plates were returned 

to the incubator for further expansion.  
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CAFs were extracted from surgical resection specimens after remnant tissue was washed twice with 

human organoid wash media and strained through a 70µm cell strainer. Cells were plated into 1 well of a 

6-well plate and allowed to expand before further cell passaging and expansion. CAFs were expanded by 

trypsinization and expanded at a ratio of 1:2 in CAF media (RPMI [Fisher 11-875-085] + 10% FBS + 1% 

Pen/Strep [Gibco 5140122] + 1% L-Glutamine [Gibco 25030081 ] + 0.1% Amphotericin B [Sigma A2942]). 

Both cell types were Mycoplasma tested using Invivogen MycoStrips (rep-mys-100) upon establishment 

and at 6 month intervals thereafter.  

 

Coculture setup and cell acquisition: Prior to coculture setup, PDOs and CAFs were lineage verified using 

short tandem repeat evaluation completed at the Johns Hopkins Genetics Resource Core Facility 

(Supplemental Table 3). CAFs were grown in monolayer and characterized with flow cytometry using 

common CAF markers such as VIM, PDPN, PDGFRα, FAP, and αSMA to demonstrate preserved 

interpatient heterogeneity (Supplemental Figure 6A-C). Epithelial PDOs were established and expanded 

from primary PDAC tumors as previously described57. PDOs were confirmed to be viable, and EpCAM 

positive (Supplemental Figure 6D-F). Further CAF characterization was performed, in line with prior 

studies, as cell type markers can display high levels of variability11,18,59,60. To more discretely examine CAF 

heterogeneity and demonstrate specificity of cell type marker expression, we used qPCR to examine 

gene expressison of 7 CAF and 5 tumor markers in 8 represetative CAF lines and 6 representative PDOs 

(Supplemental Figure 6G). This allowed us to better define the CAF subtypes prior to inclusion in a three 

dimensional organotypic co-culture system.  

 

We further optimized a novel PDO-CAF coculture method by taking a reductionist approach and 

considering the effects of media composition on resulting cell counts (Supplemental Figure 7A-C; 

Supplemental Table 2) and Matrigel dissociation methods on cell yield (Supplemental Figure 7D) prior to 

proceeding with further coculture studies. We also compared the effects of different PDO-CAF ratios on 

CAF expression of αSMA (Supplemental Figure 7E-F); PDOs and CAFs were combined at ratios of 1:1, 1:2, 

1:3, 1:5, and 1:10 organoids to CAFs. Cocultured cells were resuspended in different concentrations of 

Matrigel from 100% to 25% Matrigel (Corning, 356234). To generate lower Matrigel content conditions, 

Matrigel was supplemented with 5% CAF Media (RPMI + 5% FBS + Pen/Strep, 0.1% Amphotericin B) and 

plated in triplicate in 24-well tissue culture dishes. Matrigel domes were allowed to harden at 37℃ for 1 

hour before adding 500µl CAF media containing 5% FBS to overlie the dome. To extract cells from 
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coculture, supernatant was aspirated, and each dome was digested with either 1mg/mL dispase solution 

or 2mg/mL collagenase IV for 45min at 37℃. Wash media was added to each well to quench collagenase 

digest and each well was transferred to a 96-well deep well plate to collect. The plate was centrifuged for 

5 minutes at 1500 RPM, supernatant was aspirated, and cells were resuspended in wash media. 

Centrifugation and supernatant aspiration were then repeated. Cell pellets were resuspended in TrypLE 

Express (ThermoFisher Scientific, 12604013) following manufacturer instructions to dissociate organoids 

into single-cell suspension for use in downstream assays.  

 

 

RNA seq 

 

Sample preparation and alignment 

RNA sequencing sample preparation, library construction, quality control, sequencing, and alignment 

was done as previously described in detail by Guinn and colleagues56. Briefly, cocultured cells were 

isolated, sorted by FACS and immediately underwent RNA extraction (Qiagen RNeasy Kit, 74004). Quality 

was assessed by Nanodrop1000 (Thermo Fisher Scientific) and via an external Novogene assessment 

using an Agilent 2100 Bioanalyzer (Agilent, Santa Clara, CA). mRNA was purified using a magnetic bead 

approach and cDNA was constructed using random hexamer primers. Libraries were checked with Qubit 

and pooled for sequencing Illumina platforms to a depth of 40 million reads per sample. The co-cultured 

organoid sample for JHH 390 did not meet quality metrics upon sequencing, so it was held from analysis. 

All downstream analysis that include a monoculture to coculture comparision exclude JHH 390. 

Alignment was performed utilizing Salmon v1.9.061 on the Joint High-Performance Computing Exchange 

(JHPCE). “salmon_partial_sa_index__default.tgz” was used as the index for alignment for the HG38 

genome, which was premade and available on refgenie62. 

 

Differential gene expression and pathway analysis 

We evaluated sample quality from the distribution of reads as visualized in a boxplot of log counts. We 

observed no samples with zero median expression, reflective of a low read count, so all samples have 

good quality. We used principal component analysis (PCA) of the variance stabilization transform (vst) 

RNA-seq data to evaluate sample clustering. Two samples were identified as not expressing canonical 

markers of their respective cell types, and being these were of the same patient and timepoint, a 

renaming was completed to correct for this. Differential expression analysis was completed multiple 
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ways for this study using the DESeq263 package (v1.32.0): coculture organoids compared to monoculture 

organoids and coculture CAFs compared to monoculture CAFs.   

 

Estimated fold changes were shrunk with apeglm64 using lfcShrink to account for the variation in the 

samples in this dataset. Genes were statistically significant if the absolute log2-fold changes after 

shrinkage were greater than 0.5 and the FRD-adjusted p-values below 0.05. Gene set statistics were run 

with fgsea65 using MSigDb v7.4.166 pathways annotated in the HALLMARK, KEGG, REACTOME, 

ONCOGENIC and GO databases. Gene sets were considered to be significantly enriched with FDR-

adjusted p values below 0.05. The results were visualized with ggplot267. 

 

CibersortX 

To better understand the cellular heterogeneity in the PDOs and CAFs, raw counts were uploaded to 

CIBERSORTx68 for further deconvolution of cell subtypes. Imputation of cell fractions was completed 

using a signature matrix generated from reference single-cell RNA-seq data of PDAC tumors which we 

previously collated and standardized from a range of public domain datasets23. This allowed for the 

estimation of cell fraction based on the bulk gene expression using the default parameters and 1000 

permutations for statistical analysis. Results were plotted on a heatmap utilizing ComplexHeatmap69 

v2.8.0 and comparison boxplots using ggplot2. 

 

Data and code availability  

Raw reads for the RNA-seq data are being submitted to dbGAP and processed read counts are being 

submitted to GEO.  IMC data are available at Zenodo (10.5281/zenodo.14219608). All scripts from 

analysis will be made available through Github.  
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Table 1 Patient Demographics 

Patient
*
 Age Sex Time to 

recurrence 

(mo) 

KRAS 

NGS 

Neoadjuvant 

treatment 

Adjuvant 

treatment  

Surgical 

Procedure
# 

Pathologic 

Stage 

JHH317 72 F 20.2 G12D Gemcitabine nab-

paclitaxel and 

immunotherapy  

Gemcitabine nab-

paclitaxel and 

immunotherapy 

DPS T3N2 

JHH348 84 F 9.9 G12R Untreated None Whipple T3N2 

JHH352 57 F 14.7 G12V FOLFIRINOX FOLFIRINOX Whipple yT1N2 

JHH357 62 M 22.9 G12V FOLFIRINOX Gemcitabine 

Capecitabine 

Whipple yT2N2 

JHH361 63 M 20.7 G12D FOLFIRINOX Gemcitabine 

Capecitabine 

DPS yT2N0 

JHH362 83 F - - Untreated - DPS T2N1 

JHH368 79 F 23.3 G12R Gemcitabine nab-

paclitaxel 

Gemcitabine DPS yT2N2 

JHH369 57 M 4.7 G12D FOLFIRINOX Gemcitabine nab-

paclitaxel 

Whipple yT2N1 

JHH372 57 M 7.0 Q61H FOLFIRINOX Gemcitabine nab-

paclitaxel 

Whipple yT2N0 

JHH380 85 F 6.2 G12V Untreated None DPS T3 

JHH383 57 F 12.2 G12R Immunotherapy FOLFIRINOX and 

Gemcitabine nab-

paclitaxel 

Total 

pancreatectomy 

and 

splenectomy 

yT3N2 

JHH387 55 M 8.2 G12D FOLFIRINOX - DPS yT4N2 

JHH388 52 M 5.9 G12D FOLFIRINOX Gemcitabine nab-

paclitaxel 

DPS yT3N0 

JHH390 54 M - G12D FOLFIRINOX FOLFIRINOX 

Olaparib
$
 

Whipple T2N0 

JHH417 72 F 9.8 G12V Untreated FOLFIRINOX Whipple T2N2 

*JHH348, JHH362, JHH380 were included in pilot bulk RNA sequencing; JHH388 and JHH417 were added to the IMC cohort and are not 

represented in the RNA sequencing data; JHH390 cocultured organoid sample did not meet quality parameters for analysis and thus is omitted 

from direct comparisons between monoculture and cocultured organoids 

# DPS: Distal pancreatectomy and splenectomy 

$ Patient has germline BRCA2 mutation 
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Supplemental Table 1 IMC markers 

Mass Metal Antigen Clone Dilution 

Factor 

Source Custom 

89 Y CD45 D9M8I 125 Cell Signaling 
Technology® 

X 

96-104 Ru Counterstain 
  

Electron 
Microscopy 
Sciences 

 

113 In Collagen E8F4L 250 Cell Signaling 
Technology® 

X 

115 
 

E-Cadherin 24E10 125 Cell Signaling 
Technology® 

X 

141 Pr αSMA 1A4 500 Standard 
BioTools™ 

 

142 Nd Podoplanin D2-40 125 Biolegend® X 

143 Nd Vimentin D21H3 500 Standard 
BioTools™ 

 

144 Nd S100A4 D9F9D 250 Cell Signaling 
Technology® 

X 

145 Nd CD45RO UCHL1 250 Biolegend® X 

146 Nd CD16 EPR167
84 

100 Standard 
BioTools™ 

 

147 Sm CD163 EDHu-1 125 Standard 
BioTools™ 

 

148 Nd Pan-Keratin C11 125 Standard 
BioTools™ 

 

149 Sm TFF1/pS2 D2Y1J 200 Cell Signaling 
Technology® 

X 

150 Nd PD-L1 E1L3N 125 Cell Signaling 
Technology® 

X 

151 Eu PD-1 D4W2J 125 Cell Signaling 
Technology® 

X 

152 Sm CD31 89C2 250 Cell Signaling 
Technology® 

X 

153 Eu Tox/Tox2 E6I3Q 250 Cell Signaling 
Technology® 

X 

154 Sm CD57 HNK-1 250 Cell Signaling 
Technology® 

X 

155 Gd Foxp3 PCH101 75 Standard 
BioTools™ 

 

156 Gd CD4 EPR685
5 

125 Standard 
BioTools™ 

 

158 Gd N-Cadherin D4R1H 125 Cell Signaling 
Technology® 

X 

159 Tb CD68 KP1 100 Standard 
BioTools™ 
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160 Gd IL-6 D3K2N 125 Cell Signaling 
Technology® 

X 

161 Dy CD20 H1 125 Standard 
BioTools™ 

 

162 Dy CD8α C8/144
B 

250 Standard 
BioTools™ 

 

163 Dy PDGFRα D1E1E 250 Cell Signaling 
Technology® 

X 

164 Dy IL-8 E5F5Q 250 Cell Signaling 
Technology® 

X 

165 Ho GATA6 Polyclo
nal 

250 R&D Systems™ X 

166 Er CD45RA HI100 250 Standard 
BioTools™ 

 

167 Er Granzyme B D6E9W 125 Cell Signaling 
Technology® 

X 

168 Er Ki-67 B56 250 Standard 
BioTools™ 

 

169 Tm CXCL12 D8G6H 125 Cell Signaling 
Technology® 

X 

170 Er CD3ε Polyclo
nal, C-
termina
l 

125 Standard 
BioTools™ 

 

171 Yb S100A2 Polyclo
nal 

125 Novus 
Biologicals™ 

X 

172 Yb FAPα EPR200
21 

250 Abcam X 

173 Yb CD137 (4-
1BB) 

D2Z4Y 125 Cell Signaling 
Technology® 

X 

174 Yb HLA-DR LN3 250 Standard 
BioTools™ 

 

175 Lu CD105 3A9 125 Cell Signaling 
Technology® 

X 

176 Yb KRT17 D12E5 250 Cell Signaling 
Technology® 

X 

191 Ir DNA 1 
  

Standard 
BioTools™ 

 

193 Ir DNA 2 
  

Standard 
BioTools™ 

 

195 Pt Plasma 
Membrane 2 

1A36 250 Standard 
BioTools™ 

 

196 Pt Plasma 
Membrane 3 

1A37 250 Standard 
BioTools™ 

 

198 Pt Plasma 
Membrane 4 

1A38 250 Standard 
BioTools™ 
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Supplemental Table 2 HCPLT media 

Volume  Stock Concentration Reagent Final Concentration 

36.415 mL  Human Wash Media  

50 mL 2X Wnt2a-conditioned 
media 

1X 

10 mL 10X R-spondin1-
conditioned media 

1X 

2 mL 50X B27 supplement 1X 

1 mL  1 M Nicotinamide 10mM 

250 uL 500 mM N-acetylcysteine 1.25mM 

200 uL 50 mg/mL Primocin 100ug/mL 

100 uL 100 ug/mL mNoggin 100ng/mL 

10 uL 500 ug/mL hEGF 50ng/mL 

10 uL 1000 ug/mL hFGF 100 ng/mL 

10 ul 100 uM hGastrin I 10 nM 

2 uL 25 mM A 83-01 500 nM 

100 uL 10.5 mM Y-27632* 10.5 uM 

Y-27632 (Rho Kinase Inhibitor) is necessary to maintain organoids after first generation, when organoids 
are thawed, or when organoids are enzymatically dissociated.  
 

Supplemental Table 3 Lineage Verification 

PDO Line %Match Alleles shared Alleles in line 1 (CAF) Alleles in line 1 (org) 

JHH317 97.14% 17 17 18 

JHH348 61.11% 11 17 19 

JHH352 96.97% 16 17 16 

JHH357 100% 18 18 18 

JHH361 84.85% 14 19 14 

JHH368 97.14% 17 18 17 

JHH369 100% 19 19 19 

JHH372 94.44% 17 19 17 

JHH380 100% 16 16 16 

JHH383 100% 16 16 16 

JHH387 100% 19 19 19 

JHH390 100% 15 15 15 
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Supplemental Table 4 mRNA Target Assay ID 

mRNA Target Assay ID 

αSMA Hs05032285_s1 

BCAR5 Hs00981962_m1 

CD44 Hs01075864_m1 

CEACAM6 Hs03645554_m1 

CLDN18 Hs00212584_m1 

COL1A1 Hs00164004_m1 

DES Hs00157258_m1 

EpCAM Hs00901885_m1 

FAP Hs00990791_m1 

GAPDH Hs02786624_g1 

GATA6 Hs00232018_m1 

GPR87 Hs00225057_m1 

KRT5 Hs00361185_m1 

KRT6a Hs04194231_s1 

KRT9 Hs00413861_m1 

KRT17 Hs00356958_m1 

KRT19 Hs00761767_s1 

LGALS4 Hs01071113_g1 

PDGFRα Hs00998018_m1 

S100A4 Hs00243202_m1 

S100A2 Hs00195582_m1 

SOX9 Hs00165814_m1 

TFF1 Hs00907239_m1 

TFF3 Hs00902278_m1 

VIM Hs00958111_m1 
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Figure legends 

Figure 1 

Spatial proteomic profiling of patient tumors identifies defined clusters and regions of cells in PDAC.  

(A) Visualization of different regions that were acquired for IMC analysis - Stromal high (blue and purple), 
Tumor high (red and yellow) regions annotated by an expert pathologist (JWL). Immune high (red and 
purple) and immune low (blue and yellow) regions were chosen when possible. (B) IMC panel markers 
grouped by cell type. (C) Cell type heatmap annotations by examining relative expression of relevant 
markers included in the IMC panel. (D) Total number of cells analyzed by region visualized as distribution 
by patient. (E) Representative images of 4 PDAC patients demonstrating classical markers (TFF1 - Green), 
basal markers (KRT17 - Red), myCAF (αSMA - blue), activated CAF (VIM – pink), Merge, and matching 
H&E images observed at 10x magnification (scale bar = 100µm), (N=15). 
 
Figure 2 

Spatial proteomics analysis reveals myCAFs are spatially located nearest to basal PDAC tumor cells 

(A) Cell type heatmap for data subset for CAFs and tumor cells. Cell type annotations were determined 
by relative expression of relevant markers included in the IMC panel. (B) Total number of cells analyzed 
by region with visualization of distribution by patient. (C) Heat map showing nearest neighbor analysis 
identifying distinct CAF subtypes that are closest to basal, classical, and mixed tumor cells. (D) Stacked 
barplot showing cell type frequencies of CAF subtypes that are present nearest to basal, classical, and 
mixed tumor cells dictating increased myCAF frequency near basal cells, and increased iCAF frequency 
near classical cells. (E) Representative images of IMC and H&E for 2 patients that have basal rich and 
classical rich regions displayed in one ROI. Images depict more myCAF presence (αSMA+) and intensity in 
basal rich (KRT17+) regions (top row for each patient), H&E scale bar = 50µm.  
 
Figure 3 

RNA sequencing of patient matched PDO and CAF coculture reveals that CAF presence drives 

heightened EMT in PDOs 

(A) Graphical schematic depicting creation of the biobank from patient tumors and workflow for 
performing RNA sequencing. (B) Representative image of CAF – PDO coculture prior to harvest for RNA 
sequencing. Large arrow points towards CAF and smaller arrow towards PDO. (C) Unsupervised 
clustering of viable cells from 12 patient CAF – PDO cocultures represented as PCA plot. (D) Resolution of 
coculture and monoculture cells represented by PCA plot.  (E) Resolution of each patient represented by 
PCA plot. JHH 390 co-org did not meet quality parameters upon sequencing, so it was excluded from 
analysis. (F) Differential gene expression of PDO samples that are monocultured (left) compared to 
cocultured (right). (G) Overrepresented MSigDB hallmark gene sets in PDO samples that are 
monocultured (left) compared to cocultured (right).  (H) ProjectR transfer learning of gene signatures 
inferred in single-cell RNA-seq data of PDAC tumors (35) onto the RNA sequencing data demonstrates 
that the pattern associated with inflammatory signaling and EMT inferred in our prior study is enhanced 
in only PDO cells from coculture relative to PDO cells from monoculture in this study, p=5.6e-5 by two-
tailed paired students T-test. (I) Representative time-course images of monoculture PDO and coculture 
CAF - PDO demonstrating the morphologic changes that occur in PDO over the course of two weeks that 
is not seen in the monoculture PDOs, images taken at 10X on Echo Rebel microscope. (J) Representative 
images from IMC showing traditional EMT markers, E-cadherin, N-cadherin, and Vimentin. Quantification 
of E-cadherin (K) and vimentin (L) expressed in basal tumor cells near a CAF or not near a CAF. (M) 
Proliferation of tumor cells in monoculture setting or coculture setting. 5 patients were profiled with 4 
technical replicates per patient. Significance is measured as: ****, p<0.0001; ***, p<0.001; **, p<0.01; 
*, p<0.05; ns, not significant. 
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Figure 4 

CAFs drive changes in PDO gene expression from classical to basal tumor cell classification 

(A) Heatmap displaying basal and classical gene expression in PDOs between coculture and monoculture 
samples. (B) Basal gene expression on a per patient basis. Red hashed box demonstrates the PDOs that 
upregulate basal gene expression in coculture PDOs (n=5) (p=0.0022). (C) Top 5 PDO lines that change 
from classical to basal in coculture setting. Comparisons of conditions are statistically supported using 
the two-tailed students t-test with equal variance p=0.0022. (D) Differential gene expression showing the 
genes upregulated in n=7 lines that do not shift (left) and genes upregulated in PDO that become basal 
n=5 (right) visualized by volcano plot. (E) Overrepresented MSigDB Hallmark gene sets in PDO samples 
that do not shift (left) compared to PDO samples that shift – “changers” (right).  
 
Figure 5 

CAFs that drive basal gene expression in PDO secrete distinct proteins such as IL-8. 

(A) CAF CM treated PDOs have decreased classical gene expression (left) by qPCR for GATA6, TFF1, 
CLDN18, and LGALS4. CAF CM treated PDOs show increased basal gene expression (right) by qPCR for 
KRT17, KRT6a, KRT7, S100a2, and BCAR1. JHH352 did not amplify for KRT17. (B) Heatmap of conditioned 
media secretome analysis from CAFs that change PDO from classical to basal (far left), CAFs that do not 
change classical, CAFs that do not change basal (far right). Results show normalized Z-Score of biological 
replicates. (C) StringDB protein interaction network. (D) Classical phenotype gene qPCR readout from 
PDOs treated with rIL-8 compared to untreated (left), basal phenotype gene qPCR readout from PDOs 
treated with rIL-8 compared to untreated (right). (E) IL-8 secretion from proteome screen (B) analyzed by 
normalized Z score. Comparisons of rIL-8 and untreated conditions are statistically supported using the 
two-tailed students t-test with equal variance in PRISM (V9.2.0 [283]). (F) Resolved heatmap of CAF 
defined markers where IL-8+ CAF are nearest to classical or mixed tumor cells. (G) Representative images 
IMC of 3 patients showing colocalization of IL-8 and classical tumor markers. Significance is measured as: 
****, p<0.0001; ***, p<0.001; **, p<0.01; *, p<0.05; ns, not significant.  
 
Figure 6 

T cells are located in closest proximity to tumor cells 

(A) Heatmap of nearest neighbor analysis of immune cells and tumor cells where T cells are the 
predominant immune cell near all classifications of tumor cells both my proximity (A) and by frequency 
(B). (C) Representative images of patient IMC showing tumor cells (KRT17+, TFF1+) and immune cells 
(CD3+, CD163+) colocalizing. 
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