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Abstract
Protein-protein interfaces have been evolutionarily-designed to enable transduction

between the interacting proteins. Thus, we hypothesize that analysis of the dynamics of the

complex can reveal details about the nature of the interaction, and in particular whether it is

obligatory, i.e., persists throughout the entire lifetime of the proteins, or not. Indeed, normal

mode analysis, using the Gaussian network model, shows that for the most part obligatory

and non-obligatory complexes differ in their decomposition into dynamic domains, i.e., the

mobile elements of the protein complex. The dynamic domains of obligatory complexes

often mix segments from the interacting chains, and the hinges between them do not over-

lap with the interface between the chains. In contrast, in non-obligatory complexes the inter-

face often hinges between dynamic domains, held together through few anchor residues on

one side of the interface that interact with their counterpart grooves in the other end. In auto-

matic analysis, 117 of 139 obligatory (84.2%) and 203 of 246 non-obligatory (82.5%) com-

plexes are correctly classified by our method: DynaFace. We further use DynaFace to

predict obligatory and non-obligatory interactions among a set of 300 putative protein com-

plexes. DynaFace is available at: http://safir.prc.boun.edu.tr/dynaface.

Author Summary

Protein-protein interactions mediate, in essence, all inter- and intra-cellular processes.
Thus, understanding their molecular mechanism is of utmost importance. Here we focus
on one mechanistic aspect: differentiation between obligatory interactions, which persist
throughout the entire lifetime of the protein complex, and non-obligatory, which do
not. For proper function, a protein complex should facilitate transduction between the
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interacting proteins. Therefore the complex’s dynamics should reveal whether it is obliga-
tory or non-obligatory. Indeed, normal mode analysis shows that the dynamic domains of
obligatory complexes often mix segments from the interacting chains. In contrast, in non-
obligatory complexes the inter-chain interface often hinges between dynamic domains,
held together through few anchor residues. An automated methodology based on these
observations correctly classifies over 80% of the interfaces in a test set. We use it also to
predict obligatory and non-obligatory interactions among putative protein complexes.
DynaFace, a web-server implementation of the methodology, is available at: http://safir.
prc.boun.edu.tr/dynaface.

“This is a PLOS Computational BiologyMethods paper”

Introduction
Inter-protein interactions mediate a wide range of cellular and biochemical processes [1, 2].
The Protein Data Bank (PDB; [3]) includes a wealth of information on these important interac-
tions, observed in X-ray crystal, NMR, and cryo-electron microscopy structures. Indeed, this
large resource has been exploited to deduce interactions [4, 5], and infer interactions based on
similarity in sequence and/or structure [6–8]. It is noteworthy, however, that the PDB includes
various types of interactions, many of which are physiologically irrelevant and reflect crystal
packing [9–11]. Here we focus on the rest, i.e., physiologically realistic interactions, and differ-
entiate between these that are obligatory and non-obligatory.

Protein chains engaged in an obligatory complex are found only in association with their
partner chains and bind throughout their functional lifetime, for example, because they are
unstable on their own [12]. The most popular example here is the interaction between the beta
and gamma subunits of G-proteins, which remain intact throughout their lifetime. In contrast,
non-obligatory complexes, such as the interaction between the beta-gamma complex and the
alpha subunit of the G-protein, form and dissociate in response to environmental changes.
These proteins are stable both in their bound and unbound states, although their conformation
may change upon binding. They are abundant, for example, in signal transduction, antibody-
antigen interactions, and enzyme-inhibitor complexes. The obligatory-vs.-not classification is
not always straightforward. For example, at least theoretically, one chain might be unstable
alone and gain stability only upon association with another chain, which in turn is stable also
alone. Furthermore, a chain with two domains might be engaged in obligatory interaction
through the first domain and a non-obligatory interaction through the second, which again
complicates the classification [13]. Additionally, the nature of the interaction may alter in
response to external changes, such as pH, temperature, interaction with ligand, etc.

Non-obligatory interactions could be further classified as transient or permanent, depend-
ing on their lifetimes, providing a kinetic dimension of the association. In addition, changes in
pH, ionic strength or concentrations of the interacting chains can shift the dynamic equilib-
rium towards or away from association. Thus, transient complexes can be further classified as
“weak” or “strong”, which are generally found in their unbound and bound states, respectively
[12].

Obligatory interfaces compared to non-obligatory interfaces are larger, flatter and more
evolutionarily conserved [14, 15]. Residues involved in obligatory interactions evolve at a
slower rate, while residues in non-obligatory interactions exhibit an increased rate of
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substitution for faster adaptation required. Obligatory interfaces have higher shape comple-
mentary consisting primarily of side-chain contacts and larger interface-to-surface ratio [14].
On the other hand, non-obligatory interfaces are usually smaller and more polar (except
enzyme-inhibitor complexes) with lower geometric complementary and weaker association
where backbone plays an important role [16]. The latter features should provide the interfaces
with optimum topological means for the required functional motion and interaction.

Previous studies have focused mostly in the analysis and prediction of protein surfaces that
mediate protein-protein interactions rather than in differentiation between the interaction
types. Evolutionary conservation profiles of the amino acid positions have appeared as a valu-
able source of information for the success of sequence-based methods in binding site predic-
tions [17–20]. Structure-based methods, on the other hand, could make use of some additional
properties, such as solvent accessible surface area and shape complementarity methods for
more successful predictions [21–23]. Combined with structural information, the patches of
conserved amino acids on protein surfaces were shown to have functional importance [24–26].
Recently developed machine learning methods using several attributes in the latter provide
algorithms with plausible performances [22, 27, 28].

The prediction of protein interaction sites and/or interaction type based on a single property
is challenging [22]. The existing web-servers use various sequence and structure properties alone
and combined. For example, web-servers such as Promate [29], PPI-Pred [30, 31], Con-PPISP
[32], meta-PPISP [30], PRISM [33], SPPIDER [34], IBIS [35] and metaPIS [36] focus on binding
site predictions. Promate [29] uses surface properties with various physicochemical properties to
predict transient interactions. PPI-Pred [31], Cons-PPISP [32], PRISM [33, 37] and SPPIDER
[34] predict interfaces that may include both obligatory and non-obligatory interactions.
PPI-Pred uses a support vector machine method in combination with surface patch analysis, and
Cons-PPISP is a structure-based neural network method mainly using sequence profiles and sol-
vent accessibilities. PRISM predicts interfaces by structural matching. SPPIDER is mainly based
on solvent accessibility. IBIS uses conservation of sequence and structure for binding site predic-
tions and metaPIS is mainly based on protein sequences. PrePPI combines structural modeling
with other genomic, evolutionary and functional clues for the prediction of binary interactions
[6]. For a query protein pair, representative structures of the subunits are first searched in the
PDB and in homology model databases and then a search for structural neighbors follows. If two
neighbors of each subunit are found in a complex in the PDB, then this complex is used as tem-
plate. As a scoring value, individual subunits are superposed on the template complex and a like-
lihood ratio is calculated in combination with the non-structural naïve Bayesian classifier.

The NOXclass web-server [38] is unique in providing automatic classification of the interac-
tion/interface types of query protein complexes. NOXclass is a support vector machine classi-
fier making use of properties such as interface area and interface/surface area ratio, amino acid
composition, shape complementarity and residue conservation for the interaction types. Alter-
natively, SCOPPI (Structural Classification of Protein-Protein Interfaces) [39] is a database
that classifies the interface type by using knowledge on protein domain-domain interactions
with known structures. The domain interactions are determined by a distance-based criterion
and the domain definitions are obtained from SCOP [40], where proteins are classified based
on both structural and evolutionary relatedness. The BindML+ web-server [41] predicts the
interface type in a single protein as transient or permanent without the knowledge of its inter-
acting partner. Here the definitions of non-obligatory but permanent might have been con-
fused with obligatory interactions. PiType [42] is a downloadable program classifying protein
interactions into simultaneously possible and mutually exclusive as well as into obligate and
non-obligate based on the sequence and functional properties of the binding partners and their
network context based on amino acid sequence and functional similarity.
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To facilitate biological functionality, protein-protein association should involve transduc-
tion, e.g., of signal. Thus, it is anticipated that protein complexes that differ in their functionali-
ties would manifest different dynamic behavior. In other words, the dynamic infrastructure
underlying non-obligatory and obligatory interactions should be in compliance with the
required functional motion of the respective interface types. Indeed, a recent analysis of pro-
teins with multiple conformations in PDB showed that, on average, transient associations
involve smaller conformational changes than permanent associations [43]. Here again, non-
obligatory but permanent interfaces might be confused with obligatory interfaces. We attempt
to take a step forward and try to classify obligatory vs. non-obligatory interfaces based on the
analysis of dynamic fluctuations starting from a single conformation and link this with the
functionality at the level of interaction types on a dataset of obligatory and non-obligatory
interfaces. The dynamic fluctuations are calculated using the Gaussian Network Model (GNM)
[44, 45], and used to differentiate between obligatory and non-obligatory interactions. We fur-
ther analyze a set of structural models predicted using PrePPI [6].

Methods

Datasets
The dataset used here is a compilation of two available datasets of protein-protein interface
types [14, 31]. Both datasets were compiled from the PDB [46] and their interfaces were then
manually curated with the existing literature. The PISCES server [47] was used to reduce
redundancy by removing proteins with over 25% sequence identity, resolution of 3.0 Å or bet-
ter, and R factor of 0.3 or better. While combining the two datasets, some proteins were
removed due to the redundancy and high number of missing residues or changes with the
updates. After preliminary application of DynaFace on the set we noted cases of disagreement
between prediction and annotation. Literature survey showed that the annotation of some of
these was erroneous, presumably because of studies published after the compilation of the orig-
inal sets [62–86]. These were fixed. The final dataset, consisting of 139 obligatory and 246 non-
obligatory complex structures, is provided in S1 Table. The corrections are marked. It is note-
worthy that the set includes 84 multi-subunit complexes. For these, at least one of the interact-
ing units includes more than one polypeptide chain.

Additionally, a dataset of predicted structural models [6] is used to make testable hypothe-
ses. This dataset includes 85 template structures and three subsets of 100 predicted structural
models based on these template structures for which the interactions are ranked as high, low
and very low quality referring to the structures having the highest score, 50% probability, and
25% probability of existence, respectively. First, the consistency of the predictions has been
tested between the template and structural models, and then the interaction type based on the
dynamics has been assigned. The dataset is given in S2 Table.

Gaussian Network Model
GNM [44, 45] is the simplest elastic network model at residue level, where residue pairs with
their alpha carbons located within a cut-off radius (rc), are assumed to be connected by har-
monic springs. The potential function for a protein structure of N residues in the elastic net-
work description is given as

VGNM ¼ g
2

XN
i;j

GijðDRi � DRjÞ2
" #

ð1Þ

where γ is the spring constant and ΔR refers to the fluctuation R vector of each residue at its
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alpha carbon position. Γ is the Kirchhoff matrix defined as

Γ ¼

�1 if i 6¼ j and Rij � rc

0 if i 6¼ j and Rij > rc

�
X
i;j 6¼i

Γij if i ¼ j
ð2Þ

8>>><
>>>:

Rij is the distance between alpha carbon atoms i and j. rc is taken as 7 Å. The diagonal Lambda_ii
term is the degree of a node and a measure of the local packing density around a given residue.

The correlation between equilibrium position fluctuations, ΔRi and ΔRj, of residues i and j
forms the covariance matrix given as

hDRi � DRji ¼
3kBT
g

� �
½Γ�1�ij ¼

3kBT
g

� �
½UΛ�1UT�ij ¼

3kBT
g

� �X
k

½l�1

k uku
T
k �ij ð3Þ

whereU is an orthogonal matrix whose columns ui are the eigenvectors of the Kirchhoff matrix
and Λ is a diagonal matrix whose elements λi represent the eigenvalues, kB is the Boltzmann
constant, and T is the absolute temperature in Eq 3. The slow modes with lower eigenvalues
contribute to global cooperative motions, while the fast modes with higher eigenvalues describe
local fluctuations. The normalized values of the correlation between residue fluctuations range
between +1 and -1.

Motion and interaction. The covariance matrix (Eq 2) of a mode of motion divides the
structure into dynamic domains: clusters of amino acids that are in close contact with each
other and that move collectively in one direction [48]. The motion could be along the eigenvec-
tor, marked by correlation of +1, or in opposite direction, with correlation of –1. The sign
changes mark the positions of the hinges at the interface between the dynamic domains. When
two or more modes are superimposed, the fluctuations along the two eigenvectors are superim-
posed and the correlations can vary in the range +1 to -1, reflecting the average behavior. For
example, the average of the two slowest modes amalgamates the two most global conforma-
tional changes accessible to a given complex structure. Incorporation of higher modes inte-
grates other global, and subsequently also local, motions.

The conformational transitions of proteins are intimately related to their function. With the
premise of the link between the dynamic infrastructure provided by the interacting chains and
the interface type, we propose a dynamic measure based on GNM through the analysis of oblig-
atory versus non-obligatory complex structures in the dataset: The dynamics are often domi-
nated by the two slowest modes, yet further refined by the next slow modes; dynamic domains
capture the global connectivity similarity for obligatory versus non-obligatory complex
structures.

Server
Given a protein complex structure, the DynaFace web-server builds the covariance matrix and
uses it to classify the inter-protein interfaces as obligatory vs. non-obligatory. Various combi-
nations of different sets of modes are used in order to best exploit the dynamic correlation pat-
terns. For the most part, the two slowest modes capture the pattern of the dynamic domains
with respect to the interaction type. The ten slowest modes contribution is significant, but
higher modes lead to fine-tuning. As a result, DynaFace uses the ten slowest modes (+ all
modes) to increase the prediction accuracy. The addition of the all-modes terms increase the
performance in comparison to using only the slowest 10 modes, as well as in comparison to
using the 10 slowest plus modes 11 and higher.
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The underlying scoring function of DynaFace basically reflects the pattern of the cross-cor-
relation map. The following seven attributes are calculated: The average of all (A), negative (N)
and positive (P) correlations between residue fluctuations of two interacting subunits in the
average ten slowest (s) and all (a) modes of motion, and the number of associating regions
between two subunits in all modes (AR), defined in the following paragraph. For each attribute,
a knowledge-based decision parameter (threshold) is set based on the corresponding correla-
tion values of 139 obligatory and 246 non-obligatory complex structures in the whole dataset;
see S3 Table for the individual performance of each attribute. The subunit refers to the interact-
ing partner unit; a single chain or more than one chain. A decision outcome D is calculated
with respect to an obligatory interaction as follows

D ¼ ðAa > ÂaÞ þ ðNa > N̂aÞ þ ðPa < P̂aÞ þ ðAs > ÂsÞ þ ðNs > N̂sÞ þ ðPs < P̂sÞ þ ðARa

> ^ARaÞ ð4Þ

Where, the hat over each attribute refers to a pre-determined threshold value. If the majority,
i.e., four or more of the seven binary attributes satisfy the criteria for the obligatory interaction
(D� 4), the decision is obligatory; otherwise it is non-obligatory. The threshold value for each
attribute is given in S4 Table. Note that lower P with higher A and N values in an obligatory
interfaces is the result of the manifestation of larger number of weak to strong positively corre-
lated and weak negatively correlated residue pairs A large value of AR means a large number of
associating regions between two subunits, which is an indicator of obligatory interface.

Associating regions (AR, the last attribute in Eq 4) refer to the interface residues that trans-
duce the motion between the two subunits. Residues that correlate dynamically more strongly
to the juxtaposed subunit than to their own subunit are defined as anchors. AR is the ratio of
the total number of anchor residues from both chains to the sum of amino acids in the whole
complex. Anchor residues are more abundant in obligatory compared to non-obligatory
complexes.

Two different sets of thresholds are used depending on complex size: One set when both
subunits are>65 residues, and another when the complex includes a subunit of less than 65
residues. The threshold values were also tested over sub-datasets produced by randomly divid-
ing the original dataset into five groups.

In test trials of DynaFace using only the two and only the ten slowest modes, three attributes
corresponding to A, N and P were calculated. If two out of three decision variables satisfy the
criteria for obligatory interaction in these cases, the decision outcome D is considered obliga-
tory otherwise non-obligatory. The resulting predictions are presented in Results and
Discussion.

A more formal description of the calculations is provided in Supplementary Data. The flow
chart of the algorithm is given in Fig 1. The confidence levels for obligatory and non-obligatory
complex structures in the dataset are given in S1 Fig.

The DynaFace input can be a PDB ID or an uploaded coordinate file in standard PDB
format. The output includes: predicted interface type, dynamic structural domains, cross-cor-
relation maps and their projections on the structure’s ribbon diagram. In the case of non-oblig-
atory interactions, anchors are listed with anchoring groove residues, which are the residues in
the juxtaposed subunit that display the highest correlations (top three) in all modes with the
anchor residue across the interface.

Results and Discussion
The PDB includes many interfaces, some obligatory, some non-obligatory, and some artifacts
due to crystal-packing. There are methods to filter out crystal-packing interfaces, which work
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Fig 1. Flowchart of the DynaFace web server. A is the average of all cross-correlation values between
different subunits, N is the average of negative cross-correlation values between different subunits, P is the
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at least to some extent. We offer a complementary method that can differentiate between oblig-
atory and non-obligatory interfaces based on the dynamics of the structural complex. For com-
pleteness, and because some crystal-packing artifacts might ‘sneak in’, we also check whether
they confuse our method. The results show that DynaFace might mistakenly assign crystal-
packing artifacts to be non-obligatory interfaces. We also use our methodology on a dataset of
predicted complex structures as well as their corresponding template structures [6] to suggest
the interaction type for each.

Motion and interaction: Global dynamics
Equilibrium residue fluctuations define dynamic domains, where the cooperative modes of
motion are the main determinants. The collective dynamics facilitates biological function(s),
and correlated motions within the structure could reveal functional predispositions. Thus, the
expression of the dynamic couplings across the inter-subunit interface could reveal whether
the complex is obligatory or non-obligatory. To examine this we start with two exemplary
dimeric complexes. The first is the obligatory homodimer 1QU7 (Cytoplasmic domain of a ser-
ine chemotaxis receptor) [49], and the second is the non-obligatory heterodimer 2SIC (Subtili-
sinBPN' in complex with Streptomyces subtilisin inhibitor) [50].

Cross-correlations of residue fluctuations in the two slowest modes for these dimers are pre-
sented in Fig 2 and Fig 3, respectively. Reassuringly, the positioning of the dynamic domains
relative to the inter-subunits interfaces differs between the obligatory (Fig 2) and non-obliga-
tory (Fig 3) interactions. The obligatory complex features mostly dynamic domains that share
segments between the two subunits, as in the two slowest modes (Fig 2); indeed, the complex’s
dynamics is dominated by such modes (S2A Fig, S2B Fig and S2C Fig). The dynamic domains
of some of the modes of motion of the non-obligatory complex also share segments across the
subunits interface (e.g., the second slowest mode, Fig 3). However, the complex’s dynamics is
dominated by modes with correlations only within the individual subunits, such as the slowest
mode (Fig 3C, S2D Fig, S2E Fig and S2F Fig). Interestingly, the slowest mode of the non-obliga-
tory complex also manifests ‘anchor’ behavior, where an anchor in the inhibitor (residues
MET70-VAL74) is dynamically correlated with the enzyme. The anchor MET70-VAL74 corre-
lates with the majority of the enzyme residues in the average over the two slowest modes (S2D
Fig). A subset of residues (GLY100, SER125, THR220) correlate with the anchor also in the
average over all modes. These are referred to as ‘anchoring groove’ residues (S2F Fig). This
behavior is typical for non-obligatory complexes; the anchors are lesser in number compared
to obligatory complexes but provide a means for transduction between the intact chains. This
has led us to add the last term in the formula used to discriminate between the interface types
(Eq 4). More detailed description of the dynamics of the two complexes is provided in the fol-
lowing two sections.

Obligatory interaction: The cytoplasmic domain of a serine chemotaxis receptor
(1QU7). The cytoplasmic domain of the serine chemotaxis receptor of Escherichia coli, is a
homodimeric complex with two protein chains of 227 amino acids, marked as A and B [49].
Each subunit is an elongated helical hairpin and the subunits intertwine to form a four helix
bundle. In contrast to many other receptors, this receptor is dimeric regardless of ligand bind-
ing, and its signaling is independent of the monomer-dimer equilibrium [51].

average of positive cross-correlation values between different subunits, AR is the ratio of associating regions
in the protein, and superscript ^ stands for the pre-determined threshold for that parameter.

doi:10.1371/journal.pcbi.1004461.g001
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According to the slowest mode, the dimeric structure has four hinges, two in each subunit;
A: HIS328/LEU329, A: THR450/ARG451, B: HIS328/LEU329, and B: ARG451/VAL452 (Fig
2A, S5 Table). The hinges align along a plane that passes through the geometrical center of the
complex. The hinge plan separates the dimer into two dynamic domains, each of which
includes segments from the two subunits (S5 Table). The second slowest mode describes
another type of motion where the underlying dynamic domains (S5 Table) are coordinated by
hinge residues ASP353/ILE354, GLY426/LYS427, VAL483/THR484 in chain A, and ASP353/
ILE354, GLY426/LYS427 in chain B. These dynamic domains also mix segments from both
subunits. The slowest mode dominates the dynamic fluctuations of the dimer. It dominates the
average over the two slowest modes (S2A Fig), as well as the averages over the ten slowest (S2B
Fig) and all (S2C Fig) modes, which are used to discriminate between interface types. S4 Table
shows the threshold values and the attributes of each decision variable for this case as given in
Eq 4. The complex satisfies four of seven criteria, and is classified as obligatory, as it should.

Non-obligatory interaction: Subtilisin BPN' in complex with streptomyces subtilisin
inhibitor (2SIC). The complex between subtilisin BPN' (chain E, residues 1–275) with its
streptomyces inhibitor (chain I, residues 7–113) is an example for non-obligatory interaction
(PDB ID: 2SIC; [52]). The slowest mode of motion divides the structure into two dynamic
domains with a hinge plane at the enzyme-inhibitor interface (Fig 3A and 3C, S6 Table). It is

Fig 2. Dynamics of an obligatory complex. Slowmodes in the cytoplasmic domain of the homodimeric
serine chemotaxis receptor (1QU7 [49]). The upper panels show the matrices of correlations between residue
fluctuations, hΔRi � ΔRji, of mode 1 (A) and mode 2 (B), with negative and positive marked as blue and red,
respectively. The boundaries between the subunits are marked in white. The lower panels show projection of
the correlations on the 3D-structure: C- mode 1 and D- mode 2. The subunits are shown on the PyMOL [61]
figures in lighter and darker versions of the same colors.

doi:10.1371/journal.pcbi.1004461.g002
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noteworthy that here each subunit is, in essence, an autonomous dynamic domain, which is
often the case for non-obligatory interactions. The slowest mode also predisposes an anchor
(MET70-VAL74) for an anchor-and-groove behavior, which is a hallmark for non-obligatory
interactions.

The second slowest mode with hinge sites at SER24/ASN25, VAL150/ALA151 of the
enzyme (chain E) and HIS43/PRO44, PRO72/MET73, ASN99/GLU100 of the inhibitor (chain
I) also separates the structure into two dynamic domains (Fig 3B and 3D, S6 Table). This mode
resembles modes that are observed in obligatory complexes in that the dynamic domains mix
segments from both subunits.

The two slowest modes dominate the average dynamic behavior of all modes (S2D–S2F
Fig), which displays that the dynamic linkage between the two proteins is mostly through a
groove, comprising residues GLY100, SER125 and THR220 of the enzyme (chain E), surround-
ing an anchor, comprising residues MET70-VAL74 of the inhibitor (chain I, S2F Fig). The resi-
dues of the anchor are dynamically coupled more strongly to the amino acids of the enzyme
than the amino acids of their own chain, i.e., the inhibitor. The anchor-and-groove maintains
the dynamic coupling between the subunits, presumably also the functional interaction. S4
Table shows the threshold values and the attributes of each decision variable for this case as

Fig 3. Dynamics of a non-obligatory complex. Slow modes of motion in the complex between subtilisin
BPN’ and proteinaceous inhibitor from Streptomyces (2SIC [52]). The upper panels show the matrices of
correlations between residue fluctuations, hΔRi � ΔRji, of mode 1 (A) and mode 2 (B) with negative and
positive marked as blue and red, respectively. The boundaries between the subunits are marked in white.
The lower panels show projection of the correlations on the 3D-structure: C- mode 1 and D- mode 2. The
subunits are shown on the PyMOL [61] figures in lighter and darker versions of the same colors.

doi:10.1371/journal.pcbi.1004461.g003
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given in Eq 4. Four of the seven attributes (AR, Aa, Na, As) suggest that this protein is non-
obligatory, as it really is.

Motion and interaction: Large-scale evaluation
The examples above suggest that it could be possible to discriminate between obligatory
(1QU7) and non-obligatory (2SIC) interactions based on their dynamic footprints (Fig 2 and
Fig 3). To examine how feasible it is we conduct GNM calculations of the 139 obligatory and
246 non-obligatory protein complexes in our dataset and analyze dynamic correlation maps as
described in the flow chart of Fig 1. Preliminary tests are conducted using the fluctuations of
the two slowest, ten slowest, and all modes of motion. The sense and magnitude of the correla-
tions between intra- and inter-chain residue fluctuations and the number of anchor regions are
analyzed for a best scoring metric to predict the interface type.

The results, summarized in Table 1, show that even estimates based only on the two slowest
modes yield a significant success rate for the prediction: 62.6% (87 out of 139) and 64.6% (159
out of 246) for obligatory and non-obligatory interfaces, respectively. The success rates increase
to 69.1% (96 out of 139) and 72.8% (179 out of 246), respectively, when the ten slowest modes
are considered. Furthermore, combining the ten slowest and all modes, the success rates are
as high as 84.2% (117 out of 139) and 82.5% (203 out of 246), respectively. To examine the
stability of the results obtained with the latter setting we divide the dataset randomly into five
subsets. Reassuringly, the success rates of the five sets are 84.6 ± 5.8% and 82.6 ± 4.6% for oblig-
atory and non-obligatory complexes, respectively. With the latter results, the server now con-
siders the ten slowest and all modes of motion in the background analysis for the best decisive
outcome. These results suggest that the dynamics is able to capture largely the global topologi-
cal similarity of obligatory and non-obligatory complex structures and provides a plausible
measure for the interface type prediction. We should keep in mind, though, that there is con-
tinuous spectrum of dynamic behaviors from non-obligatory to obligatory interactions, rather
than a clear separation into two clusters. Our choice of thresholds is optimal, albeit arbitrary.

As a reference we examine the success rates of NOXclass [38] on the same dataset (Table 2).
NOXclass fails to process the query for PDB entries of more than two chains. Thus, only the
binary complexes in the original set are used. The success rates are 74.2% (89 of 120) for obliga-
tory complexes, and 66.5% (107 of 161) for non-obligatory, respectively. DynaFace’s success
rates on the same set are significantly higher: 81.7% (98 out of 120 cases) and 83.2% (134 out of
161 cases), respectively. It is noteworthy that the two approaches are complementary to each

Table 1. The success rate of DynaFace.

Obligatory Interfaces Non-obligatory Interfaces Overall

Two slowest modes 62.6% 64.6% 63.9%

Ten slowest modes 69.1% 72.8% 71.4%

Ten slowest modes combined with all modes 84.2% 82.5% 83.1%

The success rate of DynaFace to reproduce the interface annotations of S1 Table based on various normal mode combinations.

doi:10.1371/journal.pcbi.1004461.t001

Table 2. The success rate of NOXclass and DynaFace for the binary complexes in the set of S1 Table.

Obligatory Interfaces Non-obligatory Interfaces Overall

NOXclass 74.2% 66.5% 69.8%

Dynaface 81.7% 83.2% 82.6%

doi:10.1371/journal.pcbi.1004461.t002
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other in that they are based on orthogonal properties; NOXclass uses various local sequence-
and structure-based properties, and DynaFace is based on the fluctuation dynamics as a single
and mainly global property. Thus, it could be possible to combine DynaFace and NOXclass to
improve the performance further.

A similar comparison has been made with PiType. PiType, which uses Uniprot IDs, makes
use of already existing interaction networks in its database, and most of the cases in our dataset
are not included in their database. We thus made a partial comparison on 62 proteins (45 non-
obligatory, 17 obligatory) that exist both in our dataset and PiType’s. DynaFace successfully
reproduced annotation of 85.4% (82.3% of obligatory and 86.7% of non-obligatory complexes)
of the complexes, while PiType reproduced only 80.6% (70.6% of obligatory and 84.4% of non-
obligatory complexes) of these complexes, respectively.

DynaFace classifies crystal packing as non-obligatory interfaces
Due to the close packing of protein molecules in crystals, some interactions observed in X-ray
crystal structures are non-biological. PDB entries are thus known to contain artifacts of crystal-
lization that do not have any biological relevance [10]. It is of interest to examine how these are
classified by DynaFace.

Because a reliable gold-standard of non-biological interfaces is not available, we compiled
one based on previous studies. The starting point was a dataset of 63 large crystal packing inter-
faces with buried surface area of 800 Å2 or more, where the monomeric state was confirmed by
biochemical or biophysical studies [53]. DynaFace calculations failed for four of the complexes
due to the appearance of a singular connectivity matrix due to the topology of the complex
structure where the minimum distance of alpha carbon atoms between the two subunits of the
interface is> 7 Å. These complexes have been removed from the dataset. Of the rest of the 59,
three were classified as obligatory and the rest as non-obligatory. Next, we applied existing
computational tools for the detection of crystal packing interfaces; PQS [54], PITA [55], PISA
[56] and PInS [57] and NOXclass [38]. The DIMOVO tool [58] was excluded because it was
trained on the present dataset. Table 3 summarizes the success rate of each server and S7 Table
shows the detailed results. Each and every method classifies many interfaces as biologically
meaningful, rather than being crystal artefacts, suggesting that the methods or dataset are
imperfect.

To be on the safe side, we filtered the dataset and applied a particularly restrictive criterion,
keeping only 13 crystal-packing interfaces with consensus prediction (Highlighted structures
in S7 Table). DynaFace classifies all the remaining interfaces as non-obligatory. Interestingly,
ten of them do not display anchors, the key indication of non-obligatory interfaces. The outli-
ers are 1a7v, 2atj and 3ng1, which display anchoring behavior between subunits. The dynamic
behavior of crystal and biological non-obligatory complex structures needs to be further inves-
tigated on a larger clean dataset of crystal complex structures.

Prediction with models of protein complexes (PrePPI)
Having validated DynaFace on documented cases, we used it also to analyze interfaces of 300
model structures, predicted by the PrePPI tool [6]. The structural models were constructed
using a combination of structural and non-structural interaction clues and assigned confidence

Table 3. The success rate of PQS, PINS, NOXclass, PISA and DynaFace in the detection of the crystal packing interfaces of S7 Table.

PQS PINS NOXclass PISA DynaFace

61.9% 53.9% 76.2% 55.5% 88.9%

doi:10.1371/journal.pcbi.1004461.t003

DynaFace: Discrimination between Protein-Protein Interactions

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004461 October 27, 2015 12 / 19



levels “high”, “low” or “very low”. For completion we also analyzed the 85 real dimeric struc-
tures used as the templates for the models, assuming that agreement between the classification
of the interface of the model and template is indicative of the prediction accuracy. The results
are provided in S2 Table. Reassuringly, the agreement between DynaFace predictions of model
and template correlated with the confidence of the model according to the PrePPI estimate:
86.0% agreement for the 100 models of the ‘high’ confidence, 72.6% for the 100 with ‘low’ con-
fidence, and 57.0% for the 100 with “very low” confidence.

Among 100 model structures in the ‘high’ PrePPI category, 93 are predicted to be obligatory.
Of the templates of these, 86 are also predicted to be obligatory. Only 7 of the model structures
in the ‘high’ category are predicted to be non-obligatory, but their templates are not. Of the 100
PrePPI dimers in the “low” category, 22 are predicted to be obligatory, 73 to be non-obligatory,
and 5 could not be processed because the subunits were over 7 Å apart from each other in the
model. Consensus between DynaFace prediction for model and template is obtained for only
one of the 22 obligatory dimers but for 68 of the 73 non-obligatory interfaces. Of the 100 Pre-
PPI structures in the “very low” category, 27 and 73 structures are predicted respectively to be
obligatory and non-obligatory; consensus with the prediction for the template is obtained for
10 of the 27 obligatory interfaces and 47 of the 73 non-obligatory ones.

In total there are 76 cases of disagreement in the prediction of the interface type between
the model and template. Examination showed that in 52 cases the disagreement is related to
large size differences between the polypeptide chains. That is, when a short chain in the tem-
plate corresponds to a much larger chain in the model or vice versa. The size difference pro-
nouncedly affects the global dynamics, which has significant contribution here to classify the
interface type. As an example, the 8API template, predicted as non-obligatory, was used to
model P29508_P01009, P35237_P01009, P48594_P01009, P50453_P01009, Q86WD7_
P01009, where a short template chain of 36 amino acids corresponds to 369 in the model,
which is predicted to be obligatory. We could not find an obvious reason for the observed dis-
agreement in the rest of the cases (24, i.e., 8%) and we attribute it to parametric error in the twi-
light zone between obligatory and non-obligatory interfaces.

A case study with a modeled complex structure
The NMR structure of the transforming growth factor beta 1 (TGF-B1; 1KLD [59]) was used as
a template for PrePPI modeling of ten dimer structures in the “high” confidence category and
one in the “very low” category. TGF-B1 is a multifunctional cytokine with stimulatory and
inhibitory effects. Its mature form is homodimeric. Indeed, the template is predicted to be
obligatory as it should [59]), and so are all the PrePPI models assigned with high confidence
level. In contrast, the one PrePPI model, assigned with very low confidence is predicted to be
non-obligatory.

As a sample case, the underlying dynamics for the structural model P09529_P01137 is pre-
sented in S4 Fig and S8 Table. The RMSD between one of the structural models P09529_
P01137 in the “high” category that was analyzed here and the template structure, chains A and
B of 1KLD, is 1.6 Å. Both of these structures are found to be obligatory, in line with the experi-
mental findings of this protein structure [60]. According to the slowest mode, the homodimeric
structure has five hinges; three in chain A: GLU333/GLY334, CYS372/ILE373 and CYS404/
GLY405, and two in chain B: GLY46/PRO47 and CYS77/CYS78. The hinges of both chains
align to a single plane, dividing the structure into two dynamic domains. In the second slowest
mode, the dynamic domains are defined by hinge residues PHE309/ILE310, TYR327/TYR328,
THR379/MET380, ASP395/VAL396 in chain A and LEU20/TYR21, ALA41/ASN42, GLU84/
PRO85, MET104/ILE105 in chain B. The two slowest modes dominate the overall dynamic
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behavior in this case. Here, the intra- and inter-chain nature of the cooperativity is indistin-
guishable, assumed hallmark of obligatory interaction.

Conclusion
Protein-protein complexes are involved, in essence, in all intra- and inter-cellular processes,
and the nature of the inter-protein interface determines mechanistic aspects of the interaction.
The interfaces have been evolutionarily-designed to enable transduction between the proteins,
suggesting that analysis of the dynamics of the complex can reveal the nature of the interaction.
The global dynamics of protein complexes should be particularly crucial for function. Follow-
ing this hypothesis, DynaFace exploits the dynamics of protein complexes in order to detect
obligatory vs. non-obligatory interactions among the subunits. The global perspective of inter-
actions across the subunits interface is described mainly by the dynamics of the structural com-
plex, which is not easily accessible by studying only local sequence and structural properties.
The dynamic domains, the motions of sub-structural units and how they cooperate with
respect to the interacting chains, i.e. the dynamic infrastructure provided by the interacting
chains, overall captures the global connectivity similarity for the obligatory and non-obligatory
complex structures. To this end, the dynamics of protein complexes in terms of the motions of
their dynamic domains and how they are dynamically coupled for their function is of impor-
tance for design and function modification of proteins. It is important to note that overall, the
interaction spectrum is continuous and does not readily land itself to any discrete classifica-
tions. Thus, it is not surprising that DynaFace predictions are imperfect.

DynaFace could readily be embedded in other tools for predicting interface type. Such tools
often use local characteristics, which are complementary to the global features used in Dyna-
Face. Indeed, an approach that combines both local and global features would provide a means
to discover further and more novel aspects of biological processes.

Supporting Information
S1 Fig. Obligatory and non-obligatory interactions often differ in their dynamic character-
istics. The results obtained using the dataset of S1 Table, which includes a total of 139 obliga-
tory and 246 non-obligatory complexes. The X-axis represents the value of the decision
outcome D in Eq 4, ranging from 0 to 7; the Y-axis shows the fraction of the protein complexes
having that decision outcome value D. In DynaFace, complexes assigned a D value greater than
or equal to 4 is predicted to be obligatory; otherwise non-obligatory.
(TIF)

S2 Fig. The correlation between residue fluctuations of an obligatory vs. non-obligatory
complex. The upper panels show the correlations hΔRi � ΔRji for the average over the two
slowest modes (A), the ten slow modes (B), and all modes (C) of motion for an obligatory
interface, 1QU7 [49]. The lower panels (D, E, and F) show the respective correlations for a
non-obligatory interface, 2SIC [52].
(TIF)

S3 Fig. The non-obligatory interaction between the enzyme and inhibitor in the 2SIC com-
plex is mediated using anchor and groove. The anchor residues MAT70-VAL74 on the inhib-
itor (chain I) are shown as solid spheres, and the groove residues GLY100, SER125, THR220
on the enzyme (chain E) are shown as doted spheres. The figure was produced using PyMOL
[61].
(TIF)
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S4 Fig. Slow modes of motion in the structural model P09529_P01137 based on the
template NMR structure of the transforming growth factor beta 1 (TGF-B1, PBD ID:
1KLD [59]). The top panels show the matrices of correlations between residue fluctuations,
hΔRi � ΔRji, of mode 1 (A) and mode 2 (B) color-coded for negative (blue) and positive (red)
correlations. The boundaries between the subunits are marked in white. The bottom panels
show projection of the correlations on the 3D-structure: C- mode 1 and D- mode 2. The sub-
units are shown on the PyMOL [61] figures in lighter and darker versions of the same colors;
spheres are the hinge residues.
(TIF)

S1 Table. The dataset of 246 non-obligatory and 139 obligatory protein complexes [14, 31].
The original references as well as the references used to update the interaction type are given.
DynaFace predictions are also included.
(DOCX)

S2 Table. Dataset of 85 template structures and the PrePPI structural models predicted
based on these template structures [6] along with their DynaFace predictions. “Model ID”–
the PrePPI index number of the predicted dimer model. “Probability”- the PrePPI prediction
likelihood: high, low, very low. “Template ID”–the PDB accession number of the template Pre-
PPI used to model the dimer. “Template Chain IDs”–the chains PrePPI used to model the
structure. “Model”–DynaFace prediction of the interface type of the model structure: obliga-
tory vs. non-obligatory. “Template”–DynaFace prediction of the interface of the template.
(DOCX)

S3 Table. Individual performance of each attribute for obligatory and non-obligatory com-
plex structures in the dataset.
(DOCX)

S4 Table. The threshold value for the seven dynamic attributes used in a DynaFace calcula-
tions. The values of the attributes for two examples are presented, where attributes that exceed
the threshold are highlighted in bold. PDB IDs 1QU7 and 2SIC are predicted to be obligatory
and non-obligatory, respectively, as they should.
(DOCX)

S5 Table. The dynamic building units, structural units and hinge residues of an example
obligomer: The homodimeric cytoplasmic domain of the serine chemotaxis receptor
(1QU7 [49]).
(DOCX)

S6 Table. The dynamic building units, structural units and hinge residues of an example
non-obligatory dimer: Subtilisin BPN' in complex with its streptomyces subtilisin inhibitor
(2SIC [52]).
(DOCX)

S7 Table. The comparison of the predictions of the servers; PQS, PINS, NOXclass, PISA
and DynaFace on the crystal dataset by [53].
(DOCX)

S8 Table. The dynamic building units, structural units and hinge residues of the structural
model P09529_P01137 based on the template NMR structure TGF-B1 (1KLD[59]).
(DOCX)
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