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Genes and regulatory 
mechanisms associated 
with experimentally‑induced 
bovine respiratory disease 
identified using supervised 
machine learning methodology
Matthew A. Scott1*, Amelia R. Woolums2, Cyprianna E. Swiderski2, Andy D. Perkins3 & 
Bindu Nanduri4

Bovine respiratory disease (BRD) is a multifactorial disease involving complex host immune 
interactions shaped by pathogenic agents and environmental factors. Advancements in RNA 
sequencing and associated analytical methods are improving our understanding of host response 
related to BRD pathophysiology. Supervised machine learning (ML) approaches present one such 
method for analyzing new and previously published transcriptome data to identify novel disease-
associated genes and mechanisms. Our objective was to apply ML models to lung and immunological 
tissue datasets acquired from previous clinical BRD experiments to identify genes that classify 
disease with high accuracy. Raw mRNA sequencing reads from 151 bovine datasets (n = 123 BRD, 
n = 28 control) were downloaded from NCBI-GEO. Quality filtered reads were assembled in a HISAT2/
Stringtie2 pipeline. Raw gene counts for ML analysis were normalized, transformed, and analyzed 
with MLSeq, utilizing six ML models. Cross-validation parameters (fivefold, repeated 10 times) were 
applied to 70% of the compiled datasets for ML model training and parameter tuning; optimized ML 
models were tested with the remaining 30%. Downstream analysis of significant genes identified by 
the top ML models, based on classification accuracy for each etiological association, was performed 
within WebGestalt and Reactome (FDR ≤ 0.05). Nearest shrunken centroid and Poisson linear 
discriminant analysis with power transformation models identified 154 and 195 significant genes 
for IBR and BRSV, respectively; from these genes, the two ML models discriminated IBR and BRSV 
with 100% accuracy compared to sham controls. Significant genes classified by the top ML models 
in IBR (154) and BRSV (195), but not BVDV (74), were related to type I interferon production and 
IL-8 secretion, specifically in lymphoid tissue and not homogenized lung tissue. Genes identified in 
Mannheimia haemolytica infections (97) were involved in activating classical and alternative pathways 
of complement. Novel findings, including expression of genes related to reduced mitochondrial 
oxygenation and ATP synthesis in consolidated lung tissue, were discovered. Genes identified in each 
analysis represent distinct genomic events relevant to understanding and predicting clinical BRD. Our 
analysis demonstrates the utility of ML with published datasets for discovering functional information 
to support the prediction and understanding of clinical BRD.
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Bovine respiratory disease (BRD) is the most important disease complex in beef cattle production. Although 
extensively researched, BRD remains the leading cause of infectious disease and economic loss in post-weaned 
beef cattle worldwide1–4. Due to the multifactorial and polymicrobial nature of BRD, effort has been made to 
illustrate host factors, management schema, etiological associations, and stressful environmental factors asso-
ciated with disease development and progression1,2,4. Recent research has been focused on predicting BRD 
susceptibility and outcomes over time5–8. Unfortunately, clinical diagnostic and prognostic prediction models 
remain contested, and mechanistic information regarding host–pathogen interactions and the development of 
clinical BRD is not fully understood.

Clinical BRD is often linked with a select number of bacterial and viral etiologies. Bacteria, such as Histophi-
lus somni, Mannheimia haemolytica, Mycoplasma bovis, and Pasteurella multocida, and viruses, such as bovine 
respiratory syncytial virus (BRSV), bovine viral diarrhea virus (BVDV), bovine herpesvirus-1 (IBR), and bovine 
parainfluenza type 3 virus (PI3), are well studied regarding their pathological capacity and disease association9–15. 
However, the clinical presentation of BRD is highly variable and antemortem diagnosis is often made without 
accompanying etiological identification9,13,16,17. Additionally, cattle experimentally exposed to these agents often 
fail to develop severe clinical BRD, demonstrating the underlying complexity of the disease and the requirement 
of implied predisposing factors18,19. Consequentially, current vaccination protocols possess varying effects in 
reducing ongoing rates of morbidity and mortality associated with BRD, and targeted antimicrobial usage and 
antimicrobial resistance is of particular public interest20–25. Therefore, research is needed to elucidate underlying 
host mechanisms associated with infectious BRD that represent biological components and regulatory functions 
amendable to manipulation to improve disease response and clinical diagnosis.

High-throughput RNA sequencing (RNA-Seq) is a highly sensitive methodology used to comprehensively 
evaluate functional mechanisms and molecular heterogeneity through global gene expression analysis26–29. 
Because of the high sensitivity of the technology, growing technological applications in research, and decreas-
ing costs, RNA-Seq has become an excellent method of evaluating cellular transcriptomes and functionality 
at a given point in time. Several RNA-Seq studies performed with samples from post-weaned beef cattle have 
identified underlying genes and host mechanisms associated with both naturally occurring and experimentally 
induced BRD30–35. However, the results are highly dependent on the experimental design, sequencing technol-
ogy, and selected data analysis technique, which may be highly conservative in nature28,36–39. Therefore, the use 
of supervised machine learning models with previously published RNA-Seq data could identify additional gene 
expression and mechanistic information related to clinical presentation of BRD.

Supervised machine learning (ML) models used in biological research aid in the discover of molecules and 
establishment of dynamic models that recognize, classify, and predict disease outcomes40–44. In recent years, 
studies have employed the use of ML framework to identify candidate biomarkers for disease classification, cell 
and tumor expression signatures, and novel protein mechanisms within publicly available RNA-Seq datasets45–49. 
However, to our knowledge, the use of ML-based methodology has not been explored with BRD-associated 
datasets. Therefore, we combined mRNA-Seq data from lung and immunological tissue of cattle experimentally 
challenged with causative agents of BRD, and tested the classification performance of ML methodology and 
selected gene classifiers. Our objective for this study was to integrate three publicly available datasets and utilize 
ML methodology, in order to both corroborate findings previously discovered through differential gene expres-
sion analysis and to potentially identify novel genes and mechanisms associated with experimentally induced 
BRD. Our overarching hypothesis is that ML methodology, when applied to previously published datasets, is 
capable of identifying genes which distinctly classify cattle challenged with etiological components of BRD, 
when compared to sham controls.

Materials and methods
Dataset acquisition.  One hundred and sixty high throughput mRNA sequencing datasets were acquired 
from the National Center for Biotechnology Information (NCBI) Gene Expression Omnibus (GEO)50,51. The 
datasets originated from lymphoid and homogenized lung (healthy and diseased) tissue harvested during peak 
clinical signs in cattle that were experimentally challenged with isolated BRD pathogens (n = 35), or their sham 
controls (n = 10). Analyses of these datasets has been previously reported30–32. Details of sample sizes for chal-
lenged and control cattle, isolated BRD pathogens used for challenge, and tissue samples that were subjected to 
mRNA sequencing are summarized in Table 1.

Read processing and gene count matrix generation.  Paired-end read files for each dataset were 
concatenated to their corresponding forward and reverse direction. To eliminate potential variations induced 
by differing workflow toolkits, all reads were processed identically. Quality assessment, read trimming, and 
adapter contamination removal was performed with FastQC v0.11.952 and Trimmomatic v0.3953. Briefly, reads 
were trimmed by removing leading and trailing bases if base quality scores were less than 3, scanning each read 
with a 4-base pair sliding window and removing read segments below a minimum base quality score of 15, 
and retaining reads above a minimum length of 36 bases. Read quality analysis was summarized and evaluated 
for each study with MultiQC v0.3754. Read survival and quality assessment information are provided in Sup-
plemental file 1. Trimmed reads were mapped to the bovine reference assembly ARS-UCD1.2 using HISAT2 
v2.2.055. Reference-guided transcript/gene assembly and quantification was performed with StringTie v2.1.256,57. 
A gene-level raw count matrix was generated for each dataset with the program prepDE.py58. Five datasets 
[86684_Retrop_LN (control), 86688_Retrop_LN (BRSV), 86710_Retrop_LN (BVDV), 86698_dlung (M. bovis), 
and SRR1956908 (control)] were removed from further analysis due to low read count quantity and technical 
variability. Additionally, the four datasets related to Pasteurella multocida infection (SRR1952370, SRR1952371, 
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SRR1952372, and SRR1952373) were removed to avoid unbalanced classification. The resulting compiled ML 
dataset was composed of 151 mRNA-Seq datasets.

Supervised machine learning analysis.  A total of 151 mRNA-Seq datasets, spanning six tissue types, 
constituted the compiled ML dataset for further classification and feature selection. Raw gene counts generated 
for each dataset were processed and analyzed in R v4.0.2 with the Bioconductor package MLSeq v2.6.0 (https://​
github.​com/​dncR/​MLSeq)59. The 151 mRNA-Seq libraries were allocated into 9 classes based on the nature of 
the experimental pathogen challenge: (1) sham-challenged controls (Control; n = 28), (2) challenged with any 
BRD pathogen (BRD; n = 123), (3) challenged with a BRD viral pathogen (Virus; n = 82), (4) challenged with a 
BRD bacterial pathogen (Bacteria; n = 41), and categories 5–9 for each of the 5 independent challenge patho-
gens (BRSV; n = 35, BVDV; n = 23, IBR; n = 24, M. haemolytica; n = 24, and M. bovis; n = 17). The objectives of 
the ensuing ML analysis were to develop ML models that would (1) accurately “classify” an mRNA-Seq dataset 
within the 9 experimental pathogen challenge classes and (2) extract genes and gene sets or “features” that accu-
rately assign an mRNA-Seq dataset to its experimental pathogen challenge class. These objectives were pursued 
by comparisons of the 8 pathogen challenge classes and the control challenge class. The raw gene count matrix 
used for this approach is available in Supplemental file 2. Briefly, offset values of one were added to the count 
matrix to reduce the likelihood of convergence in model fitting and to reduce bulk sparsity60,61. Genes with a 
minimum count-per-million of 0.5 in three or more mRNA-Seq libraries were retained for analysis. Library 
normalization was performed with the DESeq median ratio approach, using default settings62. The resulting ML 
dataset was stratified into a training and testing set (70% and 30%, respectively), using controls as the compara-
tive baseline (i.e., class statement).

Model validation and parameter optimization were evaluated using fivefold, 10 repeats with non-exhaustive 
cross validation. Six ML models were utilized for classification and/or significant gene selection: sparse Poisson 
linear discriminant analysis, with and without a power transformation (PLDA, PLDA2)63, negative binomial 
linear discriminant analysis (NBLDA)64, sparse voom-based nearest shrunken centroids (VNSC)65, support vec-
tor machine (SVM) (https://​cran.r-​proje​ct.​org/​web/​packa​ges/​caret/​caret.​pdf), and nearest shrunken centroids 
provided by the pamr package (PAM) (https://​cran.r-​proje​ct.​org/​web/​packa​ges/​pamr/​pamr.​pdf). Models were 
evaluated with confusion matrices and performance metrics provided by the MLSeq package. Feature selection 
from sparse classifier models was set to a maximum of 2000 genes, based on maximum variance filtering. Sparse 
classifier models (PLDA, PLDA2, VNSC, and PAM), which generate lists of a select number of significant genes 
used for model decision and classification, were manually designated as the top models for each test set based 
on highest associated balanced accuracy and Kappa statistic; if two or more models were equal, gene lists would 
be merged. Performance metric calculations are defined by Goksuluk and colleagues59. Balanced accuracy, the 
combined average of sensitivity and specificity, was a prioritized metric due to imbalance between challenged 
and control cattle and potential for skewed results when evaluating sensitivity and specificity alone. Further 
information regarding workflow parameters, model building, and optimization are found in the package vignette 
and associated GitHub repository mirror (https://​bioco​nduct​or.​org/​packa​ges/​relea​se/​bioc/​html/​MLSeq.​html; 
https://​github.​com/​dncR/​MLSeq).

Exploration and functional analysis of test set gene classifiers.  Visual relationships of the genes 
identified by the top sparse classifiers was performed with UpSetR v1.4.066, utilizing the interactive interface 
Intervene67. Multidimensional scaling was applied to the gene count matrix with plotMDS, using pairwise dis-
tances of the top 500 genes based on variance68. Heatmaps of the unique gene classifiers identified across etio-

Table 1.   Initial training datasets identified for ML testing. A total of 160 mRNA-Seq datasets were derived 
from lymph node and lung tissue of 31 cattle challenged with isolated BRD pathogens and 10 sham challenged 
controls. Asterisk (*) indicates different tissues collected from the same animals. Specifically, transcriptomes 
from tissues reported by Behura et al.31 are from the same cattle from which Tizioto et al. analyzed bronchial 
lymph node transcriptomes (2015) except that P. multocida infected cattle reported by Tizioto et al.30 are not 
included in the cohort reported by Behura et al.31.

NCBI BioProject ID Animal breed Animal age Number of animals Tissue types
Etiological agents 
used in challenge Sequencing platform Publication

PRJNA272725 Angus × Hereford 
(steers) 6–8 mon n = 23 challenge; n = 4 

control Bronchial lymph node

BRSV* (n = 4), 
BVDV* (n = 4), IBR* 
(n = 4), M. haemo-
lytica* (n = 4), P. 
multocida* (n = 4), M. 
bovis* (n = 3), control* 
(n = 4)

Illumina HiSeq 2500; 
50 bp PE

Tizioto et al., 2015 
(n = 27)

PRJNA272725 Angus × Hereford 
(steers) 6–8 mon n = 19 challenge; n = 4 

control

Lung (healthy), lung 
(lesion), retropharyn-
geal lymph node, 
nasopharyngeal 
lymph node, pharyn-
geal tonsil

BRSV* (n = 4), 
BVDV* (n = 4), IBR* 
(n = 4), M. haemo-
lytica* (n = 4), M. 
bovis* (n = 3), control* 
(n = 4)

Illumina HiSeq 2500; 
50 bp PE

Behura et al., 2017 
(n = 115)

PRJNA543752 Holstein–Friesian 
(bulls) ~ 4 mon n = 12 challenge; n = 6 

control Bronchial lymph node BRSV (n = 12), con-
trol (n = 6)

Illumina NextSeq 
500; 75 bp PE

Johnston et al., 2019 
(n = 18)

https://github.com/dncR/MLSeq
https://github.com/dncR/MLSeq
https://cran.r-project.org/web/packages/caret/caret.pdf
https://cran.r-project.org/web/packages/pamr/pamr.pdf
https://bioconductor.org/packages/release/bioc/html/MLSeq.html
https://github.com/dncR/MLSeq
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logic test sets were generated with the Bioconductor package pheatmap v1.0.1269, utilizing Ward’s method of 
unsupervised hierarchical clustering on Euclidean distances and Pearson correlation coefficients for samples and 
genes, respectively. Color scaling for all packages was performed with the Bioconductor package viridis v0.5.170 
to allow ease of visual interpretation for individuals with color blindness.

Functional association and biological significance of genes from each test set was assessed. Gene Ontol-
ogy (GO) terms and pathway analysis of DEGs was performed with WebGestalt 2019 (WEB-based GEne SeT 
AnaLysis Toolkit), utilizing human orthologs and functional databases71. Pathway analysis performed within 
WebGestalt 2019 utilized the pathway database Reactome72. Overrepresentation analysis parameters within 
WebGestalt 2019 included between 5 and 3000 genes per category, Benjamini–Hochberg procedure for multiple 
hypothesis correction, and FDR cutoff of 0.05 for significance.

Results
Supervised machine learning model performance.  Mapping and alignment of reads to the ARS-
UCD1.2 reference assembly identified 33,129 genes across all 151 libraries (n = 28 controls from 10 animals, 
n = 123 BRD from 32 animals; Supplemental file 2); the corresponding count matrix resulted in a total library 
size of 5,132,593,936, with a median library size of approximately 32.7 million counts per library. The count 
matrix was partitioned into nine pathogen challenge classes; overall testing performance for each ML algorithm 
is provided in Supplemental file 3. Support vectors machine (SVM) modeling, a non-sparse classifier, performed 
best in terms of balanced accuracy for all testing groups except for BVDV, which the nearest shrunken cen-
troids model provided by the pamr package (PAM) outperformed all other models (86.7%). Because sparse 
classifiers select a subset of genes for classification59, genes were acquired and compiled from the top sparse 
models (PLDA, PLDA2, VNSC, or PAM) within each experimental challenge comparison. PAM performed 
best in terms of balanced accuracy when classifying Virus (89.9%), BRSV (100.0%), BVDV (86.7%), M. bovis 
(71.4%), and M. haemolytica (73.3%) against controls. Poisson linear discriminant analysis (PLDA) performed 
best when classifying Bacteria (70.0%). Both power-transformed Poisson linear discriminant analysis (PLDA2) 
and PAM performed identically when classifying IBR (100.0%). BVDV was less accurate (PAM; 86.7%), which 
most likely affected classification accuracy when evaluating all viral samples (PAM; 89.9%). Bacteria-challenged 
classes performed worse overall, with accompanying top balanced accuracies of 80.0%, 71.4%, and 80.0% for M. 
haemolytica (SVM), M. bovis (SVM/PAM), and Bacteria (SVM) classification, respectively. Combination of all 
challenge classes (BRD) possessed poor balanced classification accuracy, with the highest non-sparse classifier 
at 65.0% (SVM) and sparse classifiers (VNSC) at 60.8%.

Visualization of gene expression variation.  Multidimensional scaling (MDS) was applied to the inte-
grated ML dataset, to discern dissimilarities between its individual mRNA-Seq libraries based on gene varia-
tion. Each point on x- and y-axes represents a different individual dataset and subsequent transformed Euclid-
ean distance in two dimensions. Patterns from the top 500 genes based on log2-normalized standard deviation 
revealed that there was an overall similarity in gene expression across specific tissue types. While differences can 
be appreciated for each dataset with distinction to tissue site, lung (cluster 1; light blue) and lymphoid tissues 
(cluster 2; purple) were the most evident in terms of dissimilarity (Fig. 1). Notably, bronchial lymph node tissue 
from Johnston et al.32 (cluster 3; green) demonstrated equivalent dissimilarity from lung tissue as the bronchial 
lymph node tissue from Tizioto et al.30. However, the bronchial lymph node tissue from the two different studies 
were distinct from one-another when evaluated in the second dimensional space. Tissue-level gene expression 
differences (e.g., lung versus all other tissue types) were more pronounce compared to disease or etiological dif-
ferences.

A heat map was generated for each dataset using the gene classifiers identified through the top ML sparse 
model in each etiologic-specific test group (Fig. 2). A total of 572 genes were identified across the five etiological 
test groups, 357 of which were uniquely identified after overlapping (Supplemental file 4). Expression patterns 
within each column are accompanied by unsupervised hierarchical clustering, visualizing likeness in tissue type, 
etiology, and disease classification. Similar to the MDS plot (Fig. 1), distinction based on gene expression can be 
appreciated across lung and lymphoid tissue types, as opposed to etiology or disease classification. This distinc-
tion in gene expression across tissues corroborates the findings of Behura and colleagues31. Pearson correlation 
coefficients clustering of genes (rows) allowed for the visualization of distinct expression patterns. Particularly, 
three visual expression modules were identified, and labeled as 1, 2, and 3. Visual expression module 1 contained 
the genes PSMB8, PPA1, PARP12, EPSTI1, CXCL10, CLEC4F, TIFA, ZNFX1, MX1, DHX58, LOC100139670, 
GBP4, ZBP1, PLAC8, LOC618737, LOC512486, ISG15, IFIT2, IFITM1, PML, FAM111B, and CD274, which were 
distinctly higher in expression in lymphatic tissue sampled from cattle experimentally challenged with BRSV 
and IBR compared to all remaining. Visual expression module 2 contained the genes CPSF6, TMEM123, CIRBP, 
ATP6, ATP8, ND4L, LPP, IFITM2, LOC112444847, DTX3L, LDHA, RPS26, STIP1, PSME2, PARP9, LOC786372, 
PTP4A2, CDC42SE1, and NLRC5, which were distinctly decreased in disease lung tissue sampled from cat-
tle experimentally challenged with Mycoplasma bovis, Mannheimia haemolytica, and IBR. Visual expression 
module 3 contained the genes WDFY4, OTUD4, LCP2, OCDC69, TLN1, RPS7, VPC, HNRNPU, and HMGB2, 
which were distinctly increased in bronchial lymph node tissue sampled from cattle in the control group and 
experimentally challenged BRSV.

To explore the complex overlap of gene classifiers between etiological groups, we employed an UpSetR matrix 
intersection technique (Fig. 3). Among the genes identified through the top sparse classifiers, BRSV was the most 
distinct with 109 unique genes. There was an apparent separation of viral-related genes, whereas BRSV and IBR 
possessed the highest overlap (42), BVDV possessed 24 unique genes, and only four genes were shared across all 
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three viruses. Similarly, the bacterial datasets possessed minor overlap, with 25 and 22 genes identified uniquely 
for M. haemolytica and M. bovis, respectively, and only four genes shared between both bacterial analyses.

Functional analysis of gene classifiers.  Gene Ontology (GO) terms for biological processes and Reac-
tome pathway enrichment analyses were performed with WebGestalt (FDR ≤ 0.05). One hundred and twenty, 
72, one, and 48 GO-BP terms were significantly enriched by gene classifiers identified for BRSV, IBR, BVDV, 
and M. haemolytica, respectively; no significant GO-BP terms were enriched for M. bovis. Forty-seven, 15, and 
15 pathways were enriched by gene classifiers identified for BRSV, IBR, and M. haemolytica, respectively; no 
pathways were enriched for BVDV and M. bovis. All GO-BP terms and pathways identified are found in Sup-
plemental file 5. Overlap of the GO-BP terms and pathways identified for each etiological group is shown in 
Fig. 4A,B. BRSV and IBR possessed the highest overlap of functional associations, with 37 GO-BP terms and 12 
pathways shared between the two. GO-BP terms and pathways between BRSV and IBR were primarily related to 
type I interferon production and signaling, cellular metabolism and ATP production, unfolded protein response, 
antigenic cross presentation, and IL-8 secretion. Between BRSV, IBR, and M. haemolytica, 12 GO-BP terms and 
4 pathways were shared across all three. GO-BP terms and pathways between BRSV, IBR, and M. haemolytica 
were related to innate immune response, apoptosis, and unfolded protein response. M. haemolytica differed in 
functional enrichment with processes and pathways related to neutrophilic activation and degranulation, classi-
cal and alternative complement activation, and immunoglobulin-mediated humoral immunity. All five etiologi-
cal groups shared genes involved in heat-shock protein response. The complete list of overlapping significant 
genes, GO-BP terms, and enriched pathways is found in Supplemental file 6.

Discussion
Over the past several years, RNA-Seq analysis has been utilized in bovine disease research to evaluate gene 
expression related to risk of BRD development, stress response, and viral lesion development30–35,73,74. Primarily, 
studies that generate RNA-Seq data utilize statistical platforms and techniques for the detection of differentially 
expressed genes and subsequent construction of functional networks or modules. Many RNA-Seq studies are 
thus limited in extrapolatory capacity, as analyses are often performed through subsampling single populations 
and fitting fixed statistical models, which may be conservative when analyzing gene expression datasets with 
overdispersion75–77. Fortunately, publicly available gene expression repositories, such as the NCBI Gene Expres-
sion Omnibus, make it possible to acquire, integrate, and analyze datasets related to a particular field or disease. 
Such studies have been performed in mammalian species, including cattle, to better characterize genomic mecha-
nisms and protein production related to a particular disease or condition49,78,79. Additionally, with the dynamic 
capacity for analysis that supervised ML models allow, it is possible to explore and characterize gene expression 
patterns associated with clinical BRD with profound sensitivity42,79. In this study, we integrated gene expression 
data from controlled BRD experiments and determine expression patterns and classification potential through 
supervised ML analysis.

Some of the limitations of this study are evident. First, data were integrated from three studies, two of which 
utilized the same animals for their transcriptomic analysis30,31. While a clear separation in gene expression 

Figure 1.   MDS plot of 151 datasets utilized for ML classification. Clustering was performed with Euclidian 
distances across the top 500 genes based on log2 standard deviation. Datasets are demarked by color, 
representing the tissue site of sampling. Labels 1, 2, and 3 demark distinct gene expression clusters across tissue 
types, regardless of etiological component, based on expressional variation. Label 1 consists of healthy (non-
consolidated) and diseased (consolidated) lung tissue. Label 2 consists of lymphoid tissue from Tizioto and 
colleagues30 and Behura and colleagues31. Label 3 consists of lymphoid (bronchial) tissue from Johnston and 
colleagues32.
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patterns was appreciated across tissue types, corroborating the findings Behura and colleagues31, utilizing datasets 
from a limited number of animals and at single time points may not account for the heterogenous nature of gene 
expression related to BRD development and clinical presentation75,80. Additionally, these datasets were acquired 
from samples of cattle experimentally challenged with single pathogens. BRD challenge models using single 
etiological components often fail to elicit severe disease, as described by the three studies used here and may not 
fully represent the complex nature of the disease process seen with naturally occurring BRD81,82. Accordingly, 
future studies applying ML methodology in BRD research should prioritize natural disease models for improved 
discovery adaptation within beef production systems. Moreover, RNA-Seq analysis remains a relatively new 
modality in BRD research, and publicly available data are limited at this time. Nonetheless, this study, which to 
our knowledge is the first to evaluate host transcriptomes related to BRD with integrated supervised ML meth-
odology, substantiating many of the gene expression findings previously identified, and may serve as a template 
for modern data analysis in bovine health research.

Between all testing groups and the six models utilized in this study, the support vector machines (SVM) model 
typically performed the best in terms of classification capacity. While originally utilized in microarray experi-
ments, this algorithm is popular for genomic classification research in RNA-Seq, as it has been used to discover 
cancer biomarkers in humans, classify genes related to early conception in cattle, and automate single-cell RNA-
Seq identification49,83,84. While this algorithm was capable of accurately classifying BRSV and IBR challenged 
datasets, compared to controls, this model is a non-sparse classifier and therefore does not have a built-in process 
for feature selection and gene extraction within MLSeq. Therefore, particular interest was placed on the PLDA, 
PLDA2, PAM, and VNSC algorithms, as subsets of genes used to drive classification decisions could be obtained. 
The compiling of datasets for classifying total BRD, viral, and bacterial challenge yielded mixed results. For total 
BRD, sparse classifiers PAM and VNSC yielded high classificational accuracy for identifying the challenged cattle, 
but performed poorly in discerning them from the controls, as illustrated by the accompanying sensitivity and 
balanced accuracy. This finding may be related to the complexity and distinction of infection processes associ-
ated with each etiological component, and highlights that an all-encompassing approach may be inappropriate 
for determining relevant gene expression and pathways in BRD. To a lesser extent, this is similarly found when 

Figure 2.   Heatmap of the 357 unique genes identified by top ML sparse classifier across the five etiology 
classes (BRSV, IBR, BVDV, M. bovis, and M. haemolytica). Ward clustering of datasets and gene expression was 
performed with Euclidian distance and Pearson correlation coefficients, respectively. Visual expression modules 
(1, 2 or 3) were empirically identified by class dissimilarity. Clustering of samples (datasets) is more apparent for 
tissue, compared to etiology and disease status.
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Figure 3.   Matrix intersection of significant gene classifiers identified for each etiological class. Overlap of the 
572 genes identified by top ML sparse classifiers, across the five etiology classes, were visualized for determining 
functional relevance and comparative uniqueness. BRSV possessed the highest number of uniquely identified 
genes (109), followed by IBR (50), M. haemolytica (25), BVDV (24), and M. bovis (22). BRSV and IBR shared 
the highest number of genes between all comparisons (42), primarily involved in type-I interferon production 
and signaling. The two bacterial classes (M. haemolytica and M. bovis) only shared four genes without any viral 
overlap (LOC787803, MTDH, NECAP2, and TCAF1).

Figure 4.   Venn diagram of GO-BP term (a) and pathways (b) enriched by genes identified by top ML sparse 
classifiers across all etiological testing sets. (a) Twenty-five enriched GO-BP terms were shared specifically for 
BRSV and IBR, primarily consisting of apoptotic processes, type 1 interferon signaling, IL-8 secretion, and 
leukocyte degranulation. BVDV possessed only one enriched GO-BP term (anatomical structure homeostasis) 
and no GO-BP terms were enriched for M. bovis. (b) Eight enriched pathways were shared specifically across 
BRSV and IBR, primarily consisting of antigen cross presentation, uptake of ligands by scavenger receptors, 
and interferon alpha/beta signaling. The four pathways shared across BRSV, IBR, and M. haemolytica involved 
the innate immune system, stress response element binding via ATF6-alpha, and signal recognition protein-
dependent protein translation. The eight enriched pathways specific to M. haemolytica involved alternative 
complement activation, MHC class I antigen presentation, cellular response to heat stress, and IRE1-alpha-
dependent chaperone activation. No pathways were enriched for BVDV or M. bovis.
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compiling bacterial datasets, as discernment from controls was relatively poor. Viral datasets yielded much higher 
overall balanced accuracies, compared to the bacterial counterparts. Regarding sparse classifiers, BRSV, IBR, and 
BVDV were capable of being classified with high balanced accuracy (100%, 100%, 86.67%, respectively) through 
the PAM model; IBR was also identified with 100% balanced accuracy with PLDA2.

Generally, viruses were independently the most well classified, followed by M. haemolytica. Collectively, 
BRSV and IBR were well defined by genes involved in the production and response to type I interferons. More 
specifically, these genes were seen to be driven primarily by lymphoid tissue, as opposed to lung tissue (expres-
sion module 1, Fig. 2). This result, coupled with the subsequent lack of type I interferon genes from the BVDV 
class, corroborates findings previously described30,31. Biologically, the lack of this innate interferon response has 
been described as a potential immunosuppressive response driven by BVDV, allowing for persistent infection 
and viral shedding85–88. Notably, non-cytopathic BVDV strains used in experimental infection models, such as 
the one utilized in this project, have been shown to reduce proinflammatory signaling31,89. While the functional 
enrichment of the genes classified for BVDV were largely non-specific, several have been previously identified 
and have known immunological functionality30,31. Related to M. haemolytica, there was apparent overlap in 
functionality of genes identified through ML (Fig. 4). Largely, this was driven by genes encoding for heat shock 
proteins, calreticulin, talin-1, and X-box binding protein. These proteins are involved in apoptotic and cell stress 
events, and may ultimately impact immunoglobulin production and cellular homeostasis90–93. Additionally, genes 
classified in M. haemolytica were unique to the activation of classical and alternative pathways of complement. 
While complement-related genes were identified across all viruses in previously reported gene expression stud-
ies and here, the alternative complement component CFB was only identified in M. haemolytica. This may be an 
indication that the presence and activation of the alternative complement pathway is more indicative of inflam-
mation and disease associated with lipopolysaccharide, often caused by extracellular Gram-negative bacteria 
such as M. haemolytica14,94. Regarding Mycoplasma bovis, our findings here are similar to that of Behura and 
colleagues31, in that we identified the fewest number of significant genes in MB, with regard to all other classes, 
and failed to define significantly enriched processes and pathways. As discussed by Behura and colleagues31, 
these infected cattle may have been euthanized and sample collected too early in the course of BRD to detect 
immunological changes. Additionally, Mycoplasma bovis is capable of evading the host immune response, specifi-
cally neutrophilic responses, and may lead to the development of T-cell “exhaustion” that eventually culminates 
in severe clinical disease95. Future transcriptomic evaluation of single cells or the sub-cellular space, instead of 
bulk tissue samples, may better elucidate mechanisms associated with Mycoplasma bovis.

Lastly, novel findings were identified through visual expression modules found in Fig. 2. Expression module 
2 possessed 19 genes with reduced expression in disease lung tissue sampled from cattle experimentally chal-
lenged with Mycoplasma bovis, Mannheimia haemolytica, and IBR. While often assumed that the oxygenating 
capability of consolidated lung space during acute respiratory disease is substantially decreased, this expression 
module provides evidence of this event, as these genes largely possess aerobic ATP synthase and mitochondrial 
function96–99. Expression module 3 had nine genes with increased expression in bronchial lymph node tissue 
sampled from cattle in the control group and BRSV. These genes play important roles in T-cell proliferation, 
integrin activation and antigenic presentation through actin/tubulin reorganization100–103. Potentially, this serves 
as an underlying mechanism of immunological stimulation unique to lymph nodes of the lower airway.

Conclusion
This study was conducted to integrate and analyze mRNA-Seq datasets with supervised ML methodology. This 
approach allowed for a novel and comprehensive analysis of lung and immunological tissues in to experimentally 
induced BRD. ML enabled the classification of viral-induced BRD, specifically with BRSV and IBR, with 100% 
balanced accuracy, against sham controls, regardless of the tissue type. This experimental investigation illustrates 
a novel and powerful approach to the investigation of host response mechanisms in BRD through the use of 
mRNA-Seq and supervised ML analysis.

Data availability
The data utilized in this study were downloaded from the National Center for Biotechnology Information Gene 
Expression Omnibus (NCBI-GEO), Bioproject numbers PRJNA272725 and PRJNA543752.
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