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Abstract: Parkinson’s disease (PD) is a heterogeneous neurodegenerative disease characterized by the
progressive loss of dopaminergic neurons in the substantia nigra pars compacta and the widespread
occurrence of proteinaceous inclusions known as Lewy bodies and Lewy neurites. The etiology of
PD is still far from clear, but aging has been considered as the highest risk factor influencing the
clinical presentations and the progression of PD. Accumulating evidence suggests that aging and PD
induce common changes in multiple cellular functions, including redox imbalance, mitochondria
dysfunction, and impaired proteostasis. Age-dependent deteriorations in cellular dysfunction may
predispose individuals to PD, and cellular damages caused by genetic and/or environmental risk
factors of PD may be exaggerated by aging. Mutations in the LRRK2 gene cause late-onset, autosomal
dominant PD and comprise the most common genetic causes of both familial and sporadic PD.
LRRK2-linked PD patients show clinical and pathological features indistinguishable from idiopathic
PD patients. Here, we review cellular dysfunctions shared by aging and PD-associated LRRK2
mutations and discuss how the interplay between the two might play a role in PD pathologies.
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1. Introduction

Parkinson’s disease (PD) is one of the most common neurodegenerative diseases
found in the elderly population and has been characterized by cardinal clinical manifesta-
tions, such as tremor, rigidity, postural instability, and bradykinesia. Microscopically, PD
is featured by the presence of proteinaceous inclusions known as Lewy bodies (LBs) and
Lewy neurites, which are highly immunoreactive for the protein α-synuclein [1]. One of
the key neuropathological features of PD is the progressive degeneration of nigrostriatal
dopaminergic (DA) innervation, which is responsible for the core motor symptoms. How-
ever, neurodegeneration is not restricted to nigral DA neurons but occurs in many other
brain regions as well. PD affects the central, peripheral, and autonomic nervous system
and causes heterogenous clinical symptoms, including various and often early presenting
nonmotor deficits, which makes PD a heterogeneous, multisystem disorder [2]. To date, a
number of mechanisms underlying the onset and progression of PD have been proposed,
and most, if not all, theories agree that PD is caused by multiple genetic and environmental
factors that degenerate DA neurons in the substantia nigra (SN) [3]. Accumulating lines of
evidence suggest that oxidative stress, mitochondrial dysfunction, and abnormal protein
clearance associated with the dysfunction of the ubiquitin-proteasome system (UPS) and
autophagy-lysosomal systems (ALS) play an important part in PD pathogenesis. Of note,
all of these defects are also involved in aging [4], raising the question of how rather general
defects that can occur in any type of cell cause PD. It has been suggested that PD may be a
local expression of aging on a particular population of cells, which have characteristics that
make them highly vulnerable to aging factors [5]. Aging affects other cellular populations,
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whose defects may cause the heterogeneous, non-motor PD symptoms when combined
with other PD risk factors.

The median age of onset for PD is around 60 years and the prevalence increases
exponentially over the age of 60 [6]. The majority of PD cases are classified as idiopathic;
the causes are unknown but believed to develop from accumulated gene-environment
interactions. PD is classified on the basis of phenotype (PD only or PD plus syndromes), age
at onset (juvenile or late-onset), and mode of inheritance (autosomal dominant, recessive,
or X-linked) [6]. Around 10–15% of all PD shows a family history and about 5% tends
to show a Mendelian inheritance [7]. Since the first identification of a disease-segregated
missense mutation in the SNCA gene [8], a total of 23 loci and 19 genes have been associated
with PD. Among the genes, mutations in the LRRK2 gene encoding leucine-rich repeat
kinase 2 (LRRK2) protein comprise the most frequent mutations found in both familial and
sporadic PD patients. Clinical features of LRRK2-associated PD patients are indistinguish-
able from those of idiopathic PD patients [9], but some variations have been reported in
neuropathology [10–12]. Of note, the penetrance of G2019S mutation, the most common
pathogenic variant of LRRK2-associated PD, is variable, but progressively increases with
age [13,14]. In this review, we discuss the possible interaction between LRRK2 and other
factors associated with aging, with a particular emphasis on how their interplay might
affect the onset and progression of PD.

2. Aging, LRRK2, and PD
2.1. Aging and PD

Aging can be defined as the time-dependent, progressive decline of diverse physi-
ological functions in the individual, leading to increased vulnerability to death and dis-
eases [5,15]. Evidence so far suggests that the rate of aging is controlled, at least to some
extent, by genetic and environmental factors [15]. The association of PD with aging has
been well appreciated for several decades. Advancing age unequivocally confers the major
risk for the development of PD. Aging is required to manifest the symptoms of PD even
in carriers born with the dominantly inherited, disease-causing mutations. In the United
States, it has been estimated that PD is present in 0.02% of the population who died between
45 and 54 years old and in 8.77% of the population who died after the age of 85 [5]. This
age-dependent prevalence of PD, showing more than a 400-fold increase as a function of
aging, is much more prominent compared to other age-related diseases, such as cardiovas-
cular diseases and Alzheimer’s disease. Several lines of evidence suggest that advancing
age also influences the clinical manifestation and disease progression of PD. In several
cross-sectional or longitudinal studies, PD patients with old-age onset showed a faster pro-
gression of motor signs or disability [16–19], decreased levodopa responsiveness [20–22],
more severe gait and postural impairment [23], more severe cognitive impairment, and
increased risk of developing dementia [24–26].

DA neurons in the SN may be particularly vulnerable to aging compared to neurons
in other brain regions, such as the hippocampus, putamen, hypothalamus, and neocor-
tex [4,27,28]. The number of cortical neurons in the neocortex was reduced by 9.5% over the
range of 70 years (range 20–90 years) [29], whereas the number of DA neurons in the SN of
older individuals was reduced by 36.2% compared to younger subjects [30], and the decline
was estimated to occur at a rate of 4.7–9.8% per decade [31,32]. A large-scale analysis of
post-mortem brains from 744 deceased participants (mean age of death, 88.5 years) without
PD revealed that almost 40% of the cases showed mild or more severe DA neuronal loss or
the presence of LBs, or both in the SN. As expected, the presence of LBs and the degree of
DA neuronal loss were associated with the severity of global parkinsonism and individual
parkinsonian signs [33]. Considering that clinical signs of PD are presented when about
more than 50% of DA neurons in the SN and 70% of their synaptic terminals in the striatum
are lost [5,34–37], it is plausible that the loss of DA neurons that occur during normal aging
is accelerated by a synergistic interaction between age-related changes and other genetic
and/or environmental risk factors of PD. Early studies suggested that the quality (i.e.,
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cell-type or location) of degenerating neurons might be different in normal aging versus
PD [38], but more recent evidence support the notion that the main difference between
aged brains and PD might be the quantity or the extent of DA neuronal loss (Figure 1).

Figure 1. A hypothetical model of aging and Parkinson’s disease (PD). (A) Functional DA neurons are reduced in both
healthy aging and PD. Rate of degeneration in healthy aging and PD might be similar up to a certain time point or age,
but degeneration in PD is accelerated until reaching the threshold for clinical diagnosis (red dotted line). The upper green
dotted line represents the threshold for expression of prodromal symptoms. Several genetic and environmental risk factors
might play a role in accelerating degeneration of DA neurons and causing PD. (B) Degeneration of DA neurons in the SN
is considered as the pathological hallmark of PD, but it also occurs in healthy aging. The difference in healthy aging and
PD might be the quantity of neurodegeneration rather than the quality. Healthy aging and PD share a plethora of cellular
dysfunctions, such as mitochondrial dysfunction, redox imbalance, impaired proteostasis, reduced energy production, and
impaired DA metabolism. Created with BioRender.com.

2.2. Characteristics of SN Neurons

Degeneration of SN neurons in normal aging [39] might be attributed to the vulner-
ability of their intrinsic properties (Figure 2). The nigrostriatal DA neurons have thin,
unmyelinated axons [40] with a dense axonal arborization and a very high number of
synaptic terminals [41]. The size and complexity of DA neurons in the SN are orders
of magnitude greater than those of other neuronal populations in the brain [42], impos-
ing a high metabolic burden to produce ATP, which is required for maintaining resting
membrane potential, generating and propagating action potential, transporting cellular
components to appropriate local compartments, and regulating synaptic transmission.
Because DA neurons in the SN are metabolically active and the level of basal oxidative
phosphorylation is high [43], they are susceptible to mitochondrial dysfunction. Inhibition
of mitochondria complex I of the electron transport chain by 1-methyl-4-phenylpyridinium
(MPP+) and rotenone induces neurodegeneration of DA neurons in the SN and causes
rapid parkinsonism [44,45]. Moreover, activity of complex I and the expression level of
complex I subunits were found to be selectively down-regulated in the brains of idiopathic
PD patients [46–50]. Defects in mitochondria quality and function, such as reduced activity
of mitochondrial enzymes, decreased respiratory capacity per mitochondria, and increased
generation of reactive oxygen species (ROS) within SN DA neurons have been implicated
in normal aging [51,52] and are similar to those found in postmortem PD brains. The
difference again between aged and PD brains might be a matter of the degree of damage,
rather than the type.
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Figure 2. Intrinsic properties of dopaminergic (DA) neurons in the substantia nigra (SN). The nigrostriatal DA neurons are
autonomous pacemakers, and their tonic spontaneous activity is important for the sustained release of dopamine in target
structures, such as the striatum. In addition, DA neurons in the SN have thin, unmyelinated axons with an extraordinary
large axonal arbor and a very high number of synaptic terminals. The size and complexity of DA neurons in the SN impose
a high metabolic burden to produce ATP, which is required for transporting cellular components to appropriate locations,
maintaining resting membrane potential, generating and propagating action potential, and regulating synaptic transmission.
Metabolically active DA neurons in the SN are susceptible to mitochondrial dysfunction, which is a prominent feature of
both aging and PD. Created with BioRender.com.

Given that mitochondria are a primary source of ROS, production of ROS is greater in
neuronal populations with higher energy demands. Due to the gradual deterioration in
cellular redox regulatory mechanisms, ROS accumulates in the aging SN. Antioxidants,
such as superoxide dismutase (SOD) and glutathione peroxidase play a critical role to
reduce ROS and protect cells from pathogenic oxidation. Reduction in SOD and glutathione
reductase activities have been reported in the postmortem SN of healthy aged individuals
compared to younger individuals [52]. Compared to a rather moderate age-dependent
decline in antioxidant activities, severe reduction in glutathione activity has been reported
in the SN of PD patients [52–55]. Thus, a high baseline level of oxidative stress in the aging
SN can confer vulnerability to oxidative insults caused by additional compounding factors
that are specifically present in the PD brain.

DA itself can be a source of oxidative stress. DA outside the synaptic vesicle is easily
metabolized by monoamine oxidase, generating H2O2 and dihydroxyphenylacetic acid.
Non-enzymatical auto-oxidation of DA produces O2

− and reactive DA quinone [5,56–58].
In DA neurons, iron levels are high, and H2O2 reacting with iron can form •OH. The DA
transporter (DAT) and vesicular monoamine transporter 2 (VMAT2) play a protective
role against ROS by removing free dopamine from the synaptic cleft and packing into
synaptic vesicles, respectively [59]. Positron emission tomography (PET) imaging with
a radiolabeled DAT ligand, N-3-fluoropropyl-2-β-carboxymethoxy-3-β-(4-iodophenyl)
nortropane (FPCIT) revealed age-dependent decline in dopamine transporter binding in
normal subjects and a significant reduction in idiopathic PD patients [60–62]. The decline
could reflect a reduction in the number of presynaptic terminals due to cell death and/or a
decrease in dopamine transporter availability. Age-related decline in dopamine transporter
binding was greater than the age-dependent loss of nigrostriatal neurons in normal aged
brain [31], suggesting that the expression of dopamine transporter also decreases with
advancing age. Indeed, a marked, age-dependent reduction in dopamine transporter
mRNA was reported in human SN [63].
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2.3. LRRK2 and PD

LRRK2 encodes a large, multi-domain protein of 2527 amino acids, consisting of
a catalytic core and several protein–protein interaction domains. The catalytic core is
comprised of a serine/threonine kinase domain and a GTPase domain termed Roc (Ras
of complex proteins) followed by the C-terminal of ROC (COR) domain, which classify
LRRK2 as a ROCO family protein. The enzymatic core is flanked by additional domains
with predicted protein-protein interaction functions, such as the armadillo and ankyrin
repeats and the leucin-rich repeat domain at the N-terminus and the WD40 domain at the
C-terminus [64]. The N- and the C-terminal regions are suggested to play a regulatory
role in controlling enzymatic activity or substrate specificity [65,66]. PD-linked pathogenic
LRRK2 mutations are enriched in the catalytic core; R1441C/G/H, N1437H in the ROC
domain, Y1699C in the COR domain, and G2019S and I2020T in the kinase domain [67].
Many of the pathogenic LRRK2 mutants display an increase in the kinase activity compared
to wild-type (WT) LRRK2 [68–70], and genetic or pharmacological inhibition of the kinase
activity could alleviate neurodegeneration induced by pathogenic LRRK2 mutants [71],
suggesting that aberrant kinase activity plays a key role in the pathogenesis of PD [64,72].

Mutations in the LRRK2 gene can cause autosomal dominant PD [73]. In certain ethnic
groups, LRRK2 mutations have been estimated to be present in up to 40% of familial PD
and 10% of sporadic PD cases [74–77]. The most common LRRK2 mutation, p.G2019S
has been reported in many ethnic backgrounds and is estimated to account for 4% of
familial PD and 1% of sporadic PD cases [13,74,78]. The frequency of this mutation varies
in different ethnic groups [79–84]. Core features of LRRK2 G2019S-associated PD include
asymmetrical, tremor-predominant parkinsonism with bradykinesia, and rigidity that
respond to dopamine replacement and functional neurosurgery [13]. Given that these
symptoms are reminiscent of idiopathic PD, LRRK2 G2019S-associated PD and idiopathic
PD might share key pathological mechanisms [85].

All monogenic variants show heterogeneity in pathology, including the age at onset,
disease penetrance, and neuropathological features, such as occurrences of typical LB
pathology and/or pure nigral-striatal degeneration. This heterogeneity suggests that
the interaction of a certain genetic risk factor with other genetic and/or environmental
modifiers affects the neurodegenerative trajectories of PD pathobiology [86]. In the case of
LRRK2 G2019S, the penetrance varies widely and increases with age [13,14]. A case-control
study conducted by the International LRRK2 Consortium, which included 1,045 people
with LRRK2 mutations in 133 families, estimated that the cumulative risk of PD for LRRK2
G2019S carriers was 28% at 59 years, 51% at 69 years, and 74% at 79 years of age [13]. These
clinical observations are recapitulated in genetic animal models, presenting highly age-
dependent pathological phenotypes. In conditional transgenic (Tg) mice overexpressing
LRRK2 G2019S in catecholaminergic neurons, DA neuronal loss could be detected at 15
months of age and progressed until 24 months of age, when deficits in motor function,
such as decreased stride length in gait analysis and increased descending time in pole test,
became evident [87]. Furthermore, α-synuclein pathology progresses with age. LRRK2
G2019S knock-in (KI) mice exhibited progressive dysfunctions of plasma membrane and
vesicular DA transporters between 3 and 12 months of age, along with the increase in
phospho-Ser129 α-synuclein-positive inclusions in the striatum compared to age-matched
WT mice [88]. However, these pathologies were not associated with nigro-striatal DA
neuronal degeneration or changes in striatal DA release at least up to 19 months of age.
LRRK2 R1441G mice also showed age-dependent, progressive accumulation of oligomeric
α-synuclein in the striatum and the cortex [89]. Differences between LRRK2 R1441G KI mice
and age-matched control mice could be detected at 15 months of age and became greater
at 18 months of age. Collectively, evidence from LRRK2-associated PD case studies and
LRRK2 animal models support the notion that aging is a critical factor for PD development.
However, it should be noted that not all studies have not found the same pathologic changes
in LRRK2 mouse models. To test the role of aging in PD, Cooper et al. [90] investigated
whether delaying aging could suppress LRRK2 G2019S- and α-synuclein A53T-mediated
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PD phenotypes in Caenorhabditis elegans (C. elegans) models. They crossed the Tg worm
models of PD expressing either LRRK2 G2019S or α-synuclein A53T with the long-lived
insulin-IGF1 receptor mutant, daf-2 and found that the daf-2 mutation increased the lifespan
in both PD mutants. Crossing with daf-2 mutants also rescued the degeneration of DA
neurons and improved DA-dependent behavioral deficit, such as basal slowing, ethanol
avoidance response, and area-restricted searching, in the two worm models of PD.

3. LRRK2 in Mitochondrial Dysfunctions
3.1. LRRK2 and Oxidative Stress

A growing body of evidence supports a role of LRRK2 in mitochondria function.
Several aspects of mitochondrial dysfunction, such as increased oxidative stress, reduced
mitochondria membrane potential, abnormal mitochondrial fission and fusion, and defects
in mitochondrial trafficking, have been suggested from postmortem analysis of LRRK2-
linked PD patient tissues [91] and from induced pluripotent stem cells (iPSCs)-derived
neural cells from PD patients with LRRK2 mutation [92]. Animal and cellular models
expressing pathogenic mutants of LRRK2 also show mitochondrial dysfunction [93]. ROS
are generated as byproducts of the respiratory chain reaction in mitochondria and thus
oxidative stress is increased in aged and PD brains. An imbalance between ROS production
and the ability to detoxify the reactive intermediates can cause oxidative stress, which can
create a hazardous state that leads to cell and tissue damage through oxidation of various
biological products, such as proteins, lipids, and DNA [94].

LRRK2 has been implicated in the regulation of oxidative stress. Oxidative stress in
mouse SN-derived SN4741 cells expressing LRRK2 G2019S, LRRK2 WT, or empty vector
increased intracellular ROS levels and caused cell death in the order of G2019S > WT
> vector-transfected cell [95]. In another report, LRRK2 G2019S and I2020T mutations
increased ROS production, and LRRK2 G2019S induced oxidative modification of macro-
molecules [96]. ROS level and cell death were increased in neural stem cells (NSCs) carrying
the R1441G mutation compared to WT NSCs, but was reduced in LRRK2 KO NSCs [97].
Differential gene expression profiling from WT and LRRK2-KO NSCs revealed that several
genes involved in oxidation and reduction in mitochondria were deregulated when LRRK2
was depleted [97]. Pathogenic LRRK2 mutations have also been associated with mitochon-
drial dysfunction. Deficits in mitochondria respiration and compromised mitochondria
dynamics were observed in iPSC-derived neural cells from individuals carrying the LRRK2
G2019S or R1441C mutation, but not in iPSC-derived neural cells from healthy subjects [92].
Notably, mitochondrial dysfunction could be rescued by LRRK2 kinase inhibitor. Mito-
chondrial DNA damage was detected in iPSC-derived neural cells from patients carrying
the LRRK2 G2019S mutation [98,99], and zinc finger nuclease-mediated editing of the ge-
netic mutation prevented the mitochondrial DNA damage [99]. The underlying molecular
mechanisms by which LRRK2 regulates oxidative stress remain unclear, but the involve-
ment of antioxidant defense mechanisms have been suggested. LRRK2 G2019S could
phosphorylate peroxiredoxin 3 (PRDX3) and PRDX2, which is a member of the thioredoxin
peroxidase family, and which is an important antioxidant scavenger of hydrogen peroxide
in mitochondria. PRDX3 and PRDX2 phosphorylation mediated by LRRK2 was associated
with decreased peroxidase activity and increased cell death [96,100,101]. Co-expression
of PRDX3 with LRRK2 G2019S in Drosophila could ameliorate the reduction in peroxidase
activity, loss of DA neurons, shortened lifespan, and mitochondrial defects in flight muscles
induced in monogenic flies expressing LRRK2 G2019S alone [100]. Furthermore, LRRK2
G2019S mutation has been associated with mitochondrial uncoupling [102], character-
ized by dissociation between mitochondrial membrane potential generation and its use
for mitochondria-dependent ATP synthesis [103]. LRRK2 G2019S increased mitochon-
drial proton leak through the upregulation of uncoupling protein (UCP) 2 and UCP4 [94].
These results imply that LRRK2 G2019S increases the permeability of the mitochondrial
inner membrane to protons, which can be driven by opening of the permeability pore,
increasing the expression of pore forming proteins, and/or the upregulation/activation
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of UCPs. Opening of mitochondrial permeability pore is associated with increased ROS
production [104].

Pathogenic LRRK2 mutants have been shown to be associated with increased suscep-
tibility to oxidative stress in multiple model systems [92,95,99,105–110]. In several reports,
iPSC-derived neural cells from LRRK2 G2019S carriers showed increased vulnerability to
oxidative stress caused by exposure to hydrogen peroxide, 6-hydroxydopamine, valino-
mycin, concanamycin, and MPP+ as compared to iPSC-derived neural cells from healthy
individuals [92,107,108], and the increased vulnerability could be reversed by LRRK2
kinase inhibitors [92,108]. In C. elegans models, the LRRK2 G2019S mutation increased
sensitivity to oxidative and heat stress by inhibiting nuclear translocation of DAF-16, a
homolog of mammalian FoxO [111]. FoxO has been suggested as a key transcription factor
that coordinates cellular responses to environmental changes, including metabolic and
oxidative stress [112]. FoxO can trigger various cellular responses to control the redox
status of a cell by regulating the expression of anti-oxidative stress genes, such as sod-3 and
dod-3. In C. elegans, LRRK-2 G2019S could also exacerbate degeneration of DA neurons
caused by exposure to a bacterial metabolite [113]. Similarly, Drosophila models expressing
dLRRK (Drosophila orthologue of hLRRK2) Y1383C (hLRRK2 Y1699C), dLRRK I1915T
(hLRRK2 I2020T), hLRRK2 G2019S, or hLRRK2 G2385R showed a significantly higher
sensitivity to oxidative stress induced by H2O2, paraquat, or rotenone, and a marked re-
duction of DA neurons [109,110]. In a mouse model, DA neurons in the SN pars compacta
(SNpc) of LRRK2 G2019S Tg showed increased susceptibility to 1-methyl-4-phenyl-1,2,3,6-
tetrahydrophyridine (MPTP) [114,115]. Furthermore, a sub-toxic dose of MPTP caused
a severe motor impairment, selective loss of DA neurons in the SNpc, and increased
astrocyte activation in LRRK2 G2019S Tg mice, whereas LRRK2 WT Tg mice had mild
deficits and non-Tg mice were largely unaffected [115]. A previous study examined the
combined effects of LRRK2 mutation, aging, and chronic exposure to an environmental
toxin, rotenone [116], and found that LRRK2 R1441G KI mice developed greater locomotor
deficits in an open field test compared to WT mice, after oral administration of low doses of
rotenone given twice weekly over 50 weeks (half of their lifespan). The increased locomotor
deficit was associated with a reduction in striatal mitochondrial complex-I subunit.

3.2. LRRK2 and Mitochondrial Dynamics

Mitochondria are dynamic organelles that constantly fuse and divide, move along
cytoskeletal tracks, and undergo regulated turnover. Mitochondria dynamics enables
mitochondria quality control and is considered as an important mechanism to adapt to
changes in bioenergetic demands and other physiological requirements. During the past
decades, core components of a machinery mediating mitochondrial fusion and fission have
been identified [117]. Dynamin-related GTPase, mitofusin 1 (MFN1) and its paralog MFN2
are anchored to the outer mitochondrial membrane (OMM) through their C-terminal mem-
brane binding domains and fuse adjacent mitochondrial membrane through N-terminal
cytoplasmic regions containing the GTPase domain [118–120]. Fusion of the OMMs is
driven by GTP hydrolysis, which induces a conformational change to bring the adjacent
membranes in contact with one another. Inner mitochondria membrane (IMM) fusion
is known to be controlled by another dynamin–related GTPase, optic atrophy protein 1
(OPA1) [121]. OPA1 is processed to generate two forms: the long, membrane-bound OPA1
(L-OPA1) and the proteolytically cleaved short, soluble OPA1 (S-OPA1). The cleavage is
mediated by two IMM proteases, YME1L and OMA1 [122]. OPA1 processing is known
to be affected by changes in mitochondrial membrane potential and pro-apoptotic stim-
uli [123–125]. Recent studies have suggested that maintaining a delicate balance between
L-OPA1 and S-OPA1 isoforms is critical for mitochondrial membrane fusion and remod-
eling [126]. Similar to OMM fusion by MFN proteins, OPA1 forms oligomeric structures
with those of adjacent IMM, followed by GTP hydrolysis-driven conformational change to
fuse the two IMMs [127]. Mitochondrial fission is the functional counterpart of fusion, but
relatively little is known about molecular mechanisms. Dynamin-related protein 1 (DRP1)
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is a key molecule in fission, and other proteins such as fission protein 1 (Fis1) and RAB7
have been suggested to play a role [128]. DRP1 localizes in the cytosol and is recruited to
the prospective fission site upon activation.

Structural defects in mitochondria have been reported in various pathogenic LRRK2
models, including LRRK2 G2019S mouse models [129–131], LRRK2 PD patient-derived
cells [91,132–134], and other cellular systems [135–137]. Mitochondrial elongation and
abnormal interconnectivity have been observed in the fibroblasts derived from LRRK2
G2019S PD patients [91], and abnormally shaped mitochondria have been detected in
the striatum of aged LRRK2 G2019S KI mice. Mitochondria observed in the LRRK2
G2019S KI mice resemble “beads-on-a-string”, which show swollen areas with perturbed
cristae connected with narrow membranous segments, reminiscent of DRP1-related fission
arrest [131].

LRRK2 has been shown to interact with multiple components of the mitochondrial fu-
sion and fission machinery (Figure 3). LRRK2 partially co-localized with MFN1, MFN2 and
OPA1 at mitochondrial membranes of neural cells, and WT and PD-associated mutants of
LRRK2 (R1441C, Y1699C, and G2019S) could be co-immunoprecipitated with MFN1 [138].
Moreover, LRRK2 has been shown to recruit DRP1 to mitochondria and induce mito-
chondrial fragmentation in a DRP1-dependent manner. PD-associated mutations (R1441C
and G2019S) increased both the mitochondrial recruitment of DRP1 and fragmentation in
SH-SY5Y cells and primary cortical neurons [136]. Notably, LRRK2-induced cytotoxicity
could be blocked by decreasing mitochondrial fission or increasing fusion [136]. Similar
results were observed in PD patient-derived fibroblasts, where LRRK2 G2019S mutation
promoted mitochondrial fission by recruiting DRP1 to mitochondria [137]. Interaction be-
tween LRRK2 and DRP1 has been also reported in microglial cells [139]. LRRK2 promoted
mitochondrial fission by increasing DRP1 expression and triggered a pro-inflammatory
response in microglia in LRRK2 G2019S Tg mouse brains [139]. These results suggest that
LRRK2 regulates mitochondrial fusion and fission and that dysregulation of mitochondrial
dynamics might play a role in LRRK2-associated PD.

Figure 3. Mitochondrial dysfunction caused by pathogenic LRRK2 mutants. (A) Pathogenic LRRK2 mutants (mtLRRK2)
reduce the activity of electron transfer chain (ETC) reaction and mitochondria membrane potential (ψm), resulting in
inefficient ATP production and increased reactive oxygen species (ROS) production. (B) Pathogenic LRRK2 mutants interact
with mitochondria fusion proteins, such as mitofusin (MFN) and optic atrophy protein 1 (OPA1) and mitochondria fission
proteins, such as dynamin-related protein 1 (DRP1). Pathogenic LRRK2 mutants alter mitochondrial morphology and
dynamics presumably by interacting with the fusion and fission machinery but the exact molecular mechanism awaits to be
elucidated. Created with BioRender.com (accessed on 13 February 2021).
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4. Aging and LRRK2 in Abnormal Protein Clearance
4.1. Aging and Protein Aggregation

Proteostasis refers to the state of a balanced proteome and is maintained through
the action of the proteostasis network that coordinates protein synthesis, folding, disag-
gregation, and degradation [140,141]. Age-dependent deterioration of the proteostasis
network is regarded as a major driver of age-related cellular dysfunction [15]. Loss of
proteostasis is often characterized by the appearance of non-native protein aggregates,
which are prominent hallmarks of aging and several neurodegenerative diseases [15,142].

Molecular chaperones function to assist de novo protein folding, prevention of protein
misfolding and aggregation, and targeting unfolded and non-native proteins for degra-
dation. Coupled with chaperone functions, two principle proteolytic systems, UPS and
ALS play key roles in protein quality control, ensuring the removal of damaged or mis-
folded proteins. In vitro and in vivo studies have demonstrated that components of the
proteostasis network are negatively affected during aging. Poor cellular energetics due to
reduced mitochondrial function and dysregulation of cellular metabolism can limit the
amount of available ATP, thereby affecting ATP-dependent chaperones and ATP-dependent
proteolytic machinery. Age-dependent decline of UPS function may also result from de-
creased expression of chaperone and proteasome subunits, disassembly of proteasome,
and inactivation of accumulated protein aggregates [143,144]. Age-related modifications in
the substrate can also interfere with each machinery’s ability to recognize its target [140].
Regarding ALS, autophagic decline contributes to the accumulation of dysfunctional cy-
toplasmic organelles, such as lysosomes, mitochondria, and endoplasmic reticulum (ER).
Failure to replace old or impaired organelles affects their morphology and functions. Mor-
phological features associated with aging or senescence include the expansion of lysosomal
compartments, increase of autophagic vesicles, and the presence of enlarged lysosomes
containing lipofuscin, composed of highly oxidized cross-linked macromolecules that are
resistant to proteolytic activity of lysosomes and clearance by exocytosis [145]. Accumula-
tion of dysfunctional or damaged biomolecules and organelles may further interfere with
proteostasis network, especially in long-lived post-mitotic cells, such as neurons, where
damaged molecules and machinery cannot be diluted through mitotic cycles [15,145,146].

4.2. LRRK2 in Autophagy-Lysosome Systems

Macroautophagy, chaperone-mediated autophagy (CMA), and microautophagy are
the three major forms of autophagy identified so far [147]. Macroautophagy starts with
the formation of a cup-shaped membrane, phagophore that elongates and sequesters a
portion to the cytoplasm to form the autophagosome. The autophagosome then fuses with
the lysosome to form the autophagolysosome where the contents are degraded. In CMA,
proteins are targeted to lysosomes by a chaperone through the interaction between the
chaperone and a pentapeptide present in the substrate. Substrate proteins then bind to
a transmembrane receptor, lysosome-associated membrane protein type 2A (LAMP-2A),
which multimerizes to form the translocation complex that carries the substrate proteins
into the lysosome for degradation. In microautophagy, cytoplasmic contents are directly
engulfed into lysosomes for degradation. Central to all three forms of autophagy is the
lysosome. Lysosome function decreases with age, with a rise in lysosomal pH [148]. A role
of lysosomes in PD pathology is reflected in the PD-associated genes involved in lysosomal
function, such as VPS35, ATP13A2 and GBA [6,149].

Several pathogenic LRRK2 mutant models, including neuronal cell lines, primary
cortical neurons and astrocytes, and Tg animal models, have reported abnormal lysosomal
phenotypes, such as abnormal morphology [16,150–153], altered pH [154,155], and dimin-
ished activity [16,154]. Primary cortical neurons overexpressing LRRK2 G2019S or LRRK2
I2020T contained multivesicular bodies (MVBs) and swollen lysosomes [156]. Primary cor-
tical neurons from bacterial artificial chromosome (BAC) Tg rats expressing LRRK2 R1441C
showed decreased lysosomal acidity and alterations in lysosomal calcium dynamics [155].
Lysosomal activity depends on lysosomal pH, and acidic lysosomal pH and local calcium
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release from lysosomes are critical for late endosome- and autophagosome-lysosome fu-
sion [157,158]. Interaction between LRRK2 and the a1 subunit of the v-type H+ ATPase
proton pump (vATPase a1) was reduced in LRRK2 R1441C compared to WT LRRK2, lead-
ing to the dysregulation of lysosomal pH [155]. Primary cortical neurons derived from
LRRK2 G2019S KI mice had abnormal lysosomal phenotypes, such as increased number
of lysosomes, reduction in size, decreased lysosomal acidification, and low expression
of LAMP1 [154]. Such lysosomal dysfunctions were associated with the accumulation
of insoluble α-synuclein and increased release of α-synuclein, which were reversed by
LRRK2 kinase inhibitors. In in vitro assays, lysates of cells expressing LRRK2 G2019S, but
not LRRK2 WT, inhibited the activities of cathepsin B and L, essential lysosomal enzymes
involved in the degradation of α-synuclein [159,160]. In vivo studies reported enlarged
vacuolar structures with multiple membranes resembling autophagic vacuoles (AVs) as
well as an accumulation of AVs in LRRK2 G2019S Tg and, to a lesser degree, in aged
R1441C Tg mice [130]. A decrease in autophagic flux, an increase in p62 levels, and an
accumulation of autophagosomes and lipid droplets have also been described in long-term
cultures of iPSC-derived DA neurons from idiopathic PD patients and LRRK2 G2019S
patients, but not in iPSC-derived DA neurons from healthy individuals [161].

LRRK2 and its pathogenic mutants have been suggested to be involved in several
stages of the autophagy pathways (Figure 4). Studies so far have yielded a complex
picture, reporting rather inconsistent role of LRRK2 in mediating autophagic changes.
In early stages of autophagy, LRRK2 has been shown to modulate the phosphorylation
status of p62, which recognizes ubiquitinated cargo proteins and docks them onto the
forming phagophore by binding to LC3-II. LRRK2 could phosphorylate p62 at Thr138
in the ubiquitin-binding domain and co-expression of LRRK2 G2019S and p62 increased
neuronal toxicity compared to non-phosphorylatable p62 [66]. In another study [162],
LRRK2 WT and LRRK2 G2019S indirectly reduced p62 phosphorylation at Ser351 and
Ser403 residues, associated with the initiation of autophagy [163]. LRRK2 could also
phosphorylate leucyl-tRNA synthase (LRS), which is responsible for attaching leucine to
tRNALeu and activating mTORC1 [164]. Phosphorylation of LRS impaired autophagy
by increasing protein misfolding and ER stress. The phagophore sequestrating cargos
grow into a lipidic bilayer membrane vacuole, designated as the autophagosome. Multiple
studies have shown that expression of pathogenic LRRK2 mutants increased LC3 puncta,
the ratio of LC3-II/LC3-I, which is often considered as an autophagic marker, and the
number and size of AVs in various cellular and animal models [131,137,155,161,164–167].
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Figure 4. Pathogenic LRRK2 mutants (mtLRRK2) and the autophagy-lysosomal pathways. Macroautophagy is initiated by
the formation of a cup-shaped membrane, termed phagophore, which engulfs damaged organelles or misfolded proteins
to form the autophagosome. The autophagosome fuses with the lysosome and generates the autolysosome, in which the
contents are degraded. Transition into autophagosome and autolysosome is inhibited by mtLRRK2. In chaperone-mediated
autophagy, proteins are targeted to lysosomes by a chaperone through interaction between the chaperone and a pentapeptide
present within the substrate. Substrate proteins then bind to a transmembrane receptor, lysosome-associated membrane
protein type 2A (LAMP-2A), which multimerizes to form the translocation complex that carries the substrate proteins into
the lysosome for degradation. LAMP-2A is inhibited by mtLRRK2, leading to the accumulation of CMA substrates, such as
α-synuclein (α-syn). mtLRRK2 can also decrease lysosomal acidity and disrupt lysosomal calcium dynamics by inhibiting
lysosomal H+-ATPase pump, vATPase and TRPML1. Created with BioRender.com.

However, it is not clear if endogenous LRRK2 facilitates or inhibits autophagy. Neu-
rons derived from LRRK2 KO mice showed increased LC3-II levels and autophagic influx,
implicating that endogenous LRRK2 has an inhibitory role in autophagy [155,168]. In addi-
tion, LRRK2 KO rodent models show increased number and size of secondary lysosome
and autolysosome-like structures, accompanied with accumulation of lipofuscin granules
in kidney [169–171]. Such abnormal accumulation of undigested materials imply impair-
ment in ALS activity. By contrast, other studies have suggested that overexpression of
LRRK2 WT [137,172,173] or LRRK2 mutants such as LRRK2 G2019S or R1441C mutants
are associated with increased autophagy [174,175].

Less is known about effects of LRRK2 on CMA. LRRK2 WT bears pentapeptide
motifs that can be targeted by hsc70 and thus could be degraded via CMA. However, high
levels of WT or LRRK2 G2019S inhibited CMA by blocking the formation of the CMA
translocation complex at the lysosomal membrane. The LRRK2-mediated blockage of
LAMP-2A multimerization led to the accumulation of other CMA substrates, including
α-synuclein [173]. These studies suggest that impaired ALS may play a part in LRRK2
toxicity and PD pathology.

5. Conclusions

Advanced age is by far the strongest risk factor for PD. Even carriers of highly pene-
trant, disease-causing genetic mutations require aging to manifest clinical symptoms of
PD. Here we have discussed how age-dependent deteriorations in cellular function may
predispose individuals to the development of PD, particularly focusing on the interplay
between LRRK2 and the cellular mechanisms that control oxidative stress, mitochondrial
function and dynamics, and proteostasis. Recent evidence from clinical, pathological, and
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biochemical studies supports the notion that major differences between PD patients and
healthy elderly individuals are quantitative rather than qualitative. However, we cannot
entirely exclude the possibility that PD is an active pathological process, more than just a
manifestation of accelerated aging. Aging affects fundamental cellular machinery common
to most, if not all, cell types, and PD is now considered as a multisystem disease that
affects the central, peripheral, and autonomic nervous system, causing heterogeneous
clinical symptoms. However, a fact that one cannot overlook is that PD is characterized and
defined by the selective degeneration of DA neurons in the SN. We have discussed possible
mechanisms that confer the vulnerability of SN DA neurons, but other PD-specific genetic
and environmental risk factors might contribute to the distinct clinical and pathological
features of PD.
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