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Single-cell transcriptome analysis reveals aberrant
stromal cells and heterogeneous endothelial cells in
alcohol-induced osteonecrosis of the femoral head
Zheting Liao 1,2,7, Yu Jin1,2,7, Yuhao Chu1,2,7, Hansen Wu2,3,7, Xiaoyu Li1,2, Zhonghao Deng1,2, Shuhao Feng1,2,

Nachun Chen1,2, Ziheng Luo1,2, Xiaoyong Zheng4, Liangxiao Bao1, Yongqing Xu5, Hongbo Tan 5✉ &

Liang Zhao 1,2,6✉

Alcohol-induced osteonecrosis of the femoral head (ONFH) is a disabling disease with a high

incidence and elusive pathogenesis. Here, we used single-cell RNA sequencing to explore the

transcriptomic landscape of mid- and advanced-stage alcohol-induced ONFH. Cells derived

from age-matched hip osteoarthritis and femoral neck fracture samples were used as control.

Our bioinformatics analysis revealed the disorder of osteogenic-adipogenic differentiation of

stromal cells in ONFH and altered regulons such as MEF2C and JUND. In addition, we

reported that one of the endothelial cell clusters with ACKR1 expression exhibited strong

chemotaxis and a weak angiogenic ability and expanded with disease progression. Further-

more, ligand-receptor-based cell-cell interaction analysis indicated that ACKR1+ endothelial

cells might specifically communicate with stromal cells through the VISFATIN and SELE

pathways, thus influencing stromal cell differentiation in ONFH. Overall, our data revealed

single cell transcriptome characteristics in alcohol-induced ONFH, which may contribute to

the further investigation of ONFH pathogenesis.
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Nontraumatic osteonecrosis of the femoral head (ONFH) is
a disabling orthopaedic disease that is pathologically
characterized by femoral head microvascular dysfunction

and bone metabolism disorder. Alcoholism is the main patho-
genic factor in nontraumatic ONFH and is responsible for
32.4–45.3% of nontraumatic ONFH cases in Asia1–3. Although
many hypotheses exist regarding the pathogenesis of alcohol-
induced ONFH, the exact pathogenesis has remained unclear.

In current clinical practice, non-replacement procedures, such as
vascularized bone flap grafts and stem cell-loaded tantalum grafts,
can preserve hip function in middle-stage alcohol-induced ONFH
(ARCO stage 2 to 3A). However, the effectiveness of these pro-
cedures is uncertain4–6. Mesenchymal stem cells (MSCs), which
are important seed cells for bone formation, have the ability to
undergo self-renewal and differentiate into multiple cell types. The
abnormal osteogenic-adipogenic differentiation of MSCs and
excessive fat accumulation in lesions of the bone marrow cavity are
highly relevant to ONFH7. Alcohol has been reported to alter the
osteogenic-adipogenic differentiation of MSCs, enhance their adi-
pogenic competency by regulating Wnt and mTOR pathways8–10

and retard osteogenic differentiation11,12. However, whether local
MSCs exhibit these characteristics in alcohol-induced ONFH and
whether the microenvironment is still conducive to bone regen-
eration remain unknown.

Alcohol consumption causes endothelial injury and leads to
intravascular coagulation, resulting in a reduced blood supply, which
has been considered a pathological mechanism of ONFH13,14. In
contrast, another study reported that endothelial activation-related
markers, such as vWF and FVIII, but not coagulation markers, were
positively correlated with ONFH progression15, which indicated the
complicated role of endothelial cells in ONFH. Further investigation
of the phenotypes and transcriptome characteristics of local endo-
thelial cells will contribute to a better understanding of this
phenomenon.

Single-cell RNA sequencing (scRNA-seq) is a powerful tool for
elucidating cellular status in bone and bone marrow samples16,17.
Here, we analysed femoral head cells from patients with middle- and
advanced-stage alcohol-induced ONFH (Association Research Cir-
culation Osseous (ARCO) 3A and 4) using scRNA-seq. Samples
from patients with hip osteoarthritis (HOA) with chronic joint
degeneration and femoral neck fracture (FNF) characterized by
acute ischaemia and acute inflammatory responses were used as
controls. Our data revealed heterogeneous cellular transcriptome
characteristics, identified pathogenic endothelial cells, and explored
specific cell–cell communication patterns in alcohol-induced ONFH.

Results
Identification of cells in alcohol-induced ONFH. A freshly
isolated single-cell suspension from the femoral head was obtained
by even sampling (Fig. 1a and Supplementary Fig. 1), mixed
enzyme digestion and density gradient centrifugation (Fig. 1a).
Prior to further analysis, we performed quality control of the raw
data and excluded cells with low data quality (Supplementary
Fig. 2). Thereafter, 46,904 cells in the ONFH group were aggre-
gated into 36 distinct clusters through unbiased clustering and
were roughly defined as four major subgroups: myeloid cells,
lymphocytes, endothelial cells (ECs), and stromal cells (SCs)
(Fig. 1b). In most clusters, the cells from each sample were evenly
distributed (Fig. 1c). Myeloid cells and lymphocytes were the most
abundant cells, accounting for 55.7% and 24.3% of the total cells,
respectively (Fig. 1c). Differentially expressed gene (DEG) analysis
was carried out on four major subgroups. The expression patterns
of the top 20 DEGs identified in individual cells in these major
subgroups were centralized and included recognized cell-type
markers (Fig. 1d).

DEG analysis was also carried out on the basis of cell clusters,
and the top 20 DEGs and the precise annotations of each cluster
are listed in Table S1. Using the same screening criteria and
clustering and annotation methods, we identified 23,835 HOA
cells and 9,859 FNF cells (Supplementary Figs. 3, 4). Notably, a
cluster of haematopoietic cells showing high HBA1, HBA2, HBB
and HBD expression was only found in HOA.

Characterization of SCs in alcohol-induced ONFH. Stromal cell
dysfunction is one of the pathological features of alcohol-induced
ONFH, so we focused on SCs for in-depth analysis. A total of five
clusters of SCs, fibrochondrocytes (FCs), uncommitted stromal
cells (USCs), adipogenic lineage cells (ALCs), osteogenic lineage
cells (OLCs) and chondrogenic lineage cells (CLCs), were iden-
tified by unbiased clustering (Fig. 2a), canonical markers from
DEGs (Fig. 2b and Supplementary Data 1). Of note, some cluster
feature genes were also expressed at lower levels in other lineages.
The osteogenic marker IBSP was also expressed in CLCs, the
adipogenic marker APOE in USCs and OLCs, the stemness fea-
ture NOTCH3 in ALCs and FCs, and feature genes of FCs
COL1A1 and COL3A1 also in ALCs and CLCs, indicative of the
multiple functions of these genes and the cell heterogeneity per-
sisting in the cluster.

Since these five types of SCs are known to show correlations in
their biological differentiation18,19, we conducted a pseudotime
analysis to further verify the annotations. The results showed that
USCs were near the origin of pseudotime and gradually
underwent three cell fates: adipogenesis, osteogenesis and
chondrogenesis (Fig. 2c). Some of the CLCs and OLCs
constituted the prebranch of osteogenesis, and most of the FCs
were located at the end of the chondrogenesis branch. Although
most of the cells in each cluster had a tendency to concentrate
towards a pseudotime node, some of the cells were also scattered
in the prebranch. The expression peaks of recognized marker
genes appeared in different stages of pseudotime, which was
consistent with the cell fates (Fig. 2d). Moreover, DEG analysis of
the two trajectory nodes showed that the top 10 DEGs contained
recognized lineage-specific genes (ADIRF, IBSP, SPP1) with
expression trends that were consistent with the cell fates (Fig. 2e).
Some genes (TPM2, SPARCL1, OLFML3, PTGDS, EFEMP1,
HAPLN1) lacked a reported connection with MSC differentiation
also showed different expression levels among each cell fate. We
also carried out Gene Ontology (GO) enrichment analysis of the
highly expressed DEGs of the five SCs and found that
corresponding cell fate terms were enriched in each cluster and
that each term contained more than 10 DEGs (Fig. 2f).

To further explore the transcriptome characteristics of the five
types of SCs, we performed regulon specificity analysis and regulon
activity analysis of the SCs (Fig. 2g, h). The results showed that each
type of SC exhibited specific and highly active regulons, including
recognized MSC fate determinant regulons CLCs: SOX9 (13g) and
SOX9_extended (14g); ALCs: CEBPA_extended (34g); OLCs:
SP7_extended (61g); USCs: NR2F2_extended (71g)) as well as
poorly defined regulons (FCs: BHLHE40_extended (184g) and
CREB3L1_extended (162g)) (Fig. 2g, h).

Comparison of osteogenic- adipogenic differentiation between
groups. We next compared SCs in different stages of ONFH, HOA
and FNF to explore the transcriptional characteristics specific to
ONFH. By using canonical marker genes, the merged stromal cells
could also be annotated as chondrogenic-, adipogenic-, uncom-
mitted- and osteogenic- stromal/lineage cells, and a cluster of
undefined cells lacking stromal marker genes (Fig. 3a). Notably, the
FCs in the ONFH group were included in CLCs after multigroup
integration. In terms of cell proportions, the ONFH 3A group
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Fig. 1 Landscape of local cells on alcohol-induced ONFH femoral heads. a Schematic diagram of single-cell suspension acquisition and sequencing data
analysis. b UMAP plot of 46,904 high-quality primary cells on alcohol-induced ONFH femoral heads. The cells were grouped into 36 clusters consisting of
4 major groups of cells. c Bar plot and pie charts showing the cell composition within each cell cluster and the total ONFH cells. d Heatmap showing the top
20 DEGs of the 4 major cell subgroups. The genes labelled on the right are recognized cell-type markers.
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contained the highest proportion of ALCs, while the ONFH 4 group
showed the highest proportion of CLCs (Fig. 3b). The proportion of
USCs in the FNF group was higher than that in the other groups
(Fig. 3b). H&E staining showed that the bone marrow in the HOA
and FNF groups was full of adipose tissue, in which adipocytes were
mature and had large lipid droplets (Fig. 3c). Conversely, the bone

marrow of the ONFH group was filled with fibrous materials and a
large number of small vacuolar cells (Fig. 3c). To identify these
small vacuolar cells, we selected chemerin, a known adipokine20

specifically expressed in the ALCs in our sequencing data (Sup-
plementary Fig. 5a), as a marker for immunohistochemistry
detection. High levels of chemerin-positive signals were found

Fig. 2 Characterization of stromal cells in alcohol-induced ONFH. a UMAP showing the clustering and annotation of stromal cells. b Feature plots
showing the distribution of recognized lineage-specific genes. c Trajectory map indicating the developmental correlations of the 5 SC clusters. d Lineage-
specific gene expression changes over pseudotime. e Heatmap showing the top 10 DEGs between different cell fates at development node 1 and node 2 in
(c). f Differentiation-related GO terms enriched by the top 100 DEGs of each SC cluster. The numbers and names of the enriched genes are listed behind
and below the GO terms, respectively. g Bubble plot showing the Regulon specificity score (RSS) of each SC cluster’s highly specific regulons. h Feature
plots showing the binary regulon activity scores of the two regulons with the highest RSSs in each SC cluster. AUC: area under the curve.
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around these cells (Supplementary Fig. 5b), indicating that these
cells were adipocyte lineage cells.

We then investigated the differences in osteogenic-adipogenic
differentiation of SCs between different groups from scRNA-seq
data. The expression levels of adipogenic promoters21–24 were
higher in the ONFH 3A group, while the expression levels of
osteogenic promoters were higher in the HOA and FNF groups in
the collection composed of OLCs, ALCs and USCs (Fig. 3d),
USCs alone (Supplementary Fig. 6a) or other collections
(Supplementary Fig. 6b, c). The GO and Kyoto Encyclopedia of

Genes and Genomes (KEGG) enrichment analyses of the DEGs
identified in USCs showed that the adipogenesis term appeared in
the ONFH group, the skeletal development term appeared in the
HOA group, and the autophagy and apoptosis terms appeared in
the FNF group (Supplementary Fig. 6d). To verify the diverse
adipogenic-osteogenic competency of the SCs in each group, we
isolated and amplified MSCs from ONFH 3A, HOA and FNF
specimens (Supplementary Fig. 7a–c). Differentiation experi-
ments confirmed that MSCs in the ONFH 3A group showed a
stronger adipogenic differentiation ability (Supplementary Fig. 7d)
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Fig. 3 Diversity of osteogenic- and adipogenic- trends among the ONFH, HOA, and FNF groups. a UMAP showing the clustering of stromal cells
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and a weaker osteogenic differentiation ability (Supplementary
Fig. 7e).

To further explore the underlying molecular mechanisms, we
regarded the cells with osteogenic- or adipogenic- differentiation
potential (USCs, ALCs and OLCs) as a collection and compared
DEGs and regulon activity between groups (Fig. 3e, f). NOTCH3,
MMP13, MEF2C (27g), ZNF282 (12g), and SMACB1_extend
(11g) were found to show higher expression levels or regulon
activity in the ONFH 3A group. The activity of transcription
factors known to promote osteogenic differentiation, such as
JUND_extend (54g), SOX6_extend (17g) and PML_extend (14g),
was lower in the ONFH group (Fig. 3f).

Characterization of ECs in alcohol-induced ONFH. Endothelial
cell dysfunction is another important pathological feature of
alcohol-induced ONFH. Here, we further investigated the tran-
scriptional characteristics of endothelial cells. Two distinct
endothelial cell clusters were identified in the ONFH group by
unbiased clustering (Fig. 4a). ACKR1 was the most differentially
expressed gene between these two clusters. Therefore, we referred
to the two clusters as ACKR1+ ECs and ACKR1− ECs. The DEG
analysis showed that the ACKR1+ ECs overexpressed ACKR1,
the blood coagulation-related gene PLAT, and the immune
adhesion-related gene SELE (Fig. 4b). The ACKR1- ECs highly
expressed the angiogenic-related gene SEMA3G, the chemokine
gene CXCL12, and the tight junction component CLDN5
(Fig. 4b). To further characterize these two clusters of ECs, GO
analysis was performed. Over 30 of the top 100 GO terms enri-
ched in ACKR1+ ECs were associated with the response to
inflammation and chemokines, leucocyte adhesion and migra-
tion, and the response to hypoxia and oxidative stress (Fig. 4c and
Supplementary Data 2). The ACKR1− ECs were enriched in GO
terms (over 20 of the top 100) related to endothelial cell devel-
opment, differentiation, cell junctions and vasculature develop-
ment (Fig. 4c and Supplementary Data 2).

Heterogeneity among these two endothelial cell clusters was
also observed in the regulon analysis. NR2F2_extended (171g),
JUND_extended (990g), and BHLHE40_extended (6103g) con-
stituted the top cell type-specific regulons in ACKR1+ ECs
(Fig. 4d, e). Conversely, ACKR1-ECs possessed the specific
regulons SOX17_extended (22g), KLF3_extended (27g), PPAR-
G_extended (44g) and ETS1 (84g) (Fig. 4d, e).

To verify the heterogeneity among ACKR1+ ECs and
ACKR1− ECs, endothelial cells derived from alcohol-induced
ONFH specimens were isolated and amplified. ACKR1+/− ECs
were separated by flow cytometry (Fig. 4f and Supplementary
Fig. 8). A tube formation experiment was then performed to
evaluate the angiogenesis ability of endothelial cells. The results
showed that the ACKR1- ECs generated more branch points and
exhibited longer total tube lengths than the ACKR1+ECs (Fig. 4g,
h). To assess the chemotaxis and leucocyte extravasation ability of
the ECs, we used two different Transwell cell migration models
(Fig. 4i). In the initial Transwell model, a monolayer of ACKR1+
ECs in the upper chamber resulted in more downwards-
migrating THP-1 cells (a human peripheral blood monocyte
cell line) than monolayers of ACKR1− ECs and unsorted ECs
(Fig. 4j, k). In another model, more THP-1 cells were recruited to
the conditioned medium of ACKR1+ ECs than to the condi-
tioned medium of ACKR1− ECs or unsorted ECs (Fig. 4j, k). In
summary, these data suggested the presence of two heterogeneous
clusters of ECs in alcohol-induced ONFH, among which
ACKR1+ ECs presented a proinflammatory phenotype.

Heterogeneity of ECs in the ONFH, HOA and FNF group. In
contrast to the ONFH group, three clusters of endothelial cells

were found in the HOA group, which could also be distinguished
into ACKR1+ ECs and ACKR1− ECs, while the unbiased clus-
tering of the FNF group yielded only one cluster of ACKR1-
endothelial cells (Supplementary Figs. 3, 4). After the integration
of ECs from ONFH, HOA and FNF, we divided these cells into
ACKR1+ ECs and ACKR1− ECs depending on their ACKR1
expression levels (>3 counts, ACKR1+ ECs; ≤3 counts, ACKR1−
ECs) (Fig. 5a). In the merged ECs, the number of ACKR1+ ECs
varied by disease and status; ACKR1+ ECs accounted for 3.95%
of FNF ECs, 34.88% of ONFH 3A ECs, 48.61% of ONFH 4 ECs
(39.85% of total ONFH ECs), and 43.57% of HOA ECs (Fig. 5b).
The expression level of ACKR1 was higher in the ONFH 4 group
than in the HOA, ONFH 3A and FNF groups (Fig. 5c).
ACKR1+/vWF+ cells were mainly observed in sinusoids and
venules, but not in arteries (Fig. 5d). The number of ACKR1+
vessels and ACKR1+ primary endothelial cells in the ONFH 4
group was greater than that in the other groups (Fig. 5d, e), which
was consistent with the number of ACKR1+ ECs in the single-
cell sequencing data.

We further performed intergroup comparisons of ACKR1+
ECs and ACKR1- ECs, respectively. Among the ACKR1+ ECs,
the ONFH and HOA groups showed higher expression levels of
ACKR1, leucocyte adhesion molecules (SELE, SELP, and ICAM1)
and inflammatory factors (IL1R1), while an opposite trend of
angiogenesis-related gene (KDR, CDH5, ITGB1, CLDN5, and
FABP4) expression was observed in ACKR1- ECs (Fig. 5f). To
clarify the relationship between ACKR1 expression and the
progression of alcohol-induced ONFH, we established a mouse
chronic alcohol consumption model by administering an alcohol-
containing liquid diet. The expression levels of ACKR1 in the
femoral head of the model mice increased gradually over time,
and the ACKR1 signal in the 7th week was significantly higher
than that in the control group (Fig. 5g, h). To further explore the
transcriptome differences of ACKR1+ EC in different statuses,
we conducted regulon analysis. Regulons related to inflammation
and hypoxia, such as STAT1 (35g), STAT2 (17g), and
ATF4_extended (48g), showed higher activity in the ONFH
group, while regulons related to endothelial survival and tight
junctions, such as ETS2_extended (18g) and RXRA (24g), showed
higher activity in the HOA group (Fig. 5i). Taken together,
these data suggested that there was heterogeneity in the
transcriptome characteristics of ACKR1+ ECs in different groups
and that ACKR1+ ECs might play a pathogenic role in alcohol-
induced ONFH.

Analysis of EC and SC communication reveals potential reg-
ulatory pathways in alcohol-induced ONFH. The above data
revealed the specific transcriptome characteristics of SCs and ECs
in alcohol-induced ONFH, and we then tried to identify the
possible underlying pathogenic mechanism from the perspective
of cellular communication between SCs and ECs. In the ligand-
receptor pair-based communication analysis of all clusters in
ONFH, it was found that ECs harboured high-ranking ligand
numbers, which were paired with receptors from myeloid cells
and SCs (Fig. 6a). On the other hand, C22 (annotated as osteo-
clasts, expressing CTSK, MMP9, and ACP5) harboured the most
receptors, which were paired with ligands from ECs and SCs
(Fig. 6a). Overall, ligand-receptor pairs were mainly enriched
between SCs, ECs and some myeloid cells (Fig. 6a red frame),
suggesting a high frequency of cell communication between these
cells. High-frequency cell communication between ECs and SCs
was also observed in the HOA and FNF groups (Supplementary
Fig. 9). We then analysed the main communication patterns and
corresponding highly weighted pathways among all clusters
(Fig. 6b and Supplementary Fig. 10a–d). Notably, several stem cell
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differentiation-related pathways, such as the BMP, FGF and
PDGF pathways, were primarily found in ECs, which indicated
that communication between ECs and SCs might play a role in
SC differentiation in alcohol-induced ONFH.

The above data revealed two distinct clusters of ECs with
different transcriptome characteristics in alcohol-induced ONFH,

and we then compared the communication characteristics
between these two clusters of ECs and SCs. The VISFATIN and
SELE pathways were significantly upregulated in ACKR1+ ECs
via the NAMPT-(ITGA5/ITGB1), NAMPT-INSR, SELE-CD44
and SELE-GLG1 axes (Fig. 6c). The PDGF, CXCL12, and
SEMA3 signalling pathways were significantly upregulated in
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ACKR1- ECs via the SEMA3F-(NRP2+ PLXNA1), SEMA3G-
(NRP2+ PLXNA1), PDGFB−PDGFRA, PDGFB−PDGFRB,
PDGFD−PDGFRB and CXCL12-ACKR3 axes (Fig. 6c). Next,
we compared the ECs-SCs communication patterns between
groups (Fig. 6d). Overall, the cell communication patterns of
ACKR1+ ECs and ACKR1− ECs to SCs were different in each
group. The VISFATIN (secreted) and SELE (cell–cell contact)
pathways were the main bridges of ACKR1+ ECs − SCs
communication in the ONFH group. In the HOA group, the MK,
MIF (secreted), APP and SELE (cell–cell contact) pathways
accounted for a high proportion. In the FNF group, there was an
elevated ANGPTL (secreted) pathway.

To further forecast the genetic functions of these differentially
expressed pathways, Pearson’s correlation analysis was performed
between these receptors and classical osteogenic, adipogenic and
chondrogenic marker genes in stromal cells (Fig. 6e and
Supplementary Fig. 10e). In the ONFH group, receptor genes
ITGA5, ITGB1 and CD44 were negatively correlated with
osteogenic and adipogenic marker genes but positively correlated
with chondrogenic marker genes. The receptor genes INSR and
GLG1 showed no tendency during the statistical analysis. In the
HOA group, we also found a similar tendency but with a weaker
correlation coefficient in SCs (Supplementary Fig. 10e). The
above data suggested that the SELE and VISFATIN pathways had
an effect on SC differentiation.

Discussion
Fatty hyperplasia, abnormal bone metabolism and microvascular
dysfunction are considered to be common pathological changes
in alcohol-induced ONFH. MSCs are also the cellular basis of
stem cell therapy in the clinical treatment of alcohol-induced
ONFH5,9. Thus, endothelial cells, mesenchymal stem cells and
osteoblasts have become the focus of research on the mechanism
of alcohol-induced ONFH development25,26. However, previous
studies have used cells that have either been amplified in vitro or
isolated from peripheral blood, which cannot fully reflect the
transcriptome characteristics of local cells in the femoral head. In
our study, we use scRNA-seq to analyse freshly isolated primary
cells from alcohol-induced ONFH, which helped to more com-
prehensively understand the transcriptome characteristics of
local cells.

In the SCs of alcohol-induced ONFH, we defined five types of
stromal cells in different commitment differentiation trajectories.
Notably, a large number of FCs were present in the ONFH group,
and this number increased with progression (stage 4 > 3A). The
hypoxia-related transcription factors BHLHE4027 and
CREB3L128 and their regulons were specifically active in fibro-
chondrocytes. These findings are consistent with the consensus
observation of enhanced SC chondrogenesis and chondrocyte
redifferentiation in the hypoxic environment29,30, which reflects

enhanced hypoxia in the bone marrow microenvironment during
disease progression. Elucidation of the role of proliferative
fibrochondrocytes in alcohol-induced ONFH will require further
experimental research.

Previous studies have reported that the activity and osteogenic
differentiation ability of femoral head-derived MSCs in ONFH
are significantly reduced, and our data are consistent with those
findings. Pseudotime analysis suggested the presence of early- and
middle- differentiated cells in ALCs and OLCs, thus, it is difficult
to equate USCs with MSC in biology. Therefore, the USCs+ALCs
+OLCs, USCs+ALCs and USCs+OLCs combinations were
included in the intergroup comparison when analyzing differ-
entiation trends. In either case, consistently reduced osteogenesis
and elevated adipogenesis in the ONFH group was observed.
Thus, we further explored the possible molecular mechanisms
and found the upregulated osteoclastogenesis-related regulon
MEF2C (27g)31 and downregulated osteogenesis-related regulon
JUND_extend (54g)32, as well as many unverified DEGs and
regulons. These data may provide clues for future studies on
osteogenic-adipogenic differentiation imbalance in MSCs.

ACKR1/Duffy antigen receptor for chemokines (DARC) is a
nonspecific inflammatory chemokine receptor that is widely
expressed in erythrocytes and endothelial cells33,34. Previous
studies have found that DARC in endothelial cells increases
leucocyte extravasation and inhibits neovascularization33,35.
Interestingly, we found that two distinct clusters of endothelial
cells in alcoholic ONFH could be clearly distinguished by their
expression levels of ACKR1. DEG analysis showed that ACKR1+
ECs expressed high levels of leucocyte adhesion- and migration-
related genes and lower levels of cellular junction-related genes,
which might also contribute to leucocyte chemotaxis and extra-
vasation, in addition to the function of DARC itself. In addition,
transcriptional regulon analysis showed that ATF4_extended
(145g), which contained the target chemokine gene CCL236,
exhibited specifically high activity in ACKR1+ ECs. ETS1 (84g)
and SOX17_extended (22g), which are closely related to
angiogenesis37,38, exhibited lower activity in ACKR1− ECs.
Combined with the results of the GO analysis, Transwell assays
and tube formation assays, our data suggested that ACKR1+ ECs
had a stronger ability to recruit immune cells and a weaker ability
to undergo angiogenesis. Thus, ACKR1+ ECs showed an acti-
vated phenotype39,40 and highly expressed proinflammatory
cytokines, chemokines and adhesion molecules.

The interdisease comparison showed that ACKR1+ ECs
expanded with ONFH progression (stage 4 > 3A). The expression
levels of ACKR1 in the femoral head also increased gradually over
time in a mouse alcohol consumption model. These results sug-
gested that ACKR1+ EC amplification was associated with
ONFH disease progression, but it was not clear whether there was
a direct causal relationship between the two, which will be

Fig. 4 Two clusters of differentiated endothelial cells expressing ACKR1 were identified. a The unbiased clustering of ONFH endothelial cells and the
expression distribution of ACKR1. b DEGs between ACKR1+ ECs and ACKR1− ECs. Genes with a log2 fold change greater than or less than 1.0 are shown
as green points, genes with a −log10P greater than 5.0 are shown as blue points, and genes that satisfied both conditions are shown as red points. c Bubble
plots representing the top 10 GO terms (P < 0.05) of ACKR1+ ECs (left) and the top 10 GO terms (P < 0.05) of ACKR1- ECs. The size of the point
represents the number of genes enriched. The colour of the dot represents the adjusted P value. d Top cell type-specific regulons of ACKR1+ ECs and
ACKR1- ECs based on the regulon specificity score (RSS). e Feature plots indicating selected regulon binary activity scores. f Flow cytometry gating
strategy for ACKR1+/− ECs. P1: nucleated cells; P2: ACKR1− ECs; P3: ACKR1+ ECs. g Representative calcein AM-stained images of tube forming assays.
The image in the lower row is an enlargement of the white-boxed area in the upper row. Scale bar in the upper row= 500 μm, scale bar in the lower row=
200 μm. h Quantitative analysis of branch points and total tube length. The analysis was based on the angiogenesis analysis plugin in ImageJ software.
Data are represented as mean ± SD, n= 3. One-way ANOVA with Tukey’s test, ***P < 0.001, ****P < 0.0001. i Schematic diagram of two Transwell
experiments. j Representative calcein AM-stained images of migrated THP-1 cells. Scale bar = 100 μm. k Migration ratio of THP-1 cells in different
Transwell experiments based on automatic cell counting. Data are represented as mean ± SD, n= 4. One-way ANOVA with Tukey’s test, *P < 0.05,
***P < 0.001.
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revealed by further studies, such as cell-tracing experiments.
Another concern was also a certain amount of ACKR1+ ECs in
the HOA group, although the amount and proportion were
smaller than those in the ONFH 3A group. The role of ACKR1+
ECs in aseptic inflammation and bone remodelling of sub-
chondral bone in osteoarthritis merits further investigation.

scRNA-seq can generate transcriptome data from multiple cells
in the same microenvironment, which provides reliable data for
L-R pair-based cell–cell communication analysis41. Our data
showed that L-R pairs were highly enriched in communication
between ECs and SCs in alcohol-induced ONFH. Furthermore,
ACKR1+ ECs and ACKR1− ECs showed different pathway
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patterns in communication with SCs. The VISFATIN and SELE
pathways showed a high probability of being involved in com-
munication between ACKR1+ ECs and SCs.

Visfatin/Nampt is a ubiquitous essential enzyme with catabolic
and proinflammatory properties that have been reported to
induce an inflammatory phenotype of fibroblasts in rheumatoid
arthritis42 and to promote chondrocyte apoptosis and extra-
cellular matrix degradation in osteoarthritis43,44. Our data sug-
gested that ACKR1+ ECs might communicate with CLCs, OLCs
and FCs via the VISFATIN pathway through the NAMPT-INSR/
NAMPT-ITGA5-ITGB1 axis. In addition, we found that the
communication weights of the VISFATIN pathway were upre-
gulated in the ONFH group compared with the other 2 groups.
Correlation analysis further revealed that ITGA5 and ITGB1, the
main receptors of the VISFATIN pathway, were negatively cor-
related with osteogenic marker genes and positively correlated
with chondrogenic marker genes. These findings provide pro-
mising targets for the study of abnormal MSC differentiation
in ONFH.

SELE (Selectin E), another ACKR1+ ECs−SCs communication
pathway associated with stem cell differentiation and elevated in
the ONFH group, has been reported to serve as a component of
the vascular niche that regulates hematopoietic stem cell dor-
mancy and proliferation45–47. Since the SELE pathway is a
cell–cell contact type, a prerequisite for this pathway to truly work
is vascular injury, so ACKR1+ ECs have the opportunity to
contact MSCs in the niche. Immunofluorescence staining showed
that ACKR1+ ECs were widely distributed in sinusoids and
venules in the ONFH group, making it possible for ACKR1+ ECs
to contact MSCs during vascular injury caused by alcohol abuse
and other pathogenic factors.

Overall, the present study provided high-resolution single-cell
transcriptome data from local cells in alcohol-induced ONFH,
revealed stromal cell abnormalities and endothelial cell hetero-
geneity, identified ACKR1+ ECs as key regulatory cells, and
revealed relevant cell–cell communication patterns and highly
weighted pathways. These data will contribute to the development
of cell-targeted therapy for alcohol-induced ONFH.

Methods
Subject details. In this study, a total of 11 femoral head samples from alcohol-
induced ONFH (ARCO 3A n= 3; ARCO 4 n= 3), HOA (n= 3), and FNF (n= 2)
patients were used for the scRNA-seq experiments. The details of the sample
donors are listed in Supplementary Table 1. ONFH was diagnosed according to the
accepted standard, including a history of drinking at least 300 g of ethanol per week
for more than 6 months. All donors signed informed consent forms and were free
from systemic immune diseases or infection. This study was approved by the
Nanfang Hospital Ethical Medical Committee (ref. NFEC-2020-154).

Preparation of samples for single-cell RNA sequencing. The femoral head
specimens were cut along the coronal plane with a wire saw. The bone tissue was
then collected from the entire coronal plane with a crescent bone-chisel in a 0.5 cm
gap (Fig. 1a and Supplementary Fig. 1), washed once with DPBS, immersed in a
mixture of 0.2% (w/v) collagenase type II (C6885, Sigma, St. Louis, USA)/0.2% (w/
v) dispase (D4693, Sigma), and placed on 37 °C horizontal rotators at 150 rpm for

4 h. After digestion, the bone residue was removed with a 70 μm nylon filter, and
the liquid portion was centrifuged at 400 × g for 5 min. The precipitate containing
bone and bone marrow-derived cells and numerous small bone fragments was then
resuspended in 20 ml of aMEM and placed in a 50 ml centrifuge tube containing
20 ml of a 75% (v/v) Percoll solution (P1644, Sigma). The whole mixture was
centrifuged at 450 × g for 20 min. After centrifugation, approximately 5 ml of the
nucleated cell layer was collected, diluted with aMEM (1:10), and recentrifuged at
400 × g for 5 min. Precipitated cells were resuspended in DPBS, and automated cell
counting (Countstar BioTech, Countstar, Shanghai, China) was performed under a
microscope. Samples with a cell viability rate greater than 90% were eventually used
for single-cell RNA sequencing.

Single-cell RNA sequencing. Approximately 10,000 cells per sample were loaded
into microfluidic chips to generate single-cell gel beads in emulsion by using a
commercial kit (Chromium Next GEM Single Cell 3ʹ GEM Kit v3.1, 10X Genomic,
Pleasanton, USA,). Subsequent cDNA amplification, quality control and library
construction were carried out in accordance with their guidelines. Cell Ranger was
used to compare the original FASTQ sequencing data to the reference genome
(GRCh38), perform gene expression quantification, and generate a cell-gene
expression matrix.

Single-cell sequencing data analysis. Quality control and data screening: All
individual sequencing data generated by Cell Ranger (the details of the software
that we used are listed in Supplementary Table 2) were subjected to quality control
by using the R package Seurat. SoupX software was used to detect and remove
ambient RNA contamination. Finally, three samples from the HOA group were
subjected to the SoupX procedure due to haemoglobin gene contamination and
plasma cell contamination. Furthermore, cells with a unique molecular identifier
(UMI) number of less than 500, cells expressing fewer than 250 genes, cells with a
mitochondrial gene expression ratio greater than 25% and cells with a gene/UMI
ratio less than 0.8 were filtered out (Supplementary Fig. 2).

Cell clustering and differentially expressed gene (DEG) analysis: Before
clustering analysis, the independent samples from each group were merged,
debatched and normalized by using the functions SCTransform and IntegrateData
in Seurat. Principal component analysis (PCA)-referenced unsupervised clustering
was performed to cluster ONFH cells (PC= 40, resolution = 1.02), HOA cells
(PC= 40, resolution = 1.0) and FNF cells (PC= 40, resolution = 0.6). DEG
analysis was performed with the FindMarkers and FindAllMarkers functions of
Seurat. The former was used to compare the DEGs of two groups of cells, while the
latter was used to search for marker genes of all cell clusters and to retain only
positive results. The results from the analyses performed with the above two
functions with log2 fold change (FC) values of less than 0.25 were filtered out.

Correlation test: Correlation analyses of the expression levels of two genes in the
same cell cluster or the same sample were performed by using the stats package,
and Pearson’s analysis was selected as the method.

Cell-type identification: In our study, two methods were combined to annotate
cell types. The automatic cell annotation software programs SingleR and scCATCH
were used for the preliminary annotation of the cell clusters. According to the
preliminary annotation results, the cells were divided into four categories: myeloid
cells, lymphocytes, SCs and ECs. Thereafter, the cells were further annotated based
on published single-cell sequencing data and known classical cell markers.

Pseudotime analysis: Pseudotime analysis was performed using Monocle2 with
DDR-Tree and the default parameters. Before single-cell trajectory assessment,
Seurat clusters were selected for analysis based on potential intercellular
relationships reported in previously published literature, and branch expression
analysis modelling (BEAM) was applied for branch fate-determined gene analysis.

GO and KEGG enrichment: Gene enrichment analysis was performed by using
the R package ClusterProfiler (Figs. 2f, 4c) and Metascape solfware (Supplementary
Fig. 6d). The enrichment analysis of GO and KEGG dual databases was based on
the DEGs (P < 0.05, log2FC > 0.25) of the MSCs in each group and was conducted
using Metascape. The enrichment of biological process terms was based on the
genes that were upregulated in the ACKR1+ ECs and ACKR1− ECs (P < 0.05,
log2FC > 0.5) (Fig. 4c).

Fig. 5 Characterization of ACKR1+/− ECs in ONFH, HOA and FNF. a The distribution of ACKR1 in the merged endothelial cells in ONFH, HOA and FNF.
b The proportion of mACKR1+ ECs and mACKR1− ECs in FNF, ONFH 3A, ONFH 4 and HOA. c The expression levels of ACKR1 in each group. Boxplot
shows the median and quartile values. T-test, ****p < 0.0001. d, e Presentative images of the immunofluorescence staining of ACKR1 and vWF in the bone
marrow region of femoral head samples (scale bar = 100 µm) and in the cultured endothelial cells (scale bar = 200 µm). Green fluorescence indicates
vWF, red indicates ACKR1, and blue indicates DAPI. Arrows indicate ACKR1+/vWF+ vessels/cells, stars indicate ACKR1−/vWF+ vessels. f The
expression levels of functional genes in mACKR1+ ECs and mACKR1− ECs. Boxplot shows the median and quartile values. T-test, *P < 0.05, **P < 0.01,
***P < 0.001, ****P < 0.0001. g, h Representative images of immunohistochemical staining of ACKR1 in the femoral head of mice with chronic alcohol
consumption and quantification analysis. Scale bar = 200 μm. Data are represented as mean ± SD, n= 5, One-way ANOVA with Tukey’s test, *p < 0.05,
**p < 0.01. i Heatmap showing the relative regulon activity of mACKR1+ ECs in each group. The FNF group was eliminated because of the low number of
ACKR1+ ECs.
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Analysis of transcriptional regulons: Regulon analysis was performed by using
the R package SCENIC and 3 basic packages, GENIE3, RcisTarget and AUCell.
First, we used GENIE3 to predict the gene coexpression network of the designated
cell clusters. Then, we used RcisTarget to analyse the possible binding sites (motifs)
of transcription factors in the target genes. Finally, we used AUCell to score the
activity of regulons in each group. After the above preparation, we used SCENIC to
further extract and analyse the results and evaluated the RSSs and activities of the
regulons.

Cell-to-cell communication analysis: All cell interaction analyses conducted in
this study were performed using the R package CellChat. Both secretory
communication databases and cell-contact communication databases were used.

Cell culture and isolation. The cell suspension obtained via the above method was
also used for endothelial cell culture and MSC culture. To culture endothelial cells,
regional cells were seeded in 100 mm cell culture dishes at a density of 50,000/cm2
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Fig. 6 Analysis of EC and SC communication indicated potential regulatory signalling pathways in alcohol-induced ONFH. a Heatmap showing the total
counts of significant ligand-receptor pairs across all clusters in the ONFH group. The red frame indicates that EC, SC and myeloid cells harboured high-rank
numbers of ligand-receptor pairs. b Bubble plot showing specific interaction pathways among ECs and SCs. Pathways in the red frame were markedly
different between ACKR1+ ECs and ACKR1- ECs. The bubble size represents the communication probability calculated by CellChat software. Pathway
colour represents communication mode (secreted signal or cell–cell contact). c Bar plot showing the communication weights and distribution of ligands and
receptors from pathways of interest. The colours in the bar column represent receiving cell groups. d Bar plot showing the proportions of communication
pathways in different groups. The upper panel represents the secreted signalling pathway, and the lower panel represents the cell–cell contact pathway.
The colours in the bar column represent communication pathways. e Pearson correlation analysis between pathway receptors of interest and adipogenesis
or osteogenesis genes. Pearson-test, *P < 0.05.
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and placed in a 37 °C, 5% CO2 incubator for 1 h. Commercial endothelial cell
medium (SC-1001, Cyagen, Santa Clara, USA) was used to culture endothelial cells.
After 1 h, unattached cells in the medium were collected, recentrifuged at 350 × g
for 5 min, and then reseeded at a density of 20,000/cm2 in 6-well cell culture plates
for further culture. When the endothelial cells reached 80% confluence, 0.25%
trypsin was used for cell passaging.

Endothelial cells at passage 2 were digested and collected for flow cytometry
sorting. The cells were resuspended in DPBS containing 10% goat serum and
placed on ice for 20 min. After centrifugation at 350 × g for 5 min, an anti-ACKR1
antibody solution was added, and incubation on ice was conducted for 20 min.
Thereafter, the primary antibody was removed by centrifugation at 350 × g for
5 min. The cells were washed twice with DPBS and then resuspended in a FITC-
labelled secondary antibody solution for another 20 min. After washing twice with
DPBS, the cells were subjected to flow cytometry sorting (Fig. 4f and
Supplementary Fig. 8). ACKR1+/−/unsorted ECs were cultured in serum-free
aMEM for 3 days, and the remaining aMEM was collected as conditioned medium
for ACKR1+/−/unsorted ECs. Information on all antibodies used in this study is
provided in Supplementary Table 3.

For MSC primary culture, cells were seeded in 6-well cell culture plates at a
density of 200,000/cm2 and placed in a 37 °C, 5% CO2 incubator. aMEM
containing 15% foetal bovine serum (FBS) and 1% penicillin and streptomycin
(P/S) was used for expansion. MSC purification was achieved by continuous
passage in plastic culture plates48,49. In short, when the primary adherent cells grew
to 70–80% confluence, they were digested with 0.25% trypsin, resuspended in a
new medium and seeded into a new culture plate at a density of 2000/cm2. After
2–3 generations of continuous passage according to the above method, the cell
morphology was unified into a spindle shape. Cells at passages 3–4 were used for
subsequent identification and experiments. To identify MSCs, we examined the
expression levels of the classic MSC markers CD105, CD90, and CD73 and the
negative markers CD45, CD31, and CD14 by flow cytometry and carried out
chondrogenic induction, osteogenic induction, and adipogenic induction
experiments as well as cell clone formation experiments (Supplementary Figs. 7, 8).

THP-1 cells (CL-0233), L929 cells (CL-0137) and THP-1 culture medium (CM-
0233) were purchased from Procell (Wuhan, China). The THP-1 cells were
cultured at 37 °C under 5% CO2, an equal volume of fresh medium was added
every 2–3 days, the cells were centrifuged once every 7–10 days, and the cell density
was maintained at 50,000 to 200,000/ml. The procedures for the expansion and
passaging of the L929 cells were consistent with the MSC method. L929 cells were
cultured in serum-free aMEM for 3 days, and the remaining aMEM was collected
as L929-conditioned medium.

Transwell experiments. Two types of cell migration experiments using the same
8 µm Transwell chambers (3422, Corning, Corning, USA) were carried out in this
study. In the first experiment, 20,000 ACKR1+/−/unsorted ECs were seeded on
the upper chamber membrane, and endothelial cell culture medium was added to
the upper and lower compartments. After 3 days of culture, a monolayer of
endothelial cells formed on the membrane. On the 4th day, the upper and lower
chambers were washed twice with DPBS, 500 µl of L929-conditioned medium was
added to the lower chamber, and 200 µl of a 500,000/ml THP-1 cell suspension was
added to the upper chamber. In the second experiment, 500 µl of conditioned
medium from ACKR1+/−/unsorted ECs was added to the lower chamber, and
200 µl of a 500,000/mL THP-1 cell suspension was added to the upper chamber.

In both experiments, suspended and adherent THP-1 cells in the lower
compartment were collected after 12 h and counted (Countstar BioTech,
Countstar) as migrated cells, stained with calcein AM (C2012, Beyotime, Shanghai,
China) and observed under a microscope.

Tube formation assay. A precooled 96-well cell culture plate was coated with matrix
gel (356234, Corning) applied at 50 µl per well and placed in an incubator at 37 °C for
1 h. Thereafter, 50 µl of a suspension containing 15,000 ACKR1+/−/unsorted ECs
was added to each gel-coated well. After 6 h of incubation at 37 °C under 5% CO2, the
remaining medium was removed, and a calcein AM solution was added for staining
for 20min. The wells were then washed twice with PBS and observed under a
fluorescence microscope. The branch points and total tube length in each image were
automatically counted using the Angiogenesis Analyzer plugin in ImageJ.

Multiple differentiation assays. MSCs at passages 3–4 were seeded in a 12-well
cell culture plate at a density of 2000/cm2, and the medium was replaced with
osteogenic induction medium (OIM) when the cells reached 70% confluence. The
OIM was dexamethasone free and consisted of 50 µg/ml sodium ascorbate (134-03-
2, Sigma), 10 mmol/L sodium β-glycerophosphate (13408-09-8, Sigma), 1% P/S
and 10% FBS in high-glucose DMEM. The OIM was changed every 3 days, and
alizarin red staining was performed on day 14.

In the adipogenesis induction experiment, MSCs were overgrown in 12-well
plates, and adipogenesis induction medium (AIM) was then added. Commercial
AIM (HUXMA-90031, Cyagen) was used in this experiment. The AIM was
changed every 3 days, and oil red/haematoxylin staining was performed on day 14.

In the chondrogenic induction experiment, MSCs were added to a 24-well
plate at a density of 200,000/10 µl. After 2 h of culture at 37 °C, the cell drops

became stable. At that time, 1 ml of chondrogenic induction medium (CIM) was
added, and the CIM was changed every 3 days. Safranin O staining was performed
on day 14. The CIM was high-glucose DMEM containing 10 ng/ml recombinant
human TGFβ1 protein (CA59, Novoprotein, Shanghai, China), 100 µg/ml sodium
ascorbate, 10 mg/L insulin (I8830, Solarbio, Beijing, China), 1% P/S and 10% FBS.
In all three differentiation experiments, the control group cells were cultured in
high-glucose DMEM containing 10% FBS and 1% P/S, and the medium was
changed every 3 days.

Clone formation experiment. MSCs at passage 3 were seeded in a 6-well cell
culture plate at 100 cells or 50 cells per well and cultured in aMEM containing 15%
FBS and 1% P/S. The medium was changed every 3 days. On the 14th day, 1%
crystal violet staining was performed to observe the formation of cell clones.

Animal experiment. A total of 30 male 8-week-old BALB/c mice weighing
between 26 g and 32 g were used to explore the relationship between bone marrow
ACKR1 expression and alcohol intervention. This study was approved by the
Nanfang Hospital Animal Ethics Committee (ref. NFYY-2020-47). All mice were
fed adaptively for one week before the intervention, and the solid forage was
gradually replaced with an alcohol-free Lieber- DeCarli liquid forage. All mice were
then randomly divided into the alcohol-free group (n= 6) and alcohol group
(n= 24). The alcohol-free group was given nonalcoholic liquid feed and was
sacrificed after 7 weeks. The alcohol group was given an alcohol-containing Lieber-
DeCarli liquid feed (TP4030, Dyets, Bethlehem, USA), and mice were randomly
sacrificed at weeks 1, 3, 5 and 7. Femurs from all mice were isolated for further
examination. During the whole experiment, the feeding environment was main-
tained at a temperature of 20–25 °C and relative humidity of 40–60%, with a
normal day-night cycle. All mice were weighed once per week, and mice that had
lost more than 15% of their body weight since the last measurement were excluded.

Histochemistry assays. Prior to the assay, all femoral head samples were fixed in
4% paraformaldehyde solution at room temperature for 72 h and subsequently
subjected to decalcification in 0.5 M EDTA for 16 weeks prior to dehydration,
paraffin embedding and serial sectioning (mouse femoral samples were fixed in 4%
paraformaldehyde for 12 h at 4 °C and decalcified for 4 weeks). The samples were
cut into paraffin sections (4 μm) for subsequent hematoxylin and eosin staining
with a commercial staining kit (DM0064, Boster Biological Technology, Wuhan,
China) according to the manufacturer’s instructions. For immunofluorescence (IF)
staining, prepared sections were incubated with anti-ACKR1 and anti-vWF anti-
bodies. FITC- or Cy3-conjugated secondary antibodies were used to display the
signals. For immunohistochemistry (IHC), a commercial HRP-DAB system kit
(SV0002, Boster) was used to display the signal of the primary antibodies. Infor-
mation on all antibodies is shown in Supplementary Table 3.

Statistics and reproducibility. In cell experiments, each group contained more
than 4 biological repeats, and the results for each sample were from the average of 5
different microscope fields. Analysis of the signal strength in the IHC images was
performed using the IHC Profile plugin in ImageJ, and the positive score of each
image was recorded and used for statistical analysis. In the quantitative analysis,
each group contained more than 5 independent samples, and the results for each
sample came from the average of three different microscope fields. Independent
T-test were used for differential analysis. One-way ANOVA with Tukey’s test were
used to make pairwise comparisons among multiple groups.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All data, including reagents and software information associated with this study are in
the paper or the Supplementary Materials. The raw data of scRNA-seq were posted to the
SRA database (SRP361778). The processed sequencing data and the source data for
graphs are available on Figshare (https://doi.org/10.6084/m9.figshare.19243722).

Code availability
All analysis scripts are publicly available via: https://github.com/ZhaoLab-JinYu/scRNA-
seq_ONFH
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