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Abstract

Attention deficit hyperactivity disorder (ADHD) is a common neurodevelopmental

disorder in school-age children. Attentional orientation is a potential clinical diagnos-

tic marker to aid in the early diagnosis of ADHD. However, the underlying patho-

physiological substrates of impaired attentional orienting in childhood ADHD remain

unclear. Electroencephalography (EEG) was measured in 135 school-age children

(70 with childhood ADHD and 65 matched typically developing children) to directly

investigate target localization during spatial selective attention through univariate

ERP analysis and information-based multivariate pattern machine learning analysis.

Compared with children with typical development, a smaller N2pc was found in the

ADHD group through univariate ERP analysis. Children with ADHD showed a lower

parieto-occipital multivariate decoding accuracy approximately 240–340 ms after

visual search onset, which predicts a slower reaction time and larger standard devia-

tion of reaction time. Furthermore, a significant correlation was found between N2pc

and decoding accuracy in typically developing children but not in children with

ADHD. These observations reveal that impaired attentional orienting in ADHD may

be due to inefficient neural encoding responses. By using a personalized information-

based multivariate machine learning approach, we have advanced the understanding

of cognitive deficits in neurodevelopmental disorders. Our study provides potential

research directions for the early diagnosis and optimization of personalized interven-

tion in children with ADHD.
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1 | INTRODUCTION

Attention deficit hyperactivity disorder (ADHD) is a neurodevelop-

mental disorder characterized by inattentive, hyperactive, and impul-

sive symptoms. Approximately 5% of school-age children

(Willcutt, 2012) suffer from attentional impairment, which profoundly

affects many advanced cognitive functions and learning performance

(Singer-Harris et al., 2001). However, the neuronal substrate of ADHD

is unclear. We still lack clinical biomarkers to aid in the early diagnosis

of ADHD and as potential targets for intervention.

Visual spatial abnormalities in children with ADHD, such as

increased variability of reaction time, have been reported in many

behavioral studies (Kofler et al., 2013). Existing fMRI studies have

found that the blood oxygen level-dependent response of the parieto-

occipital lobe in the attention selection process of children with

ADHD is weaker than that of typically developing (TD) children

(Schneider et al., 2010). Our previous study, using a visual search par-

adigm examined impaired attention in children with ADHD (Guo

et al., 2022; Luo et al., 2021; Wang et al., 2016). With univariate

event-related potential (ERP) analysis, we examined the processing

time of spatial attention and identified deficits in the supporting

mechanism of attentional selection in children with ADHD with a

smaller posterior contralateral N2 (N2pc) component (Wang

et al., 2016). However, conventional univariate ERP analysis loses

abundant information from high-density EEG. We still lack a bridge to

link inefficient neural responses with impaired visual discrimination.

Importantly, attentional orienting in multiple possible target loca-

tions is an important component in guiding selection in a visual search,

a process which could not be solved by univariate ERP analysis. In the

natural environment, the target location for a visual search is highly

variable. Although N2pc is closely related to the lateralized attentional

selection process, it is unclear whether it reflects the actual spatial

location information of the target or is a byproduct of supporting

attentional shift. Previous work has found impaired spatial encoding

skills in children with ADHD (Ortega et al., 2013), which may be

related to slower neural integration processes (Cross-Villasana

et al., 2015) and increased neural noise (Pertermann et al., 2019;

Saville et al., 2015). Therefore, we suggest that increased neural noise

in children with ADHD may obscure normal physiological signals caus-

ing a chaotic and inefficient neural response, leading to impaired

visual discrimination.

Information-based multivariate decoding analysis is a novel

approach based on machine learning used to quantify the information

represented in individual neural signals (Grootswagers et al., 2017). It

has not been used to investigate cognitive processing in neurodeve-

lopmental disorders with high neural noise (Pertermann et al., 2019).

This approach not only preserves the high temporal resolution of

univariate ERP analysis but also incorporates the spatial distribution

of ERP signals into the measurement. Previous studies have demon-

strated that the target location could be represented from a spatial

distribution of scalp EEG rather than being represented in specific

brain areas in healthy populations (Foster et al., 2017). Multivariate

decoding analysis provides an overall measure based on a set of elec-

trodes and can detect subtle aspects of neural representation of spe-

cific information stored in the brain that cannot be detected by

conventional univariate ERP analysis (Grootswagers et al., 2017). Fur-

thermore, previous studies have linked neural noise to decoding preci-

sion (Deneve & Chalk, 2016), and lower decoding accuracy may be

related to increased neurological noise. There is good reason to

expect that chaotic neural activities in the visual cortex of children

with ADHD may lead to a decline in the precision of spatial localiza-

tion during visual spatial attention. Therefore, applying multivariate

machine learning to examine target localization during a visual search

could help develop an understanding of the deficits in cognitive func-

tion in children with ADHD.

Both fMRI and ERP findings support that the visual cortex and

ventral attention network (VAN) play vital roles in selective attention

(Schneider et al., 2010; Wang et al., 2016). Here, we used

information-based multivariate decoding analysis of parieto-occipital

electrodes (a) to clarify whether and when representation of target

location was precisely identified during a visual search in a noisy neu-

ral response environment; and (b) to examine the relationship

between imprecise spatial position encoding and poor behavioral out-

comes in school-age children with and without ADHD.

2 | METHODS AND MATERIALS

2.1 | Participants

A total of 135 children participated in this study (Table 1), including

70 children with ADHD (age = 10.61 ± 1.93, range = 7.08–13.83,

female = 17) and 65 age- and sex-matched TD children (age = 10.73

± 1.93, range = 7.17–13.83, female = 20). Children with ADHD were

recruited from the clinics of Peking University Sixth Hospital/Institute

of Mental Health, and controls were enrolled from local primary

schools. The diagnosis of ADHD was based on the semistructured

interview K-SADS with DSM-IV criteria by qualified psychiatrists, and

the parent ADHD Rating Scale-IV (ADHD-RS) score was used to mea-

sure the severity of symptoms. There were 15 children with ADHD

comorbid with oppositional defiant disorder, 1 comorbid with conduct

disorder, 5 comorbid with tic disorder, and 1 with Tourette's syndrome.

All participants were right-handed with a full-scale intelligence

quotient (IQ) above 80 measured by the Wechsler Intelligence Scale
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for Children (WISC). Both the WISC-III and WISC-IV versions were

used, and there was no significant group difference in the distribu-

tion of the WISC version. IQ was not matched and controlled in this

study, as the decrease in IQ is one of the cognitive characteristics of

ADHD (Deneve & Chalk, 2016), and IQ may not be suitable as a

control factor (Dennis et al., 2009). The IQ of children with ADHD

was significantly lower than that of controls (ADHD: 106.81, con-

trol: 122.79, t133 = �6.511, p < .001, d = 1.121). Written consent

was obtained from all children and their parents according to the

Declaration of Helsinki. The study was approved by the Ethics Com-

mittee of Peking University Sixth Hospital/Institute of Mental

Health.

2.2 | Task paradigm

Some of the EEG data has been analyzed and published in previous

studies (Guo et al., 2022) but was reanalyzed from the perspective of

spatial information encoding. The experimental paradigm is a classical

visual pop-out search paradigm with 11 diamonds (distractors) and a

circle (target) distributed in a clockwise manner (Figure 1a). The circle

was placed in the 2, 4, 8, and 10 o'clock positions (25% for each posi-

tion) in a pseudorandom manner (Figure 1b). Following previous stud-

ies, participants were asked to determine the upper or lower direction

of the circle with their eyes gazing at the central fixation (Sun

et al., 2018). The target presentation time was 200 ms, the response

time was up to 2800 ms, and the intertrial interval was 900–1100 ms.

For a detailed description of the paradigm, please refer to the Appen-

dix and our previous study (Luo et al., 2021).

2.3 | Electroencephalography recording and
preprocessing

Task EEG was recorded by EGI (Electrical Geodesics, Inc.) with a

128-channel HydroCel Geodesic Sensor Net (HGSN-128). The online

reference was Cz, the sample rate was 1000 Hz, the bandpass filter

was 0.01–400 Hz, and the impedance was kept below 50 kΩ.

EEG preprocessing was performed using custom scripts and the

EEGLAB toolbox in the MATLAB environment (Delorme &

Makeig, 2004). Thirty-eight lateral electrodes that were susceptible to

eye, face, and head movements were excluded, leaving 91 electrodes

for analysis (Figure A.1). EEG data were then offline resampled to

250 Hz, bandpass filtered between 1 and 25 Hz and re-referenced by

using the average reference of all 91 electrodes. Excessive artifacts

were manually removed, and bad electrodes were manually checked

and interpolated before independent component analysis (ICA). After

manually identifying and removing the vertical and horizontal eye

movement ICs, automatic artifact rejection was further applied to dis-

card the EEG epochs when voltages exceeded ±100 μV at any elec-

trode. From the epoch data (�200 to 800 ms relative to stimulus

onset), 80 epochs were randomly selected for each participant in the

following decoding process to eliminate the influence of different

epoch numbers for the ADHD and TD groups.

2.4 | Univariate ERP analysis

For ERP analysis, the baseline of each segment was removed between

�200 and 0 ms before the onset of the visual search. Then, baseline-

TABLE 1 Demographic information
of children with ADHD and TD in the
final sample

Mean ± SD

χ2 or t pADHD TD

Number 70 65

Age (years) 10.6 ± 1.9 10.7 ± 1.9 0.840 .403

Gender (male: female) 54:16 40:20 0.712 .399

FSIQ 106.8 ± 13.7 122.8 ± 14.8 6.511*** <.001

Accuracy (%)# 91.1 ± 9.0 94.0 ± 6.2 2.577* .011

RT (ms)# 738.3 ± 193.2 634.6 ± 176.2 3.253** .001

RTSD (ms)# 245.9 ± 93.3 187.3 ± 80.9 3.887*** <.001

ADHD-RStotal 48.9 ± 7.8 27.7 ± 5.8a 17.065*** <.001

ADHD-RSinattention 27.5 ± 3.5 14.8 ± 3.3a 20.886*** <.001

ADHD-RShyperactivity 21.4 ± 5.8 12.9 ± 3.3a 9.736*** <.001

Subtypes ADHD-I (47)

ADHD-C (23)

–

Abbreviations: ADHD, attention-deficit/hyperactivity disorder; ADHD-C, ADHD combined type;

ADHD-I, ADHD inattention type; ADHD-RShyperactivity, hyperactivity/impulsivity subscale of ADHD

Rating Scale; ADHD-RSinattention, inattention subscale of ADHD Rating Scale; FSIQ, full-scale IQ; ADHD-

RStotal, total scores of ADHD Rating Scale; RT, reaction times; RTSD, standard deviation of reaction

times; TD, typically developing.
aADHD Rating Scale of 8 TD children were missing;
#Behavioral measures shown in this table are averaged across all spatial locations.

*p < .05. **p < .01. ***p < .001.
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removed segments were averaged separately for contralateral and

ipsilateral electrodes (PO7, PO8). To isolate the lateralized attentional

effect, the N2pc component was extracted by subtracting the aver-

aged ERP measured at contralateral electrodes from the averaged

ERP measured at ipsilateral electrodes. N2pc amplitudes were calcu-

lated by averaging voltages of 220–260 ms in different waves (Sun

et al., 2018; Wang et al., 2016).

2.5 | Multivariate pattern decoding

We applied a recently proposed multivariate pattern decoding

approach (Bae & Luck, 2019; Hong et al., 2020; Li et al., 2022) to clas-

sify the target locations (Figure 2). Decoding was considered correct

only if the classifier correctly determined the target location, and

chance performance was therefore 25%. Although most EOG signals

could be corrected by ICA, some residual EOGs could also influence

the decoding results (20; Figure A.5). Therefore, only parieto-occipital

electrodes were involved in the decoding analysis (Figure A.1). Decod-

ing results based on all 91 electrodes can be found in the Appendices

(Figure A.4). Several EEG epochs from the same target location in

both the ADHD and TD groups were first averaged at each channel,

and decoding was then performed on multichannel patterns of ERPs.

Each epoch for decoding analysis was defined as �200 to 800 ms at

the visual search display onset. Then, the data were resampled to

50 Hz (1 data point per 20 ms) to reduce the noise of the ERP signals

and to increase the efficiency of the analyses. This resampling gave us

a three-dimensional (3D) data matrix for each participant, with dimen-

sions for channels (52 electrodes), time (50 time points), and trials

(20 trials � 4 target locations). For each participant, the classifier was

based on a linear support vector machine (SVM) and trained through

the MATLAB fitcecoc() function at each data point. The decoding pro-

cedure at a given data point included a training phase and a testing

phase. The training and testing phases were based on different trials.

Specifically, a fivefold cross-validation procedure was applied at each

data point. Epochs in each target location were divided into five bins

(randomly selected), and each bin was averaged. The procedure

described above was iterated 10 times, each time with a new random

assignment of trials into five bins. Specifically, 20 trials from the same

target location were randomly arranged into five bins. This iteration

procedure could help to minimize idiosyncrasies associated with trial

assignments and thus yield a more robust and stable estimate of

F IGURE 1 Trial sequences and behavioral outcomes. (a) 900–1100 ms trial interval with a “+” in the center of the screen, 200 ms search
array and up to 2800 ms response interval. (b) Four possible target (circle) locations in the task. (c and d) children with ADHD showed lower
accuracy and longer reaction times than TD children for all four target locations. ADHD, attention-deficit/hyperactivity disorder; TD, typically
developing; *represents p < .05; ***represents p < .001

940 LI ET AL.



decoding accuracy. The 3D data matrix for each participant was trans-

formed into a new matrix with channel dimensions (52 electrodes),

time (50 time points), and ERPs (5 ERPs � 4 target locations). For each

data point for each participant, the features were defined as ERPs at

the given data point from 52 electrodes, and the data from four-fifths

of the ERPs (16 ERPs) were used to train a classifier (training). Then,

the classifier performance was assessed with the data from the

remaining one-fifth of ERPs (4 ERPs for testing) through the MATLAB

function predict (). This decoding procedure was repeated five times,

once with each of the five ERPs serving as the testing dataset. Decod-

ing accuracy was then computed by comparing the true labels of tar-

get locations with the predicted labels. Similar to previous studies

(Bae & Luck, 2018), we performed a 10,000 times cluster-based per-

mutation test to examine the significance of decoding accuracy over

time (please refer to Bae & Luck, 2018 for more details).

2.6 | Statistical analysis

ANOVA was performed for behavioral data with Group (ADHD, TD)

as the between-subject factor and target location (left upper, right

upper, left below, and right below) as the within-subject factor. Inde-

pendent sample t tests were used to identify whether electrophysio-

logical measurements and decoding accuracy showed significant

differences between the ADHD and TD groups. Pearson correlation

analysis was conducted to establish links among N2pc components,

decoding accuracy, and behavioral outcomes in both groups. The sig-

nificance level was set at p < .05.

3 | RESULTS

3.1 | Behavioral outcomes

Regardless of where the target appeared, compared with the TD

group, the ADHD group showed lower accuracy (F1,133 = 6.503,

p = .012, ηp
2 = 0.047; Figure 1c) and longer reaction times

(F1,133 = 17.447, p < .001, ηp
2 = 0.116; Figure 1d), suggesting that

visual selective attention is impaired in children with ADHD. How-

ever, no significant interaction between target positions and groups

was found in accuracy (F3,131 = 0.176, p = .912, ηp
2 = 0.001) or

response time (F3,131 = 1.652, p = .177, ηp
2 = 0.012). Other behav-

ioral outcomes that did not distinguish among the four target loca-

tions are presented in Table 1.

3.2 | Univariate ERP results

The ERP waveforms after visual search onset from electrodes (PO7/8)

contralateral and ipsilateral to the target and grand-average ERP differ-

ence waveforms (contralateral minus ipsilateral) in both ADHD and TD

groups are shown in Figure 3. A reliable N2pc component was induced

within 200–300 ms after the onset of visual search in both the ADHD

and TD groups. Our previous work showed that children with ADHD

showed a smaller N2pc component than TD children (Wang et al., 2016).

Here, we replicated the smaller N2pc component in the ADHD group

with a larger sample size (t1,133 = 2.075, p = .040; Figure 3d), supporting

the impaired attentional selection in children with ADHD.

F IGURE 2 A pipeline for information-based multivariate pattern decoding. Epochs were arranged with four different labels according to
target locations. The training and testing of the classifier was based on a linear one-vs.-all SVM at each data point. A permutation test was used
to assess the significance of decoding accuracy. SVM, support vector machine
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3.3 | Multivariate pattern decoding

Based on previous work using the univariate ERP approach, the

ADHD group showed an increased P1 amplitude and a decreased

N2pc amplitude compared with the TD group (Luo et al., 2021; Wang

et al., 2016). Therefore, we applied the ERP-based multivariate pat-

tern decoding approach (see Section 2) to further investigate whether

and when the information of target locations was maintained in the

scalp ERP pattern. Figure 4a shows the time course of decoding accu-

racy for the ADHD and TD groups when decoding the target locations

based on the parieto-occipital topographic pattern of ERP. The corre-

sponding weight maps of the channels are shown in Figure 4c. The

cluster-based permutation test revealed that decoding accuracy was

significantly greater than chance level (25%) in both the ADHD and

TD groups, and starts at approximately 200 ms after visual search

onset (p < .001 for both groups; see Figure 4a, solid green and orange

lines).

More importantly, decoding accuracy showed a significant dif-

ference during 240–340 ms after visual search onset between the

ADHD and TD groups (pcorrected < .05, Figure 4a). The averaged

decoding accuracy within this time window for both groups sug-

gested that children with ADHD showed a more imprecise target

localization than TD children (t1,133 = 2.255, p = .026; Figure 4b

left panel). We also decoded the target location with EOG elec-

trodes and with eye movement-related IC components to avoid the

contribution from eye movements (please see Appendices for more

details; Figure A.5). Furthermore, we analyzed the peak latency of

decoding accuracy during 200–500 ms after visual onset (ADHD:

F IGURE 3 ERP and correlation results. Grand averaged ERPs at electrodes contralateral and ipsilateral to the target in the ADHD (a) and TD
(b) groups. (c) Grand average difference waveforms of ERPs were obtained by subtracting the ipsilateral waveforms from the contralateral
waveforms for ADHD and TD groups. (d) Averaged N2pc amplitudes in the ADHD and TD groups. The black solid line represents the duration of
stimuli presentation. ADHD, attention-deficit/hyperactivity disorder; N2pc, N2-posterior-contralateral; TD, typically developing;
*represents p < .05
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420 ± 70 ms; TD: 391 ± 70 ms). The results showed a significant

delay in the peak latency in the ADHD group (t1,133 = 2.426,

p = .017; Figure 4b right panel), suggesting delayed target localiza-

tion in children with ADHD. To evaluate the decoding model more

generally, the sensitivity and specificity of the decoder are reported

in the Appendices (Figure A.2).

3.4 | Correlation analysis

A significant correlation was found between N2pc amplitudes and

decoding accuracy (r = �0.403, p < .001; Figure 5b) in TD children

but not in children with ADHD (r = �0.058, p = .636; Figure 5a). This

result suggested that children with ADHD encoded the target location

with a unique representation, which is not contributed to by N2pc

components. Additionally, to investigate whether imprecise target

localization impaired behavioral performance, we calculated correla-

tions between decoding accuracy and behavioral outcomes. The

results showed that decoding accuracy was significantly negatively

correlated with RT (r = �0.328, p = .006; Figure 5c) and RTSD

(r = �0.318, p = .007; Figure 5d) but not significantly correlated with

accuracy (r = �0.026, p = .830) in children with ADHD. These corre-

lations were absent in TD children (ps > .119) and were absent

between N2pc and RT/RTSD (p > .092) in the ADHD group

(Figure A.3). We also found a significant correlation between decoding

accuracy and age in the ADHD group (r = 0.238; p = .046), suggesting

developmental delay in spatial localization. No other significant corre-

lation was found between decoding accuracy and symptoms in the

ADHD group (ps > .318).

4 | DISCUSSION

The present study adopted a classical visual search paradigm (Guo

et al., 2022; Luo et al., 2021; Wang et al., 2016) to explore whether and

how target spatial location could be encoded in school-age children with

and without ADHD through a newly established multivariate neural

decoding approach. Behaviorally, regardless of which visual field the target

presents, children with ADHD show a decline in accuracy and a delayed

response time, suggesting slow and imprecise target localization in chil-

dren with ADHD. Importantly, target locations could be identified by the

topographic map of ERP during the visual search task for both children

with and without ADHD, indicating that the spatial information of the tar-

get could be decoded from scalp EEG in individuals with high neural noise.

Additionally, children with ADHD showed poor neural decoding ability for

the target location, suggesting imprecise neural activity and impaired spa-

tial localization ability. A further negative correlation between neural activ-

ity and RT as well as RTSD revealed that deteriorating neural imprecision

would have an adverse influence on attentional performance for children

with ADHD. Therefore, the decoding of neural signals can better help us

understand the dense information contained in neurophysiological signals

and provide novel insights into the fundamental neural pattern abnormal-

ity of selective attention in neurodevelopmental disorders.

4.1 | Deteriorating neural decoding in children
with attention-deficit/hyperactivity disorder

Attention serves as a spotlight to form different neural patterns for differ-

ent target locations (Bruce & Tsotsos, 2009; Eimer, 2014). We

F IGURE 4 Impaired target localization in children with ADHD. (a) ERP-based decoding accuracy for both the ADHD and TD groups. The
green and orange lines at the top represent the period that was significantly larger than the chance level (25%), and the black line represents the
period in which the ADHD group showed lower decoding accuracy than the TD group. (b) The averaged decoding accuracy during 240–340 ms

(left panel) and the peak latency of decoding accuracy (right panel) for the ADHD and TD groups. (c) The averaged weight map of electrode
contributions during y for the ADHD and TD groups. The black solid line represents the duration of stimuli presentation. ADHD, attention-
deficit/hyperactivity disorder; TD, typically developing; *represents p < .05
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investigated the decline in neural spatial decoding ability for children with

ADHD. Visual spatial abnormalities of ADHD have been reported in many

studies. Our study also found that the ERP component N2pc produced

from the posterior region in children with ADHD is significantly smaller

than that in TD children (Wang et al., 2016). However, the univariate

analysis could not fully explain variability in behavior and deficits in com-

plex and subtle neural processing of selective attention. Consistent with

previous studies (Bae & Luck, 2018; Bae & Luck, 2019; Hong et al., 2020;

Li et al., 2022), through machine learning of multichannel ERP signals, the

ability of children with ADHD to represent the target spatial location was

significantly worse than the target localization ability of TD children. In

addition, a delayed peak latency of decoding accuracy in children with

ADHD revealed slower target detection during a visual search. Our

results demonstrate the deteriorating and delayed visual spatial localiza-

tion ability of children with ADHD. A significant correlation between

decoding accuracy but not N2pc and RT provided evidence for a unique

contribution of target representation from decoding analysis. We also

found that decoding accuracy increased with age in children with ADHD,

suggesting a developmental delay in spatial localization. In short, our

results confirm that there is an overall deterioration in the spatial coding

ability of neural activity in children with ADHD, and the decrease in over-

all function may involve a more general neurological abnormality.

F IGURE 5 Correlation analysis. (a) No significant correlation was found between decoding accuracy and N2pc amplitudes in children with
ADHD. (b) A significant correlation between decoding accuracy and N2pc amplitudes in TD children. (c) Significant correlations between decoding
accuracy and RT in children with ADHD. (d) Significant correlations between decoding accuracy and RTSD in children with ADHD. ADHD,
attention-deficit/hyperactivity disorder; N2pc, N2-posterior-contralateral; TD, typically developing; **represents p < .01
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According to existing studies (Bae et al., 2020), information decod-

ing ability is closely related to the efficiency and robustness of neural

signals, which reflects the clarity of neural activities. For neural activity

with high noise interference, the transmission efficiency of neural infor-

mation is significantly affected (Li et al., 2001) and leads to poorer cog-

nitive performance. The neural noise theory may be closely related to

neurodevelopmental disorders. Previous studies have reported

increased neural noise in children with ADHD, which has a detrimental

influence on their inhibitory function (Grootswagers et al., 2017).

Decoding accuracy is considered to be highly related to neural noise

(Bae et al., 2020). Therefore, we hypothesize that higher neural noise

might reduce the decoding precision of the spatial position in children

with ADHD. In our study, the decrease in neural decoding in children

with ADHD confirmed deteriorating neural function, which might result

from increased neural noise. More importantly, the negative correlation

between decoding accuracy and RTSD further confirmed the potential

effects of neural noise. As increased levels of intraindividual variability

indicate noisier neural processes, ADHD is characterized by high

intraindividual variability, which can be reflected by higher RTSD during

cognitive tasks. Our findings provide evidence for this hypothesis, as

the decoding accuracy during the visual search task decreased, the

RTSD in children with ADHD increased.

4.2 | The value of information-based decoding for
studying cognitive processing in neurodevelopmental
disorders

In previous studies, machine learning was mainly used to distinguish

children with ADHD from TD children (Chen et al., 2019; Öztekin

et al., 2021; Yasumura et al., 2020), and the training of this decoder

was based on group-level supervised learning. However, our

information-based machine learning is aimed at assessing the specific

cognitive processes represented by the neural activities of each indi-

vidual. This approach can learn the differences in neural patterns

within each individual and generate individualized decoders, which

can help us better understand the uniqueness of cognitive impairment

in each child with ADHD. Furthermore, conventional univariate ERP

and group-level machine learning analysis can only perform statistical

analysis based on the group level. Multivariate decoding analysis can

perform statistical analysis within subjects, which provides a potential

direction for future personalized precision medicine.

Recent studies have used neural decoding to investigate stimulus

signals in different directions from the scalp EEG distribution maps of

healthy adults. The present study, adopting a new information-based

decoding analysis, reveals that the target locations can be effectively

identified and represented in both children with and without ADHD.

These findings provide the first evidence that rich and identifiable

location information is involved in children's scalp EEG signals with

high neural noise, which offers a new approach for understanding

neurodevelopmental processes.

With the high temporal resolution of EEG signals, information-

based multivariate decoding analysis further considers the

characteristics of spatial distribution. Therefore, we can clearly exam-

ine the precise time processing and spatial distribution of spatial infor-

mation encoding. Our findings confirmed that information of the

target spatial location could be decoded after a 200 ms delay, indicat-

ing that an individual's spatial orientation occurs approximately

200 ms after the visual search onset and that the duration before

200 ms may mainly reflect the simple perception and coding process

of stimuli signals. In addition, the saliency map theory of visual atten-

tion has pointed out that the visual cortex could separate pop-out

novel stimuli through bottom-up processing (Li, 2002). Based on our

neural decoding weight analysis of the parieto-occipital lobe, we

found that the visual cortex has a greater contribution to the classifi-

cation, which means that the coding of spatial position could occur

primarily in the visual cortex.

However, machine learning results are blind-sourced and thus

always lack neurophysiological evidence. Here, our information-based

multivariate decoding analysis clarified the time course of the spatial

attention process in children, which is consistent with the previously

discovered N2pc component in the parieto-occipital lobe

(Eimer, 1996; Li et al., 2021; Luck & Hillyard, 1994a; Luck &

Hillyard, 1994b). More importantly, since the N2pc component is a

good neural index of attentional selection, the correlation between

N2pc and decoding accuracy provided direct physiological relevance

of the machine learning approach in spatial attention ability (Wang

et al., 2016).

5 | LIMITATIONS

In the present study, to prevent residual eye movement signals from

potentially interfering with the results, only parieto-occipital electrodes

were used in the decoding analysis, and prefrontal electrodes were not

used. However, the prefrontal cortex, such as the frontal eye field, is

also involved in attentional selection processing (Panichello &

Buschman, 2021; Thompson et al., 2005; Veniero et al., 2021).

Although we performed the decoding analysis with eye movement-

related ICs (Figure A.5), it is difficult to rule out the possibility of sec-

ondary consequences from very small eye movements. Further meth-

odological development is needed to explore the role of the prefrontal

cortex in selective attention through neural decoding. In addition,

although the difference in IQ between ADHD and TD children has

been demonstrated in previous studies (Frazier et al., 2004), it may still

cause potential confusion. The reason for the lack of balanced IQ is that

the present research is an exploratory study, and a relatively large sam-

ple size can be used to obtain relatively stable decoding results. Follow-

up research needs to use IQ-matched subjects and untrained data to

further test the accuracy of the decoding model.

6 | CONCLUSIONS

This study explored the target localization ability in school-age chil-

dren with ADHD during visual search processes through a new
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information-based decoding approach. The imprecise encoding char-

acteristics of the attentional spotlight during visual search in school-

age children with ADHD indicated that increased neural noise and

chaotic neural responses are fundamental deficits of the neurodeve-

lopmental disorder. Our results provide new neurophysiological evi-

dence for understanding cognitive dysfunction in children with ADHD

and offer potential directions for the early diagnosis and personalized

intervention of neurodevelopmental impairments in children

with ADHD.
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