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Abstract
Background: In analyzing the stability of DNA replication origins in Saccharomyces cerevisiae we
faced the question whether one set of sequences is significantly enriched in the number and/or the
quality of the matches of a particular position weight matrix relative to another set.

Results: We present SADMAMA, a computational solution to a address this problem. SADMAMA
implements two types of statistical tests to answer this question: one type is based on simplified
models, while the other relies on bootstrapping, and as such might be preferable to users who are
averse to such models. The bootstrap approach incorporates a novel "site-protected" resampling
procedure which solves a problem we identify with naive resampling.

Conclusion: SADMAMA's utility is demonstrated here by offering a plausible explanation to the
differential ARS activity observed in our previous mcm1-1 mutant experiments [1], by suggesting
the relevance of multiple weak ACS matches to efficient replication origin function in Saccharomyces
cerevisiae, and by suggesting an explanation to the observed negative effect FKH2 has on chromatin
silencing [2]. SADMAMA is available for download from http://www.cs.cornell.edu/~keich/.

Background
In analyzing the stability of DNA replication origins in S.
cerevisiae (see Stable vs. unstable ARSs in mcm1-1 mutant
below) we faced the question of whether one set of
sequences has more and/or better binding sites of a partic-
ular transcription factor than the other. One way to
address this question is through wet lab experiments such
as chromatin immunoprecipitation. Here we offer a com-
putational alternative, which can be effective provided the

PWM (position weight matrix, e.g. [3]) representation of
the transcription factor is known. An obvious advantage
of our computational approach is that it is much cheaper
to execute and it provides a built-in statistical significance
analysis.

There are many computational tools that scan for "good"
matches of a given PWM (e.g., [4-7]). Similarly there are
tools that look at the significance of PWM matches in a set

Published: 12 September 2008

BMC Bioinformatics 2008, 9:372 doi:10.1186/1471-2105-9-372

Received: 1 May 2008
Accepted: 12 September 2008

This article is available from: http://www.biomedcentral.com/1471-2105/9/372

© 2008 Keich et al; licensee BioMed Central Ltd. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 12
(page number not for citation purposes)

http://www.biomedcentral.com/1471-2105/9/372
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18786274
http://www.cs.cornell.edu/~keich/
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


BMC Bioinformatics 2008, 9:372 http://www.biomedcentral.com/1471-2105/9/372
of sequences (e.g., [8]). None of these however directly
apply to our problem, where the null assumption is that
there is "essentially" no difference in the binding sites
between the two input sets, even though both might be
enriched, deficient, or neutral in sites when compared to
"background" sequences. Elkon et al. look for enrichment
in the number of sites in a subset of a genomic scale set of
promoters [9]. In particular their approach is not applica-
ble when the sets of sequences are either disjoint or small.
There has also been work on discriminative de-novo motif
finding (e.g., [10]) where the goal is to find a PWM that
discriminates between two sets of sequences. This is quite
different from our stated goal where the PWM is given and
the focus is on assigning significance to the difference in
the number and/or quality of sites. Robin et al. study a
very similar problem to ours, only in the context of a pat-
tern representation of the motif [11]. In Conclusions sec-
tion we emphasize some of the differences between this
paper and their theoretical work. Here we present SAD-
MAMA (Significance Assessment of the Difference in
MAtrix MAtches) – the tool we have developed to address
the aforementioned problem. SADMAMA implements
two different strategies for testing the difference in site fre-
quency as well as site quality between the two input sets.
The quicker approach relies on a couple of simplified sta-
tistical models from which we derive and carefully imple-
ment the appropriate tests. As an alternative for accepting
our simplified models, we offer bootstrapping which, by
its nature, requires fewer assumptions, but consumes
more time. The development of our bootstrap procedure
required some innovation since, as we show below, a
naive resampling approach can create false positives. That
is, it can indicate a significant difference between two
input sets that are essentially equivalent as far as the PWM
sites are concerned.

Our motivation for developing SADMAMA came from
our study of replication origins in S. cerevisiae (reviewed in
[12]). DNA replication is a fundamental process essential
for cell proliferation. While the proteins that are involved
in initiating DNA replication are essentially conserved
from yeast to humans, the implicated sequence motifs
that these conserved factors interact with are poorly
understood outside of S. cerevisiae ([13,12]). Moreover,
even for S. cerevisiae the replication initiation process is
not completely understood. For example, it is known that
the roughly 400 replication origins in S. cerevisiae ([14-
16]), called ARSs (Autonomously Replicating Sequences),
differ in several important aspects from one another.
These include timing and efficiency of origin firing, as well
as sensitivity to mutations in proteins involved in replica-
tion initiation. However, much of this variability is yet to
be explained and this is an active area of research. Our
study in [1] was designed to identify ARSs that are prefer-
entially used in yeast strains defective for replication initi-

ation. SADMAMA was specifically designed to suggest
sequence motifs that might explain the preferential usage
we observed in [1]. Such information could help us gain
insight into the determinants that regulate replication ori-
gin usage. Given our motivation for SADMAMA's devel-
opment, it is fitting that we demonstrate its utility in that
context:

• We show that SADMAMA provides a possible explana-
tion for the difference in replication efficiency among two
sets of ARSs we identified in [1].

• Essential to replication initiation is the binding of the
ORC (Origin Recognition Complex) to the ACS (ARS
Consensus Sequence) [17]. Using a screen for fragments
of S. kluyveri DNA that have ARS function in S. cerevisiae,
we provide evidence that support a recent conjecture that
ORC binding in some S. cerevisiae ARSs requires multiple,
seemingly redundant ACS matches [18].

• Finally, we demonstrate how SADMAMA can be used for
exploratory data analysis.

Results and Discussion
Statistical Models and Tests
Scoring words and identifying sites

Since our goal is to assess the difference between the PWM
matches in the two input sets we first need to define what
we consider as a match. In order to do so we first need to
specify how we score each putative site, or word of length
l, where l is the length, or width, of the PWM. We use the

log-likelihood ratio score  where

 and Mij is the frequency of letter j in

position i of the motif, and p0(w) is the null likelihood of

w. Note that M here represents the PWM as a PFM (Posi-
tion Frequency Matrix). In this paper we will generally not
make the distinction between the two. Also note that
given that our null model is a Markov chain the annota-
tion p0(w) is somewhat misleading as this probability typ-

ically depends on the few characters preceding w in the
sequence.

A word w is considered a match if its score exceeds a user
specified threshold. For example, only words whose
scores lie in the top 0.1% of the null scores are considered
matches (in practice this threshold is determined using an
appropriate null training model). While this defines
whether a single word w is considered a match or not, we
would often hesitate to consider two matches that almost
completely overlap as two distinct matches. Here again we
rely on the user to specify the amount of overlap that is
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tolerated between distinct sites, and we apply a greedy
strategy to choose sites that conform to the specified over-
lap.

Measuring the difference in the number of sites: The binomial model
To assign significance to the site-frequency difference
between the sets, we assume that matches (sites) occur in
each of the sets according to a binomial model B(ni, pi) i =
1, 2, where ni is the number of possible sites in the corre-
sponding set (roughly the set length), and pi is the site fre-
quency. Clearly this simplistic model glosses over the
problem of dependence between overlapping sites. How-
ever, overlap is not a real issue with most PWMs given a
reasonably high threshold. Such thresholds are typically
chosen anyhow, as binding sites are meant to be rather
rare.

The null hypothesis H0 is that, p1 = p2. Note that this is dif-
ferent from the "null background", which specifies how
the background is generated. In particular, H0 does not
assume that all matches are merely random background
matches, rather that they are some mixture of random
background matches and "real sites". The alternative
hypothesis can be a two sided p1 ≠ p2 or a one sided p1 > p2
or p2 > p1. Assuming our binomial model, we can readily
test for violation of the null assumption based on the fact
that conditioned on the joint number of matches, the
number of matches in the first set has a hypergeometric
distribution if p1 = p2 (see the Methods section for details).
We therefore compute the two one-sided-alternative p-val-
ues by summing up the appropriate tails of the hypergeo-
metric distribution.

Measuring the difference in the quality of sites
We offer two ways to measure the difference in the quality
of the sites. Our null assumption is that the scores of the
sites from the two sets form two independent samples
from the same, unknown, distribution. A plausible alter-
native is that one distribution tends to produce better
scores than the other, or more precisely, that it is stochas-
tically greater. The Mann-Whitney test is a non-parametric
test that is optimized for testing the alternative that one
distribution is a shifted version of the other. While we
cannot assume this particular alternative here, this test
should still be a reasonably good choice.

Alternatively, SADMAMA can perform a t-test of the differ-
ence between the two averaged scores. However, if the
motif length l is not very large, the score distribution can
be very far from normal (e.g. [19]). Since the t-test relies
on the normal assumption, it should be taken with a grain
of salt here (in a future release we hope to provide a test
of the validity of the assumptions required by this t-test).
Since the match scores can be repeated, especially when l
is small, we are often forced to use the tied version of the

Mann-Whitney test. This becomes important when the
overall number of matches in at least one of the sets is
rather small (say ≤ 10). In this range, the use of the normal
approximation to the Mann-Whitney test is generally dis-
couraged and exact calculation should be used. The latter
are significantly more costly for the tied case than for the
no-ties case. By default, SADMAMA decides on its own
which method to use when estimating the significance of
the test. If the samples are sufficiently large it uses the nor-
mal approximation. Otherwise, it uses exact methods to
evaluate the significance of the test. If no-ties are present,
it relies on Harding's exact algorithm [20], while if there
are ties, it uses a naive dynamic programming approach
written by Niranjan Nagarajan.

Keep in mind that if one tests for a difference in the qual-
ity of the sites in addition to the frequency of sites, then
you should, in principle, adjust for multiple testing. Note
that in general we cannot assume that these two tests are
independent of one another.

The bootstrap approach
SADMAMA offers a bootstrap [21] inspired set of tests as
an alternative to the simplified models described above.
Bootstrap is a "plug-in" method: to estimate some param-
eter of a complex distribution we conceptually plug into
the appropriate formula an approximating distribution
that is typically derived from a small sample of the origi-
nal distribution. It is often the case that even after plug-
ging in the simplified, approximating distribution we still
need to resort to Monte Carlo methods to estimate the tar-
get parameter. These methods work by generating random
samples from the simplified distribution, computing a
relevant statistic, and finally estimating the parameter of
interest from all these samples of the statistic. In our case
the complex distribution is the one which generated the
two sets, which is not really well defined, and which, in
particular, does not yield additional samples. Our model
of the simplified distribution is that the two input sets are
generated by sampling (with replacements) contiguous
blocks or substrings of b letters from some joint pool.
SADMAMA's default assumption is that this joint
sequence pool is simply the concatenation of the two
input sets. The parameters we are after, are p-values of the
statistics that measure the differences in the quality and
quantity of sites between the two sets. In particular, SAD-
MAMA can keep track of the difference in site density as
well as the difference in mean site score between the two
sets.

For example, to evaluate the difference in site frequency
between the two input sets, SADMAMA first finds this dif-
ference. It then creates a large number of "bootstrap
images" of the two input sets by resampling b-long sub-
strings, or blocks, from the concatenated original sets.
Page 3 of 12
(page number not for citation purposes)



BMC Bioinformatics 2008, 9:372 http://www.biomedcentral.com/1471-2105/9/372
Using these Monte Carlo images, SADMAMA generates an
empirical distribution of the difference in site density,
from which we can readily deduce an "empirical p-value"
of the difference in site density between the original input
sets. With increasing number of bootstrap images, this
empirical p-value should better approximate the p-value
defined by our simplified distribution. The latter should
in turn be a reasonable approximation of the "real" p-
value defined in terms of the original, complex distribu-
tion.

While in principle this is how SADMAMA implements
bootstrapping, there is one more issue we had to address.
Generally, when resampling the input sets we would like
to avoid using blocks that are too long, as those hinder
"proper mixing". The problem with smaller blocks is that,
especially when the block size b is smaller than the motif
width, essentially all the original sites that were present in
the joint pool are obliterated during resampling. This is
not an issue if both sets consist only of the "background
signal". However, if the two sets are highly enriched with
sites, yet in the same way, this kind of bootstrap test might
erroneously report significant difference in site density.
The reason is that the difference between the two enriched
sets might be significant when compared with the typical
difference between sets that were essentially made to look
like background sets by inadvertently destroying all the
sites (see the section on Applications of SADMAMA
below).

To avoid such false positives, we implemented in SAD-
MAMA a novel "site-protected bootstrap" approach. It is
designed to allow us to sample from the original sites even
if the block size is smaller than the motif width. More
explicitly, each randomly chosen block might be extended
so as to avoid chopping sites. The decision whether or not
to extend, or protect, each such block is made in a proba-
bilistic and independent fashion. The length of the exten-
sion is the minimal one necessary to avoid chopping any
site that started (or, ended if reverse complement search is
considered) within the original block. The probability of
extending a block is defined so as to make the expected
frequency of sites in the combined bootstrap sets the same
as the frequency of sites in the original pool. See the Meth-
ods section for details on the technique and the section on
Applications of SADMAMA for examples of its utility.

In general we found that the bootstrap tests follow closely
the simplified models based tests. While the bootstrap
approach might seem more attractive as it is not derived
from an arguably overly simplified model, it takes consid-
erably longer to run to get reliable estimates.

Applications of SADMAMA
Stable vs. unstable ARSs in mcm1-1 mutant
Mcm1 is a transcription factor that has been shown to
affect the efficiency of replication origins both directly, by
binding to replication origins ([22,23]), and indirectly, by
regulating the expression of several factors of the pre-rep-
lication complex [24]. The mcm1-1 point mutant has been
shown to exhibit DNA replication defects in S. cerevisiae
[25].

Functionally, ARSs are divided into two types based on
their ability to function in mcm mutant strains such as
mcm1-1. Stable, or A-type ARSs function efficiently in
both wild-type and mutant cells, whereas unstable, or B-
type ARSs function poorly in mcm mutant backgrounds.

Several previous studies have shown a relationship
between replication initiation and local transcription pat-
terns ([26,1]). More precisely, in [1] we show that tran-
scriptional interference correlates with reduced ARS
activity in that 80% of ARSs located in such transcription-
ally active zones are B-type, whereas only 45% are B-type
in transcriptionally inactive zones (see Table 1). While
transcriptional interference is statistically significant, it is
clearly not the sole determinant of ARS activity under this
unfavorable condition (mcm1-1 mutant).

Higher affinity for Mcm1 has been suggested to be a dis-
tinguishing feature for telomeric ARSs that are constitu-
tively active in the mcm1-1 mutant [23]. In particular,
footprinting assays identified a set of binding sites of
Mcm1 in these ARSs. Interestingly, many of these sites can
be considered as "half sites", in that they match only half
of the canonical Mcm1 binding site. It is thus tempting to
conjecture that stable or A-type ARSs would, in general,
exhibit better (possibly half) binding sites for Mcm1 than
B-type ARSs. Similarly, it was suggested that Abf1 may also
have a positive effect on the formation of the pre-replica-
tion complex (e.g., [27-29]) and is therefore another nat-
ural candidate for our differential binding affinity
analysis.

Table 1: Classification of A-type and B-type ARSs based on local 
transcription patterns

Transcription pattern ARS efficiency in mcm1-1

Unstable (B-type) Stable (A-type)

→ • → ← • ← → • ← (+) 32 8
← • → (-) 13 16

Arrow represents direction of transcription. Filled circle represents 
location of ARS. (+) = transcriptional interference; (-) = no 
transcriptional interference. Using Fisher's exact with a test two-sided 
alternative, independence is rejected at 0.0018.
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To test these hypotheses we applied SADMAMA to ana-
lyze the difference in the quality and/or number of these
PWM matches (MCM1, half-MCM1, ABF1) between the
stable and unstable sets of transcriptionally active, or (+),
ARSs. SADMAMA did not find statistically significant var-
iation in the quality or the number of MCM1 matches (see
the Methods section for more details). However, it found
that the stable set has more half-MCM1 sites (threshold
0.05% p-value 0.007) or alternatively better sites (thresh-
old 0.1% p-value 0.002). Similarly the stable set has more
ABF1 sites (threshold 0.1% p-value 0.002), or alterna-
tively better sites (threshold 0.5% p-value 0.003). These p-
values should be adjusted for the fact that we considered
3 thresholds (0.5%, 0.1%, and 0.05%) but they are still
significant at the 5% level even after this adjustment. We
had no reason to suspect a difference in ACS matches, and
indeed SADMAMA's corresponding p-values were unim-
pressive even before the multiple testing adjustment. The
p-values reported above were generated using the hyperge-
ometric or Mann-Whitney tests. However, Monte Carlo
site-protected bootstrap tests gave very similar results
(block size b = 12).

For comparison we also applied SADMAMA to study the
difference in these PWM matches between the stable and
unstable set of transcriptionally inactive, or (-), ARSs. This
time no significant p-values were reported. Taken together
these results support the hypothesis that half binding sites
of MCM1 as well as sites of ABF1 in flanking regions of an
ARS may protect the ARS from incoming transcription
traffic ([23,29]) but would have little influence on the sta-
ble ARSs that are not subjected to transcriptional interfer-
ence.

S. kluyveri vs. S. cerevisiae ACS
To get a better understanding of DNA replication initia-
tion in S. cerevisiae, we performed a screen to isolate frag-
ments of S. kluyveri DNA that have ARS function in S.
cerevisiae. Specifically, we cloned random fragments of S.
kluyveri DNA into an ARS-less vector, transformed the
resulting genomic libraries into S. cerevisiae, and isolated
46 distinct plasmids which showed ARS activity (S. kluy-
veri ARSs below). Using the same protocol we also iso-
lated 36 native S. cerevisiae ARSs (S. cerevisiae ARSs
below). Naturally, one wonders what confers S. cerevisiae
replication activity to these S. kluyveri DNA segments. In
particular, we should compare them to our native S. cere-
visiae ARSs, and SADMAMA is a convenient tool for that.

We looked for significant differences between the S. kluy-
veri and the S. cerevisiae set of ARSs in terms of binding
sites of several auxiliary DNA binding factors that are
known to be associated with replication initiation: Mcm1,
half sites of Mcm1, Rap1, and Abf1. SADMAMA did not
find significant variation in any of these. However, sur-

prisingly SADMAMA did find significantly more ACS
matches in the S. kluyveri ARSs than in the S. cerevisiae
ARSs (threshold 0.05% p-value 0.0004). Interestingly,
when it came to quality of sites, SADMAMA reported that
the S. cerevisiae ARSs had better sites (threshold 0.05% p-
value 0.008). This analysis suggests that the cerevisiae rep-
lication initiation machinery can function with multiple
weaker ACS sites such as the ones we found in the S. kluy-
veri ARSs as well as with the fewer but better native sites.
This conjecture is consistent with a recent related analysis
of native S. cerevisiae ARSs that contain multiple ACS
matches [18].

It is interesting to note that the S. cerevisiae ARSs (the over-
whelming majority of which lie within intergenic regions)
have the same AT content as the general S. cerevisiae inter-
genic average: 66%. However, 69% of the S. kluyveri ARSs
are made of AT, which is significantly higher than the 58%
AT content for general S. kluyveri intergenic regions. Since
the ACS matrix is itself AT-rich, we asked whether these S.
kluyveri ARSs owe their functionality only to a local spike
in the AT content. Using SADMAMA we addressed this
question in two different ways. First we compared the S.
kluyveri set of ARSs with 10,000 random permutations of
itself. In all of those 10,000 comparisons SADMAMA
found that the permuted set had a statistically significant
smaller number of sites (see the Methods section details).

Similarly, we used SADMAMA to compare the ACS PWM
with 4,000 column-wise random permutations of itself.
In only 19 of these 4,000 comparisons did the S. kluyveri
set have more sites of the permuted PWM than the origi-
nal PWM (keep in mind that the ACS PWM is very AT rich
itself so many of the permutations should not look that
different from the original PWM). Taken together, these
two tests indicate that there is more "ACS information" in
our S. kluyveri ARSs than their AT content alone yields.

Site-protected bootstrap
To test the utility of the "site-protected" bootstrap option
in a realistic setting we generated two sets of S. cerevisiae
ARSs by arbitrarily splitting a subset of the confirmed
ARSs in the DNA replication origin database OriDB [30],
into two roughly equal sets: an "even" and an "odd" one.
Given the arbitrary nature of the split between the sets we
expect that there should not be a substantial difference in
ACS sites between the two. Note, however, that both sets
are highly enriched with ACS sites (see the subsection on
Bootstrap tests in the Methods section for details).

Using the hypergeometric test SADMAMA found, as
expected, no significant difference in ACS site-frequency
between these two sets. However, when using the naive
bootstrap approach with block size b ≤ 15 SADMAMA
consistently reported that one of the sets is significantly
Page 5 of 12
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enriched in sites. On the other hand, when the "site-pro-
tected" bootstrap option was turned on, SADMAMA con-
sistently found the difference in site-frequency between
the two sets to be insignificant (even for b = 1).

A look at Figure 1 and Figure 2 explains what is going on.
The total number of sites in a naively resampled pair of
sets is typically significantly smaller than the number of
sites in the input sets whereas the site-protected option
manages to be consistent with the total number of sites in
the two input sets. Note how the range of values observed
in Figure 1 is significantly smaller than the range observed
in Figure 2. This smaller range suggests that normal ran-
dom fluctuations observed when sampling from the latter
distribution might be considered very significant when
compared against fluctuations observed when sampling
the first distribution.

Exploratory data analysis with SADMAMA
SADMAMA can also be used to study potential enrich-
ment of binding sites within a single set. For example, we
studied whether the set of all 325 confirmed S. cerevisiae
ARSs taken from OriDB [30] shows enrichment of PWM
matches for any one of the 79 S. cerevisiae transcription
factor PWMs defined by Morozov and Siggia [31]. For
each such PWM SADMAMA tested whether the frequency
of sites in the ARS set is significantly higher than in ARS-
less S. cerevisiae intergenic file (see the Methods section).
After adjusting for multiple testing, the only PWM that
showed such statistically significant site frequency enrich-
ment is the one representing FKH2. Interestingly, Fkh2 is
known to interact with Mcm1 to form a complex that reg-
ulates the cell cycle dependent expression of the CLB2
cluster in G2/M phases in S. cerevisiae [32].

A histogram of the total number of sites in 10,000 naively resampled pair of setsFigure 1
A histogram of the total number of sites in 10,000 naively resampled pair of sets. The mean total number of sites is 
33. For comparison, there are 173 sites in the input pair of sets. Here b = 10 (see the subsection on Bootstrap tests in the 
Methods section for additional settings).
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Upon closer inspection of the set of ARSs we found that
many of the sites SADMAMA attributed to FKH2 over-
lapped with ACS matches and indeed aligned properly the
matrices are quite similar. Moreover, after masking the
high scoring ACS matches in the set of ARSs SADMAMA
found the FKH2 site enrichment insignificant (see the
Methods section for more details). Finally, the actual
binding location data for FKH2 [33] exhibits no signifi-
cant correlation with ACS sites located in confirmed ARSs.

This result seems somewhat disappointing given that the
enrichment of FKH2 sites can apparently be explained by
the obvious enrichment of ACS sites. However, SAD-
MAMA's results still leave us with a potentially interesting
question: does the similarity between binding sites of
FKH2 and the ACS have any biological importance? Anal-
ysis of the literature suggests a positive answer is conceiv-

able. Specifically, when overexpressed, Fkh2p is known to
have a negative role in silencing the silent mating-type
cassette HMRa in S. cerevisiae [2]. Moreover, it is known
that ORC binding to the ACS is associated with the chro-
matin silencing process at this locus (e.g. [34-36]). Con-
sistent with the similarity we observed in their binding
sites, it is tempting to conjecture that FKH2 might inter-
fere with the chromatin silencing process by offering some
form of competitive binding to ORC. Since the interfer-
ence of Fkh2p was observed when it was overexpressed,
the lack of support from the location data [33] does not
rule out this conjecture.

Conclusion
SADMAMA offers a computational solution to a novel
problem: does one set of sequences have a statistically sig-
nificant increase in the number and/or the quality of sites

A histogram of the total number of sites in 10,000 site-protected resampled pair of setsFigure 2
A histogram of the total number of sites in 10,000 site-protected resampled pair of sets. The mean total number 
of sites is 175. For comparison, there are 173 sites in the input pair of sets (b = 10).
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of a given PWM than another set. Note that setting the sec-
ond set as a large background set SADMAMA can also be
used to assign significance to matches in a single input set.
SADMAMA implements two types of tests: one type is
based on simplified sequence models while the other
relies on bootstrapping and as such might be preferable to
users who are averse to simplifying models. Generally,
when resampling the input sets we would like to avoid
using blocks that are too long, as those hinder "proper
mixing". However, as we show, a naive resampling proce-
dure using shorter blocks can bias the tests. SADMAMA
implements a new stochastic feature, which we term site-
protected resampling, and which successfully solves this
problem.

SADMAMA's utility is demonstrated here by offering a
plausible explanation to the differential ARS activity
observed in our previous mcm1-1 mutant experiments [1],
by suggesting the relevance of multiple weak ACS matches
to efficient replication origin function in S. cerevisiae, and
by suggesting an explanation to the observed negative
effect FKH2 has on chromatin silencing [2].

To the best of our knowledge, we are the first to present a
tool for studying the difference in matrix matches between
two sets. Very recently, and independently of us, Robin et
al. posed the analogous problem in the context of pattern
representation of a motif [11]. Our hypergeometric test
derived from our binomial modelling of the number of
sites is somewhat similar to their binomial test, which is
derived from a Poisson model. However, since we deal
with matrices, we also study the difference in quality of
sites which they do not. SADMAMA also offers a bootstrap
approach which is not discussed by Robin et al. Finally,
we provide a computational tool while they describe sta-
tistical tests.

We identified several ways to improve and expand SAD-
MAMA's current set of features. To name a couple, SAD-
MAMA currently assumes that the input sequences are
independent which therefore excludes it from analyzing
phylogenetically related sequences. Given the increased
availability of related genomes, extending SADMAMA to
handle such cases is highly pertinent. Similarly, for some
cases one can argue that a more appropriate motif sites
model is that each sequence is endowed with a small, say
Poisson drawn, number of sites. Currently, SADMAMA
fails to correctly handle this model if there are significant
differences in the length of the sequences, and extending
it to address this model as well is highly desirable. Finally,
helping the users with analyzing multiple tests when such
are specified could increase SADMAMA's utility. For
example, when more than one site-threshold is consid-
ered, or when both the frequency and the quality of sites
are examined.

Methods
Hypergeometric test
The abstraction of our binomial model for the number of
sites in each of the input sets coupled with our null
assumption that p1 = p2 = p is as follows. Suppose X is a
binomial B(n, p) random variable and Y, which is inde-
pendent of X, is B(m, p) (same p). Conditioned on X + Y =
k (total number of sites in both sets), X has a hypergeo-
metric distribution H(n, m, k):

Thus the p-value of an observed value X = x against the one
sided alternative p1 > p2 is

where k is the combined number of sites observed in both
sets, and n1 and n2 are the number of feasible site locations
in the input sets (slightly less than their lengths due to
"edge effects": a site cannot begin too close to a sequence
end). Technically we use Catherine Loader's carefully
implemented package [37] to execute the crux of the com-
putation.

Site-protected bootstrap
The success of the site-protected bootstrap option in SAD-
MAMA hinges on its ability to set a "reasonable" value for
α, the probability that SADMAMA protects the block
(more precisely, it minimally extends the randomly cho-
sen block so as to include all sites that started within that
original block). SADMAMA's strategy is to choose α so
that the expected total frequency of sites across the two
sets is close to (ideally the same as) the site frequency ν in
the sample pool. By default, the latter is the concatenation
of the two input sets. Setting α = 0 amounts to the naive
resampling approach as no block will be extended. As we
saw in the section on Applications of SADMAMA this
tends to generate samples with site frequency <ν (Figure
1). These site-poor samples can in turn inflate the overall
significance of the test. On the other hand, setting α = 1
amounts to protecting every sampled block. This setting
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does not take into account potential new sites appearing
across the seams of sampled blocks and therefore it tends
to generate samples with site frequency > ν. This in turn
could yield a test which is too conservative.

SADMAMA sets α before the main resampling loop
begins. Our goal is to set α so that the frequency of sites in
an infinitely long sequence constructed from the site-pro-
tected resampling procedure will be exactly ν. In reality we
settle for a fairly long sequence generated by this proce-
dure. But how long is long enough? Clearly, this length
should be a function of ν: the smaller ν is, the longer the
training sequence needs be. More generally, how can we
be confident we have a "reasonable" estimate of a Ber-
noulli success probability ν? One way is to generate suffi-
ciently many trials so that the size of our confidence
interval for ν is a small fraction, γ, of ν (γ = 0.05 is SAD-
MAMA's default). Here we aim at estimating a site fre-
quency which is roughly ν so using a Wald (normal)
confidence interval implies

where c is a small factor determining the size of the confi-
dence interval (c = 3 by default), and n is the resampled
sequence length we seek. It follows that we should set

In practice, to keep runtime and memory requirements
under control SADMAMA caps the size of this sequence
using a compilation time parameter (currently set at 106).

One approach to setting α would be to design a binary
search keeping in mind the stochastic nature of the resam-
pling procedure. The main downside of such an approach
is that generating and then scanning a large sequence for
sites can be time consuming. While one can imagine vari-
ous tricks to speed up this process we chose a different
shortcut.

As mentioned above, there are two types of sites in our
site-protected resampled sequence of length n. Type I sites
are sites that are entirely contained in a resampled block,
i.e., they also appear in the original sample pool. Type II
sites, are newly generated sites that span two or more resa-
mpled blocks. These resampled blocks are adjacent in the
resampled sequence but not in the original sample pool.
Let K be the (random) number of blocks required to gen-
erate the resampled sequence and let Bi denote the ith ran-
dom block. Then the random number of sites, Sα, is given
by

To simplify our derivation, we now assume that the block
size b is less than the motif length l and we ignore the fact
that the last block is typically truncated. In this case, the
event {Bi has a type I site} only occurs if originally a site
starts in block Bi, with probability ≈ b ν, and the block is
protected, with probability α. It follows that

The number of blocks we extend is negatively correlated

with K. However, to first order,  and, as

lνα is typically negligible compare to , we can assume

 is roughly constant. Therefore,

where  is the probability of a

new, shared-block, site.

The exact form of (1) is not that important to us here, as
is the fact that the right hand side is a linear function of α
(see also Figure 3 for an empirical demonstration). We
therefore estimate E (Sα) for α = 0 and α = 1 by generating
corresponding resampled sequences of length n and
counting the number of observed sites m0 and m1 respec-
tively (these resampled sequences are solely generated for
the purpose of determining α and are not further used in
SADMAMA's main bootstrap tests). SADMAMA then
relies on linear interpolation to set

so that E (Sα) = nν. Note that if  SADMAMA sets α

= 0 and throws up a warning that random shuffling of
blocks creates more sites than there were to begin with.

Similarly, if  SADMAMA sets α = 1 as that is the

highest density of sites you can get with this recipe.

Background model
In all the tests we report, we used SADMAMA's default set-
ting of a 3rd order Markov background model. Unless
otherwise stated, the training file from which this model
was learned was our "standard S. cerevisiae intergenic file".
This file was generated by removing from the S. cerevisiae
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genome downloaded from SGD [38] all protein and RNA
coding sequences including tRNA, rRNA, snoRNA, snRNA
and other presumably irrelevant elements such as LTR,
and repetitive sequences. We also generated an "ARS-less
S. cerevisiae intergenic file" by removing all 325 OriDB-
confirmed ARSs [30] from our standard S. cerevisiae inter-
genic file.

Stable vs. unstable ARSs in mcm1-1 mutant
The ARSs we identified in our mcm1-1 screen were much
longer than the typical size of confirmed ARSs in OriDB
[30]. To perform our statistical analysis we therefore
restricted our attention to what we conjectured to be the
core of each of these ARSs. Specifically, we picked the best
ACS match in each of these ARSs, as predicted by [39], and

considered only the 200 bases on each side of this match.
Similar lengths were explored giving essentially the same
picture. We note that two of the ARSs, one stable and one
unstable, had no predicted ACS matches so we left those
out for this analysis.

The ABF1 and MCM1 matrices were taken from TRANS-
FAC [40] via TESS [5]. Given the palindromic nature of
the MCM1 sites, the half MCM1 matrix was defined by
adding the reverse complement of the second halves to
the first halves of the sites. The ORC matrix was taken
from [39]. All matrices were adjusted using a total pseudo-
count of 10% added uniformly to all bases. Site thresh-
olds were set so that 0.5%, 0.1%, and 0.05% of the words
in the standard S. cerevisiae background file exceeded

The expected number of sites as a linear function of αFigure 3
The expected number of sites as a linear function of α. Average total number of sites in the sequence per α, the prob-
ability that a sampled block is extended. Site threshold, background file and all similar settings were as described in the subsec-
tion on Bootstrap tests in the Methods section. The average was taken over 100 random resampled sequences of length n per 
each value of α.
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these numbers. The maximal overlap allowed between
sites in this as well as all our other tests in this paper was
the default 20%.

S. kluyveri vs. S. cerevisiae ACS
Our S. kluyveri set of ARSs included 46 S. kluyveri DNA seg-
ments (defined using DpnII which is a 4-cutter restriction
enzyme recognizing the sequence GATC) that conferred S.
cerevisiae-ARS activity to the plasmid. The S. kluyveri set
included 37,176 bases, 69% of which were AT. Our S. cer-
evisiae set, generated using the same protocol, included 36
sequences of S. cerevisiae DNA containing 29,561 bases,
66% of which were AT. The ACS matrix was again taken
from [39]. Given the amount of data from which this
PWM was generated, we used a reduced pseudocount of
1% added uniformly to all bases. Our ARS screen was car-
ried out in S. cerevisiae and as noted the AT content of the
kluyveri set was much more in line with S. cerevisiae inter-
genic DNA than S. kluyveri one. We therefore used the
aforementioned standard S. cerevisiae intergenic back-
ground file. The site threshold was set to 0.05%, that is,
roughly 5 in 10,000 words in the background file are
above the chosen threshold (similar results were observed
with the 0.1% threshold).

In our first of two types of permutation tests we ran SAD-
MAMA 10,000 times with the S. kluyveri set serving as the
first as well as the second input set. SADMAMA was
instructed to randomly permute the second input set,
which it does by separately permuting each sequence in
the set. In each of these 10,000 runs the unpermuted S.
kluyveri set was deemed to have more sites with a p-value
≤ 0.05.

In the second of our permutation tests we ran SADMAMA
4,000 times comparing the S. kluyveri set against a dummy
set while asking SADMAMA to permute the given ACS
matrix. SADMAMA then found the threshold so that the
background file will have a rate of 0.05% sites of the per-
muted matrix which is the same as the percentage of sites
for the original, unpermuted, ACS matrix. For each per-
muted matrix we keep tally of how many sites SADMAMA
identifies in the S. kluyveri set (in this mode no tests were
actually done: SADMAMA simply counts the number of
sites above the threshold which it computed as described
above), and we compare those counts with the number of
(unpermuted) ACS sites in the same set. It is important to
note that, generally, setting the threshold can be rather
arbitrary. However, this is not the case when you want to
compare site counts of different matrices. Therefore, to
make sure the threshold is set to control "background"
rather than "real" sites we used the ARS-less S. cerevisiae
background file in this test.

Bootstrap tests
From the list of 325 confirmed S. cerevisiae ARSs on OriDB
[30] we selected all ARSs shorter than 400 base pairs.
Ordering these selected ARSs according to their location
in the genome, we then assigned all even numbered ARSs
to the "even" set (116 sequences, 28327 bases) and all the
odd ones to the "odd" set (116 sequences, 28932 bases).
Using the hypergeometric test SADMAMA p-valued these
sets' enrichment in ACS sites relative to the ARS-less S. cer-
evisiae intergenic file (see Methods section) at 3 × 10-90

and 6 × 10-74 respectively. In these runs SADMAMA used
same ACS matrix from [39] and pseudocount of 0.1 as
above. The site threshold was set to 0.01% relative to the
background file which was the standard S. cerevisiae inter-
genic file.

Using the same settings, SADMAMA's hypergeometric test
comparing the even and the odd sets was insignificant at
0.87 and 0.16, depending on the chosen one-sided alter-
native. However, using the naive bootstrap test with block
length b = 6, SADMAMA reported that the even set is sig-
nificantly enriched for ACS sites with a p-value of 0.0005.
The difference is still significant at 0.008 for b = 10, and it
is even significant for b = 15 at 0.04. With the site-pro-
tected feature turned on and b = 6, SADMAMA found the
observed difference in ACS sites frequency to be insignifi-
cant at 0.87 and 0.13 depending on the chosen one-sided
alternative. These p-values remained roughly the same for
all other block lengths we looked at including b = 1. Other
bootstrap settings were: site statistics are gathered set-
wide, using 10,000 resampled pairs, both sets are resam-
pled from a sequence generated by concatenating the two
input sets (-tests freqScoresGTT MC -- -MCstatScope
setWide -numRandomSets 10000 -set1RandTrainFile
_BOTH_ -set2RandTrainFile _BOTH_ -MCmodel boot-
strap -v 0.2 -m 3 -pwmPC 0.01 -siteThresholdLearned-
From 0.0001 nullTrainFile).

Exploratory data analysis with SADMAMA
We downloaded the set of "Phylogibbs PWM predictions"
of Morozov and Siggia [31], which contains 79 predicted
S. cerevisiae matrices. For each of these matrices SAD-
MAMA looked for enrichment in site frequency in the set
of 325 confirmed ARSs relative to the ARS-less S. cerevisiae
intergenic file. The threshold was set to 0.05% relative to
the standard S. cerevisiae intergenic background file, and a
total pseudocount of 10% was added uniformly to all
bases. The p-value of the FKH2 matrix is 4.7 × 10-5 and the
p-values for all other 78 matrices are > 10-3, which is insig-
nificant when corrected for the multiple testing.
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