
Systems biology

MEWpy: a computational strain optimization workbench

in Python

Vı́tor Pereira *, Fernando Cruz and Miguel Rocha

Centre of Biological Engineering, University of Minho, Braga 4710-057, Portugal

*To whom correspondence should be addressed.

Associate Editor: Pier Luigi Martelli

Received on October 10, 2020; revised on December 29, 2020; editorial decision on December 30, 2020; accepted on January 5, 2021

Abstract

Summary: Metabolic Engineering aims to favour the overproduction of native, as well as non-native, metabolites by
modifying or extending the cellular processes of a specific organism. In this context, Computational Strain
Optimization (CSO) plays a relevant role by putting forward mathematical approaches able to identify potential
metabolic modifications to achieve the defined production goals. We present MEWpy, a Python workbench for
metabolic engineering, which covers a wide range of metabolic and regulatory modelling approaches, as well as
phenotype simulation and CSO algorithms.

Availability and implementation: MEWpy can be installed from PyPi (pip install mewpy), the source code being
available at https://github.com/BioSystemsUM/mewpy under the GPL license.

Contact: vpereira@ceb.uminho.pt

1 Introduction

Constraint-Based Modelling (CBM) provides tools for the integra-
tive analysis of molecular systems and quantitative prediction of
physicochemical and biochemical phenotypic states. Recently, sev-
eral modelling approaches have arisen putting forward a growing in-
tegration of the transcriptional and translational layers and
respective omics data (e.g. transcriptomics, proteomics) with
Genome-Scale Metabolic Models (GSMMs), to improve the charac-
terization of cell physiology, while contributing to a better under-
standing of the organisms’ metabolism. Some illustrative approaches
are the GECKO toolbox (Sanchez et al., 2017) and OptRAM (Shen
et al., 2019), which respectively integrate proteomics and transcrip-
tional regulation for enhanced phenotype predictions. These integra-
tive modelling approaches provide computational interfaces to run
phenotype prediction methods, which may be explored by
Computational Strain Optimization (CSO) methods.

CSO consists on identifying the set of genetic modifications, to
be introduced in an organism, that optimize a desired engineering
goal. Typically, the goal is to maximize the production of a com-
pound of interest, while assuring that the organism remains viable.
Deterministic approaches to CSO problems, such as OptKnock
(Burgard et al., 2003), identify the best set of genetic modifications
by converting a bilevel mixed integer linear formulation into a single
level one (Maia et al., 2016). While an inner problem addresses the
biological objective, cellular growth, the outer problem focuses on
the engineering goal, the overproduction of the desired compound.
Such approaches, however, do not scale well with larger models or
higher number of perturbations. Hence, alternative approaches con-
sider meta-heuristics, such as Evolutionary Algorithms, to explore

the high dimensionality search space of genetic perturbations
(Rocha et al., 2008). OptFlux (Rocha et al., 2010) (written in Java)
and CAMEO (Cardoso et al., 2018) (a Python library) are two
open-source software frameworks, which include heuristic-based
CSO, but are currently restricted to the use of GSMMs only contain-
ing metabolites, reactions and gene-protein-reaction (GPR)
associations.

In this context, and given the lack of integrative tools for the
increasing number of modelling approaches, we propose MEWpy,
an integrated Metabolic Engineering Workbench written in Python,
that offers methods to explore different classes of constraint-based
models, including metabolic, enzymatic or regulatory constraints.
MEWpy enables using different modelling approaches, such as the
GECKO toolbox and OptRAM algorithm, to run different pheno-
type prediction algorithms, and allowing them to be used to support
strain optimization.

2 Architecture of MEWpy

MEWpy aims to provide a Python implementation of CSO algo-
rithms, which can run over GSMMs defining GPR associations, but
also over the previously discussed enhanced modelling approaches.
The conceptual architecture of MEWpy, which is highlighted in
Figure 1, encompasses three layers, from bottom to top, a problem
definition layer, a phenotype simulation layer and an optimization
layer, next further detailed:

• Problem definition layer. The definition of the CSO problem,

includes the selected modelling framework, the definition of the

VC The Author(s) 2021. Published by Oxford University Press. 2494

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits

unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 37(16), 2021, 2494–2496

doi: 10.1093/bioinformatics/btab013

Advance Access Publication Date: 18 January 2021

Applications Note

http://orcid.org/0000-0002-8661-9626
http://orcid.org/0000-0003-2468-7364
http://orcid.org/0000-0001-8439-8172
https://github.com/BioSystemsUM/mewpy
https://academic.oup.com/


modification targets (reactions, genes, proteins or regulatory var-

iables present in the model), the modification strategy (deletion,

over-/under expression), together with the target product and the

environmental conditions;
• Phenotype simulation layer. This layer aggregates the methods

used to evaluate the mutant strains generated by the CSO algo-

rithm, specifically, Flux Balance Analysis (FBA), parsimonious

FBA (pFBA), Regulatory On/Off Minimization of metabolic flux

(ROOM), Minimization of Metabolic Adjustment (MOMA) and

its linear version (lMOMA) as well as Flux Variability Analysis

(FVA). MEWpy also includes implementations of the regulatory

FBA (rFBA) and of the Steady-state rFBA (srFBA) to incorporate

transcriptional regulation.
• Optimization layer. This layer encompasses the optimization

heuristics used for strain optimization and respective objective

functions. At each iteration of the optimization algorithms, the

fitness of candidate solutions is asserted by running the pheno-

type simulations required by the objective functions.

2.1 Optimization algorithms
Regarding the CSO algorithms, MEWpy resorts to Evolutionary
Algorithms (EAs), given their flexibility in the definition of objective
functions. EAs are stochastic algorithms inspired by nature. They
maintain a population of solutions, encoded metabolic modifica-
tions, whose interactions drive the optimization process. At each
generation, mating and mutation operators produce a new solution
set, from which the fittest are selected to integrate the next popula-
tion. Such a meta-heuristic mimics the Darwinian evolutionary prin-
ciples to find sets of modifications whose phenotype best address the
optimization problem.

EAs have been applied in metabolic engineering frequently con-
sidering a single optimization objective or a weighted aggregated
sum of distinct objective functions. Such approaches add increased
difficulties: the trade-offs between optimization objectives need to
be adequately chosen beforehand; each objective value needs to be
normalized; single objective EAs, and in particular Genetic
Algorithms (GAs), are more prone to get stuck in a local optimum,
evidencing premature convergence, as they manifest more difficulty

in preserving high diversity within the populations (Pandey et al.,
2014).

Multi-objective EAs (MOEAs), on the other hand, enable the
formulation of strain design problems that account for the simultan-
eous optimization of more than one objective (e.g.: product rate,
growth rate, biomass product coupled yield, number of modifica-
tions). MOEAs deliver in a single run a set of solutions with differ-
ent trade-offs between the objectives, providing a broader set of
possible perturbations for analysis.

Currently, the EAs are implemented by the Inspyred (Tonda,
2020) and JMetalPy (Benı́tez-Hidalgo et al., 2019) Python libraries.

2.2 Modelling approaches
MEWpy offers means for the exploitation of constraint-based mod-
els that account for the following types of constraints:

• Metabolic Constraints: MEWpy enables to evaluate phenotypes

resulting from genes’ or reactions’ over- or under-expression, as

well as deletion. Modifications of gene expression are reflected

into the catalysed reactions by converting gene-protein-reaction

(GPR) rules into flux constraints. GPR rules are converted to al-

gebraic expressions replacing the (AND, OR) Boolean operators

by (min, max) functions (this may be overridden according to

user preferences) and gene identifiers by expression values.

Modifications on reactions fluxes are achieved by altering their

bounds.
• Enzymatic constraints: MEWpy provides tools to modify enzym-

atic expression. GSMMs model metabolism and gene-reaction

interactions, but are oblivious to other important factors (e.g. en-

zyme kinetics and abundance) which affect cells’ metabolism.

The incorporation of such elements as additional constraints

leads to better and more accurate phenotype prediction. As such,

MEWpy offers means to realize strain optimization by imposing

enzymatic constraints using GECKO models (GSMM with en-

zymatic constraints using kinetic and omics data) (Sanchez et al.,

2017) or sMOMENT (short MetabOlic Modelling with ENzyme

kineTics) (Bekiaris and Klamt, 2020) models.
• Regulatory constraints: the complex cross talking mechanisms be-

tween gene regulation and metabolism are not captured by GSMMs

alone. Ergo, MEWpy also contemplates CSO strategies towards

designs that impose regulatory constraints, notably, the OptORF

(Kim and Reed, 2010) and OptRAM (Shen et al., 2019) algorithms.

The MEWpy implementation of OptORF presently allows for the

identification of gene deletions (for both metabolic genes and tran-

scription factors). On the other hand, OptRAM considers up- and

down-regulation strategies, as well as deletions. While OptRAM

authors propose a Simulated Annealing (SA) algorithm to identify

strategies that increase the production of specific compounds in

yeast (single objective), MEWpy also supports multi-objective opti-

mization with the already mentioned added benefits.

Different phenotype simulation methods are seamlessly provided
by COBRApy (Ebrahim et al., 2013) and REFRAMED libraries,
including Flux Balance Analysis, and several variants adapted for
the prediction on mutant phenotypes and encompassing regulatory
constraints (Fig. 1).

3 Working examples and documentation

MEWpy globally defines optimization tasks as problems that differ
on modification targets and strategy, but they all follow the same
required minimal steps: (i) load a model, (ii) choose the optimization
objectives, (iii) instantiate the problem and (iv) run the optimization.
Next, a minimal example is presented, without the necessary
imports, that aims to optimize the yield of a target product by

Fig. 1. Conceptual architecture of the MEWpy framework. Phenotype prediction

methods: Flux Balance Analysis (FBA); parsimonious FBA (pFBA); Minimization of

Metabolic Adjustment (MOMA); linear version of MOMA (lMOMA); Regulatory

On/Off Minimization of metabolic flux (ROOM); Flux Variability Analysis (FVA);

regulatory FBA (rFBA); Steady-state regulatory FBA (srFBA). Evolutionary

Algorithms: Genetic Algorithm (GA); Simulated Annealing (SA); Strength Pareto

EA (SPEA2); Non-dominated Sorting GA, versions II (NSGAII) and III (NSGAIII).

Objective functions: Biomass-Product Coupled Yield (BPCY); Weighted Yield

(WYIELD)

MEWpy 2495



modifying gene expression. The objective functions, to be maxi-
mized, are the biomass-product coupled yield (BPCY) and the
weighed sum of the minimum and maximum product fluxes

(WYIELD).

f1¼ BPCY(biomass_id, product_id, method¼’lMOMA’)
f2 ¼ WYIELD(biomass_id, product_id)
problem ¼ GOUProblem(model , [f1, f2])
ea ¼ EA(problem)
ea.run()

In addition, configurations may be added in steps (ii)–(iv) reflect-
ing, for example, the chosen growth medium, a maximum number

of allowed modifications, the selected EA, the number of iterations
or the number of parallel threads. The MEWpy documentation,

which can be found at https://mewpy.readthedocs.io, covers the ex-
tensive list of available configurations. Additionally, some illustra-
tive examples are included in the project github repository in the

form of Jupyter Notebooks.

4 Conclusion

MEWpy offers a practical interface to several strain optimization

heuristics, allowing to model and optimize microbial production on
GSMMs defining gene–protein-reaction associations, but also on

models enhanced with transcriptional and translational layers.
Metaheuristics such as EAs and SA, including multi-objective meth-
ods, drive the optimization towards the best set of enzymes, genes or

reactions, to under/over-express or delete to maximize the produc-
tion of a target compound.

New methods are presently being added to enable CSO resorting
to Metabolism Expression and Thermodynamics Flux (ETFL) mod-

els (Salvy and Hatzimanikatis, 2020) and Metabolism and
Expression models (ME-models)(Lerman et al., 2012). By enabling
the analysis and comparison of solutions obtained from distinct

algorithms and modelling approaches, MEWpy will become an es-
sential tool for the development of microbial cell factories towards
the production of natural products.

Funding

This project received funding from the European Union’s Horizon 2020 re-

search and innovation programme [814408].

Conflict of Interest: none declared.

References

Bekiaris,P.S. and Klamt,S. (2020) Automatic construction of metabolic models

with enzyme constraints. BMC Bioinformatics, 21, 19.

Benı́tez-Hidalgo,A. et al. (2019) jMetalPy: A Python framework for multi-objec-

tive optimization with metaheuristics. Swarm Evol. Comput., 51, 100598.

Burgard,A.P. et al. (2003) Optknock: a bilevel programming framework for

identifying gene knockout strategies for microbial strain optimization.

Biotechnol. Bioeng., 84, 647–657.

Cardoso,J. et al. (2018) Cameo: A Python library for computer aided metabolic

engineering and optimization of cell factories. ACS Synth. Biol., 7, 1163–1166.

Ebrahim,A. et al. (2013) COBRApy: COnstraints-Based Reconstruction and

Analysis for Python. BMC Syst. Biol., 7, 74.

Kim,J. and Reed,J.L. (2010) OptORF: optimal metabolic and regulatory pertur-

bations for metabolic engineering of microbial strains. BMC Syst. Biol., 4, 53.

Lerman,J.A. et al. (2012) In silico method for modelling metabolism and gene

product expression at genome scale. Nat. Commun., 3, 929.

Maia,P. et al. (2016) In silico constraint-based strain optimization methods:

the quest for optimal cell factories. Microbiol. Mol. Biol. Rev., 80, 45–67.

Rocha,M. et al. (2008) Natural computation meta-heuristics for the in silico

optimization of microbial strains. BMC Bioinformatics, 9, 499.

Rocha,I. et al. (2010) OptFlux: an open-source software platform for in silico

metabolic engineering. BMC Syst. Biol., 4, 45.

Salvy,P. and Hatzimanikatis,V. (2020) The ETFL formulation allows

multi-omics integration in thermodynamics-compliant metabolism and ex-

pression models. Nat. Commun., 11, 30.

Sanchez,B.J. et al. (2017) Improving the phenotype predictions of a yeast

genome-scale metabolic model by incorporating enzymatic constraints.

Mol. Syst. Biol., 13, 935.

Shen,F. et al. (2019) OptRAM: in-silico strain design via integrative

regulatory-metabolic network modeling. PLoS Comput. Biol., 15, e1006835.

Tonda,A. (2020) Inspyred: bio-inspired algorithms in Python. Genet. Program

Evol. Mach., 21, 269–272.

Pandey,H.M. et al. (2014) A comparative review of approaches to prevent pre-

mature convergence in GA. Appl. Soft Comput., 24, 1047–1077.

2496 V.Pereira et al.

https://mewpy.readthedocs.io

