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INTRODUCTION 
 

Myocardial infarction (MI) is a kind of myocardial 

necrosis caused by acute ischemia and hypoxia of 

coronary artery. If the coronary artery is blocked for 

more than 40 minutes, the myocardium will be damaged 

irreversibly [1, 2]. Some risk factors including smoking, 

drinking, high-fat and high calorie diet have been proved 

to be linked with MI [3]. At present, the treatments of MI 

include thrombolysis, intracoronary stent implantation, 

coronary artery bypass grafting and drug therapy [4]. The 

above treatments can improve symptoms, but the curative 

effect of some patients is poor. Although timely opening 

of occluded coronary artery by percutaneous coronary 

intervention (PCI) can significantly reduce the mortality 

of MI. However, a successful implementation of PCI is 

not effective for some patients, and the chest pain and 

other symptoms cannot be completely relieved [5]. 

Therefore, novel therapeutic strategy needs to be 

explored for the prevention and treatment of MI. 

 

Long non-coding RNA (LncRNA) is a class of RNA 

molecules with transcripts longer than 200 bp and 

without the ability to encode mature proteins. A large 

number of studies have shown that LncRNA is involved 

in the occurrence and progression of tumor, diabetes, 
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ABSTRACT 
 

Myocardial infarction (MI) is a big health threat in the world, and it is characterized by high morbidity and 
mortality. However, current treatments are not effective enough, and novel therapeutic strategies need to be 
explored. ZFAS1 has been proved to be involved in the regulation of MI, but the specific mechanism remains 
unclear. MI rats were constructed through left anterior descending artery ligation, and hypoxia cell model was 
also established. The proliferation, invasion, and migration of cells were detected via CCK8, traswell, and 
wound healing methods. Immunohistochemistry staining, western blotting, and qRT-PCR were used to detect 
the levels of molecules. Knockdown of ZFAS1 significantly increased the proliferation, migration, and invasion 
of cardiac fibroblasts. Knockdown of ZFAS1 remarkably improved cardiac function via decreasing infarction 
ratio and increasing vWF expression, left ventricular ejection fraction, and left ventricular fractional shortening 
compared with group MI. Knockdown of ZFAS1 also suppressed Wnt/β-catenin pathway in vivo. The inhibition 
of Wnt/β-catenin remarkably reversed the influence of shZFAS1 on cardiac function and cardiac fibroblasts 
viability. Therefore, Knockdown of ZFAS1 could improve the cardiac function of myocardial infarction rats via 
regulating Wnt/β-catenin signaling pathway. The present study might provide new thoughts for the prevention 
and treatment of MI damage. 
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cardiovascular disease and other diseases [6, 7]. Zinc 

finger antisense 1 (LncRNA-ZFAS1, ZFAS1), the anti-

sense strand of zinc lipoprotein coding gene Znfx1, is a 

long non-coding RNA [8, 9]. Previous study indicated 

that ZFAS1 could regulate cardiovascular system, and it 

is a potential diagnostic marker of acute myocardial 

infarction [10]. Meanwhile, ZFAS1is an endogenous 

inhibitor of sarcoplasmic reticulum Ca2+ ATPase 2A 

(SERCA2a), which can induce intracellular calcium 

overload in myocardial cells and further lead to systolic 

and diastolic dysfunction after myocardial infarction [11, 

12]. In addition, high expression of ZFAS1 in myocardial 

cells after MI can activate the mitochondrial apoptotic 

pathway and induce myocardial cell apoptosis [12]. 

Silencing of ZFAS1 could protect against hypoxia/ 

reoxygenation-induced injury [13] and ischemia/ 

reperfusion-induced cardiomyocytes apoptosis via the 

miR-590-3p/NF-κB signaling pathway [14]. Therefore, 

ZFAS1 is a potential function target for the prevention 

and treatment of MI. However, the functional role of 

ZFAS1 in MI requires further clarification. 

 

Wnt/β-catenin signaling pathway is involved in embryo 

and organ development. Wnt family genes mainly encode 

secretory signaling proteins, which are related to 

tumorigenesis and adipogenesis. In addition, it is related 

with the regulation of cell differentiation during 

embryonic development [15–17]. It was found that the 

expression of Wnt3a and Wnt5a was up-regulated in 

cardiomyocytes of mice with cardiac hypertrophy, which 

may be related to cardiomyocyte apoptosis. It was 

reported that Wnt/β-catenin pathway was involved in the 

healing process of acute myocardial infarction [18–20]. 

However, the specific mechanism how Wnt/β-catenin 

pathway to affect the healing process needs to be further 

elucidated. Meanwhile, if ZFAS1 could regulate MI 

through targeting Wnt/β-catenin has not been reported. 

 

In this study, MI rats and hypoxia cell models were 

established. Knockdown of ZFAS1 was constructed and 

the influence of ZFAS1 on the cell viability and cardiac 

function were investigated. Meanwhile, the effect of 

ZFAS1 on the Wnt/β-catenin pathway and if ZFAS1 

could regulate MI through Wnt/β-catenin were also 

studied. This study provides a new insight for the 

prevention and treatment of MI damage. 

 

RESULTS 
 

Knockdown of ZFAS1 significantly promoted the 

cell viability  

 

In order to investigate the role of ZFAS1 on MI, both in 

vivo and in vitro models were established. Significant 

increase of ZFAS1 in both MI and hypoxia models was 

observed (Figure 1A and 1B). However, knockdown of 

ZFAS1 remarkably decreased the level of ZFAS1 

(Figure 1A and 1B). Meanwhile, the proliferation, 

migration, and invasion of CFs were significantly 

suppressed after hypoxia treatment (Figure 1C–1G). 

However, simultaneous treatment with shZFAS1 

markedly reversed the influence of hypoxia treatment, 

promoted the proliferation, migration, and invasion 

ability of CFs (Figure 1C–1G). Therefore, ZFAS1 

might act a key role during the process of MI. 

 

Improvement of cardiac function by silencing 

ZFAS1 in the MI rats 

 

Morphological changes of heart tissues were investigated 

using Masson and HE staining. After treatment with MI 

and MI+shNC, disorder arrangement of cardiomyocytes 

and enlargement of tissues gap were observed (Figure 

2A). Meanwhile, remarkable increase of myocardial 

fibrosis measured by Masson staining was found in the 

group MI and MI+shZFAS1 (Figure 2B). Infarction ratio 

was analyzed by measuring the intensity of collagen 

deposition. MI treatment significantly increased 

infarction ratio compared to group sham, but knockdown 

of shZFAS1 markedly reversed the effect of MI, and 

decreased the level of infarction ratio (Figure 2C). In 

addition, the level of vWF in the tissues was detected via 

IHC to investigate the changes of angiogenesis. 

Remarkable lower levels of vWF in the group MI and 

MI+shNC were observed, but shZFAS1 significantly 

promoted the expression of vWF compared to these two 

groups (Figure 2D and 2E). In addition, in group MI and 

MI+shNC, both left ventricular ejection fraction (LVEF) 

and left ventricular fractional shortening (LVFS) were 

remarkably inhibited compared with group sham (Figure 

2F and 2G). Similarly, LVEF and LVFS were markedly 

increased by shZFAS1. These findings indicate that 

knockdown of ZFAS1 could improve MI. 

 

Promotion of Wnt/β-catenin by shZFAS1 in the MI 

rats 

 

Wnt/β-catenin pathway has been believed to be closely 

linked with the process of MI, and two key molecules, β-

catenin and GSK-3β, were detected using western 

blotting, qRT-PCR and IHC staining methods. We found 

that significant decrease of β-catenin and increase of 

GSK-3β were observed in the group MI and MI+shNC 

(Figure 3A–3E) compared to group sham. However, the 

change trends of GSK-3β and β-catenin were remarkably 

reversed in the group MI+shZFAS1 (Figure 3A–3E). 

 

Inhibition of Wnt/β-catenin pathway remarkably 

reversed the influence of shZFAS1 on cardiac function 
 

To further unfold the potential influence of ZFAS1 on 

Wnt/β-catenin pathway, the inhibitor of Wnt/β-catenin 
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pathway, XAV939, was used in the animal experiment. 

We found that MI+shZFAS1 could significantly 

reversed the changing trends of cardiac tissues 

morphological changes, infarction ratio, vWF 

expression, LVEF, and LVFS in the group MI (Figure 

4A–4G). However, after simultaneous treatment with 

XAV939, significant increase of infarction ratio, and 

decrease of vWF, LVEF, and LVFS were observed 

compared with group MI+shZFAS1 (Figure 4A–4G). 

Therefore, ZFAS1 might regulate the process of MI 

through targeting Wnt/β-catenin pathway. 

 

Inhibition of Wnt/β-catenin pathway remarkably 

reversed the influence of shZFAS1 on CFs viability 

 

The regulation of ZFAS1 on MI through Wnt/β-catenin 

pathway was further validated through in vitro 

experiments. We found that treatment with 

hypoxia+shZFAS1 significantly increased the 

migration, invasion, and proliferation ability of CFs 

compared to group hypoxia (Figure 5A–5E). However, 

treatment with hypoxia+shZFAS1+XAV939 

remarkably inhibited the migration, invasion, and 

proliferation ability of CFs compared to group 

hypoxia+shZFAS1 (Figure 5A–5E). These findings 

further confirmed the conclusion that ZFAS1 might 

affect the process of MI via regulating Wnt/β-catenin 

pathway. 

DISCUSSION 

MI is a serious cardiovascular disease that endangers 

human health and causes heavy social burden. The 

mortality and morbidity of MI still maintain high level 

despite great improvement of therapeutic methods [21]. 

In the late stage of MI, the proliferation and migration 

 

 
 

Figure 1. Knockdown of ZFAS1 significantly promoted the cell viability. (A) The expression of ZFAS1 was measured in the MI model. 

(B) The expression of ZFAS1 was measured in the hypoxia cell model. (C) Knockdown of ZFAS1 markedly promoted the ability of cell 
proliferation. (D) Cell migration was measured using wound healing method (Scale bar = 500 µm). (E) Knockdown of ZFAS1 markedly 
promoted cell migration compared with group hypoxia. (F) Cell invasion was measured using Transwell method (Scale bar = 200 µm). (G) 
Knockdown of ZFAS1 markedly promoted t cell invasion compared with group hypoxia. *P < 0.05 compared with the group control or sham. 
#P < 0.05 compared with the group hypoxia. 



 

www.aging-us.com 12922 AGING 

ability of myocardial fibroblasts increase and 

differentiate into myoid fibroblasts, which promotes MI 

and increases the degree of myocardial fibrosis [22].  

 

Studies have found that LncRNA can participate in the 

regulation of myocardial cell apoptosis and myocardial 

fibrosis, which is closely linked with to occurrence and 

progression of MI. It was reported that microRNA-155 

can regulate cardiac fibrosis through TGF-β1/Smad2 

signaling pathway [23]. In MI model mice, the 

expression level of cyclin D1 was markedly suppressed 

and the level of p21 was promoted after inhibiting 

microRNA-155. LncRNA MALAT1 could regulate the 

activity of TGF- β1 through microRNA-145, and 

promote myocardial fibrosis and worsen cardiac 

function after MI. MALAT1 knockout can reduce cell 

proliferation, collagen production, and inhibit the 

activation of TGF- β1 induced by MI or angiotensin I, 

so as to reduce myocardial fibrosis and improve 

myocardial remodeling [24–26]. 

 

ZFAS1, as a member of LncRNA family, is expressed 

in both nucleus and cytoplasm, and it has about 70% 

conservation in human and mice [11]. ZFAS1 has been 

believed to regulate the progression of many kinds of 

tumors [27, 28]. Meanwhile, the roles of ZFAS1 in 

cardiovascular diseases were also reported. It is known 

that calcium overload caused by decreased SERCA2a 

could lead to myocardial dysfunction. Aa an 

endogenous inhibitor of SERCA2a, ZFAS1 could 

suppress the activity of SERCA2a, and further result in 

the impairment of cardiac contractile function [11].  

 

Due to the remarkable low concentration in the serum 

of MI patients, ZFAS1 has been believed to be a maker 

for MI. However, the expression of ZFAS1 in the 

 

 
 

Figure 2. Improvement of cardiac function by silencing ZFAS1 in the MI rats. (A) Influence of shZFAS1 on the histological changes of 

MI rats myocardial tissues (Scale bar = 500 µm). (B) Influence of shZFAS1 on the collagen deposition of MI rats myocardial tissues (Scale bar = 
500 µm). (C) Influence of shZFAS1 on the infarction ratio of MI rats myocardial tissues. (D) The expression of vWF in the MI rats myocardial 
tissues was measured using IHC staining (Scale bar = 500 µm). (E) Influence of shZFAS1 on the vWF expression in the MI rats myocardial 
tissues. (F) Influence of shZFAS1 on the left ventricular fractional shortening of MI rats. (G) Influence of shZFAS1 on the left ventricular 
ejection fraction of MI rats. *P < 0.05 compared with the group sham. #P < 0.05 compared with the group MI. 



 

www.aging-us.com 12923 AGING 

myocardium of MI mice was remarkably increased 

[11]. Our data indicated that ZFAS1 was significantly 

high expressed in the MI heart tissues and hypoxia 

cells. Further studies are required to unfold the role of 

ZFAS1 in MI process. LVFS and LVEF indicate left 

ventricular systolic function and ratio between output 

per stroke and volume of end diastolic ventricle, 

respectively. LVFS and LVEF are two sensitive 

parameters related with changes of myocardial 

function. In this study, knockdown of ZFAS1 

significantly promoted LVFS, LVEF, and vWF 

expression, reduced infarction ratio, improved cardiac 

tissues remodeling (Figure 2). 

 

Previous report indicated that knockdown of pigment 

epithelium-derived factor (PEDF) could remarkably 

suppress the levels of Wnt3a and β-catenin in 

myocardial tissue, but the down-regulation was 

significantly suppressed by the inhibitor of Wnt/β-

catenin pathway. Silencing PEDF can suppress vascular 

endothelial injury by inhibiting Wnt/β-catenin signaling 

pathway, so as to reduce the cardiac function damage 

after MI [29, 30]. GSK-3β is a key downstream 

molecule of Wnt/β-catenin pathway. GSK-3β can 

promote ubiquitination and degradation of β-catenin 

through phosphorylation of Ser-33/37 site of β-catenin, 

and affect Wnt/β-catenin pathway mediated fibrosis. 

GSK-3β could promote the degradation of β-catenin and 

inhibit the production of β-catenin [31]. In this study, 

Wnt/β-catenin pathway was remarkably suppressed in 

the MI model, but knockdown of ZFAS1 reversed the 

trends compared with group MI. The Wnt/β-catenin 

pathway was activated by shZFAS1, the level of β- 

catenin was elevated, and GSK-3β was suppressed. 

Significant reduce of O2 supply is the main character of 

MI, which could lead to cell death, arrhythmia, and 

contractile dysfunction. Therefore, hypoxia cell model 

was also established in this study to confirm the 

conclusions of in vivo study.  

 

In summary, we demonstrated that significant 

improvement of cardiac function in the MI rats was 

observed through knockdown of ZFAS1. In addition, 

we proved that ZFAS1 might regulate the process of MI 

through activating Wnt/β-catenin pathway. These 

findings were validated through MI rats and hypoxia 

cell models. This study uncovers the underlying 

regulation mechanism of ZFAS1 in MI process and 

provides a new insight for the prevention and treatment 

of MI. 

 

 
 

Figure 3. Promotion of Wnt/β-catenin pathway by shZFAS1 in the MI rats. (A) The protein expression of β-catenin and GSK-3β in 

the myocardial tissues was measured. (B) Influence of shZFAS1 on the protein expression of β-catenin and GSK-3β in the myocardial tissues. 
(C) Influence of shZFAS1 on the mRNA levels of β-catenin and GSK-3β in the myocardial tissues. (D) The expression of β-catenin and GSK-3β 
in the myocardial tissues were measured using IHC staining (Scale bar = 500 µm). (E) Influence of shZFAS1 on β-catenin and GSK-3β in the 
myocardial tissues. *P < 0.05 compared with the group sham. #P < 0.05 compared with the group MI. 
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MATERIALS AND METHODS 
 

Cell culture and establishment of hypoxia cell model 

 

Cardiac fibroblasts (CFs) were obtained from American 

Type Culture Collection (ATCC, USA). Normal CFs 

were incubated with DMEM containing 10% FBS in the 

incubator of 37°C and 5% CO2. Hypoxia cell model was 

established by incubating cells on the condition of 93% 

N2, 3% O2, and 4% CO2 for 24 h. Then, the cells were 

incubated with shZFAS1, shNC, and XAV939 for 12 h. 

Then, cells were used to measure cell proliferation, 

migration, and invasion. All experiments were approved 

by Ethic Committee of The Second Affiliated Hospital 

of Nanchang University (Approval reference number: 

2020-016). 

 

Construction of ZFAS1 knockdown vector  

 

AAV9 vector was used to carry a short RNA fragment 

to knockdown ZFAS1 (shZFAS1). The shZFAS1 and 

shNC were constructed by GenePharma Co., Ltd 

(Shanghai, China). Virus solution (5 × 1013 genome-

containing particles) was used to treat rats through a 

caudal vein.  

 

Establishment of MI animal model  

 

Wistar rats (male, 240–260 g, Charles River, China) 

were used in this study. The animals were kept in the 

condition of 25–28°C, 45–55% humidity with free 

access to food and water. The rats were divided 

randomly into different groups. MI model was 

established by performing left anterior descending 

ligation using 6.0 nylon. The rats were firstly 

anesthetized through intraperitoneal injection with 

xylazine (11 mg/kg) and ketamine (110 mg/kg). After 

shaving the chest of rats, a left parasternal incision was 

performed to open thoracic cavity. Then, heart was 

exposed, and left anterior descending was ligated for 1 h. 

Remarkable elevation of S-T segment in electro-

cardiograph indicated MI. Same operation was 

 

 
 

Figure 4. Inhibition of Wnt/β-catenin pathway remarkably reversed the influence of shZFAS1 on cardiac function. (A) Influence 

of XAV939 on the histological changes of MI rats myocardial tissues (Scale bar = 500 µm). (B) Influence of XAV939 on the collagen deposition of 
MI rats myocardial tissues (Scale bar = 500 µm). (C) Influence of XAV939 on the infarction ratio of MI rats myocardial tissues. (D) The expression 
of vWF in the MI rats myocardial tissues was measured using IHC staining (Scale bar = 500 µm). (E) Influence of XAV939 on the vWF expression 
in the MI rats myocardial tissues. (F) Influence of XAV939 on the left ventricular fractional shortening of MI rats. (G) Influence of XAV939 on the 
left ventricular ejection fraction of MI rats. *P < 0.05 compared with the group sham. #P < 0.05 compared with the group MI. 
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conducted for the sham group rats excluding the ligation 

of left anterior descending artery. 1 week after operation, 

rats were injected with shZFAS1, shNC, or XAV939. 2 

weeks later, rats were sacrificed and heart tissues were 

collected for histological examination. 

 

Real-time polymerase chain reaction (RT-PCR) 

 

RNA was isolated through TRIzol reagent (#15596026, 

Invitrogen, USA). 30 ng RNA was reverse-transcribed 

into cDNA with SuperScript™ II Reverse Transcriptase 

(#18064022, Invitrogen, USA). RT-PCR was performed 

using SYBR Premix Ex Taq™ II kit (Takara, China). 

The primers were listed as follows: (1) β-catenin: 

forward: 5′-TTCGCCTTCACTATGGA 

CTACC-3′ and reverse: 5′-GCACGAACAAGCAAC 

TGAACTA-3′; (2) GSK-3β: forward: 5′- 

CGAUUACACGUCUAGUAUA -3′ and reverse: 5′- 

UAUACUAGACGUGUAAUCG -3′; (3) GAPDH: 

forward: 5′-ACAACAGCCTCAAGATCATCAG-3′ 

and reverse: 5′-GGTCCACCACTGACACGTTG-3′. 

The mRNA level of the experimental group was 

determined by comparing the value of ΔΔCt. 

 

Western blot analysis 

 

Tissues were lysed firstly, and protein content was 

detected using bicinchoninic acid kit (BCA, #P0012S, 

Beyotime, China) assay. Same amount of protein was 

separated by 10% SDS-PAGE and transferred to 

nitrocellulose membrane (Invitrogen, USA). The 

membrane was blocked with TBST solution (5% skim 

milk) for 2 h, and cultured with primary antibodies 

(1:800) at 4°C overnight. After washing twice using 

PBS, a secondary antibody (1:2000) was used to 

incubate proteins for 1 h. ImageJ software was applied 

to calculate the protein bands grey. The antibodies 

details were listed as follows: anti-beta Catenin 

antibody (ab32572, Abcam, Cambridge, UK), anti-

GSK3 beta antibody (ab32391, Abcam, Cambridge, 

 

 
 

Figure 5. Inhibition of Wnt/β-catenin pathway remarkably reversed the influence of shZFAS1 on CFs viability. (A) Cell migration 
was measured using wound healing method (Scale bar = 500 µm). (B) XAV939 markedly suppressed the ability of cell migration compared 
with group hypoxia+shZFAS1. (C) Cell invasion was measured using Transwell method (Scale bar = 200 µm). (D) XAV939 markedly suppressed 
the ability of cell invasion compared with group hypoxia+shZFAS1. (E) XAV939 markedly suppressed the ability of cell proliferation compared 
with group hypoxia+shZFAS1. *P < 0.05 compared with the group sham. #P < 0.05 compared with the group hypoxia. +P < 0.05 compared with 
the group hypoxia+shZFAS1. 
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UK), and goat anti-Rabbit IgG (ab205718, Abcam, 

Cambridge, UK). 

 

Transwell assay 

 

Cells (1 × 106 each well) were seeded into the upper 

chamber, and 2 mL DMEM containing 15% FBS was 

added to the down chamber. The cells were cultured for 

24 h, then 4% polyformaldehyde was used to fix cells for 

20 min. After washing twice, Giemsa (Thermo Scientific, 

USA) was used to stain lower chamber. The invasive 

cells in the five fields were captured and analysed. 

 

Wound healing assay 

 

The cells were diluted using DMEM and plated into a 6-

well plate. When cell confluence grew to 70%, a 200 μL 

pipette tip was applied to make a wound in the middle 

of plate. The cell number in the wound line was counted 

at 0 and 48 h. 

 

Ventricular function assessment 

 

Transthoracic echocardiography was performed to 

evaluate the hemodynamic assessment of left 

ventricular function using a Xario ultrasound device 

(Toshiba, Japan). Rats were firstly anesthetized using 

xylazine (11 mg/kg) and ketamine (110 mg/kg). Then 

hemodynamic items were recorded through MP100-CE 

(BIOPAC Systems, USA). 

 

Histopathological analysis 

 

The tissues were fixed with 4% paraformaldehyde for 24 

h. Then, tissues were embedded with paraffin and cut 

into 8-μm thick slides. The tissues were stained through 

hematoxylin-eosin (HE) and Masson trichrome methods, 

respectively. Five fields were selected for analysis. An 

inverted optical microscope was used for analyzing. 

 

Immunohistochemistry staining 

 

After de-paraffin, microwave heating was applied to 

repair antigen. Then, tissues were washed (twice, 5 

min/time), and cultured with 5% H2O2 (5 min). After 

blocking with 10% goat serum, the slides were cultured 

with primary antibody at 4°C overnight. After washing 

(twice, 5 min/time), the sections were cultured with 

secondary antibody for 1 h. Then DAB regent was 

applied to incubate sections, and an inverted microscope 

was used for analyzing. 

 

Cell proliferation 

 

MTT assay (#ST316, Beyotime, China) was applied to 

detect cell proliferation. Cells (1 × 105) were plated into 

96-well plate and cultivated for 24 h. After different 

treatments, cells were incubated with MTT reagent (20 

µL) for 4 h, OD at 490 nm was detected. 
 

Statistical analysis 
 

Data was presented by mean ± standard deviation (SD), 

and analyzed through SPSS 20.0. Student's t-test was 

applied to analyze results between two groups. Data more 

than 2 groups was calculated using one-way analysis of 

variance. P < 0.05 means statistically significant. All 

experiments were repeated at least 3 times.  
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MI: Myocardial infarction; PCI: Percutaneous coronary 

intervention; LncRNA: Long non-coding RNA; SD: 
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fraction; LVFS: left ventricular fractional shortening; 
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