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Abstract

Peptide microarrays consisting of defined phosphorylation target sites are an effective

approach for high throughput analysis of cellular kinase (kinome) activity. Kinome peptide

arrays are highly customizable and do not require species-specific reagents to measure

kinase activity, making them amenable for kinome analysis in any species. Our group devel-

oped software, Platform for Integrated, Intelligent Kinome Analysis (PIIKA), to enable more

effective extraction of meaningful biological information from kinome peptide array data. A

subsequent version, PIIKA2, unveiled new statistical tools and data visualization options.

Here we introduce PIIKA 2.5 to provide two essential quality control metrics and a new back-

ground correction technique to increase the accuracy and consistency of kinome results.

The first metric alerts users to improper spot size and informs them of the need to perform

manual resizing to enhance the quality of the raw intensity data. The second metric uses

inter-array comparisons to identify outlier arrays that sometimes emerge as a consequence

of technical issues. In addition, a new background correction method, background scaling,

can sharply reduce spatial biases within a single array in comparison to background subtrac-

tion alone. Collectively, the modifications of PIIKA 2.5 enable identification and correction of

technical issues inherent to the technology and better facilitate the extraction of meaningful

biological information. We show that these metrics demonstrably enhance kinome analysis

by identifying low quality data and reducing batch effects, and ultimately improve clustering

of treatment groups and enhance reproducibility. The web-based and stand-alone versions

of PIIKA 2.5 are freely accessible at via http://saphire.usask.ca.

Introduction

Kinase-mediated phosphorylation is a central mechanism of signal transduction and regula-

tion of protein activities in eukaryotes. These reversible protein modifications serve as the

defining events that immediately precede many cellular responses, represent highly attractive

targets for therapeutic intervention [1], and can aberrantly affect cellular signalling resulting

in disease [2]. With that, there is increasing priority to define the complete set of kinases and
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their activity (the kinome) to investigate complex biology, reveal potential therapeutic tar-

gets, and identify biomarkers of important phenotypes. This has given rise to a number of

technological approaches for defining the kinome [3]. Within these technologies, kinome

profiling using peptide arrays provides a robust and versatile method with the decided

advantages of not requiring species-specific reagents and being amenable to high-through-

put analysis.

In peptide microarrays for kinome analysis, surrogate substrates of kinases are represented

by short (15-mer) peptides, each containing the phosphoacceptor site at the central position

and maintaining the surrounding amino acid residues as present in the intact protein. Upon

exposure to a cellular lysate, the extent to which each peptide is modified through phosphory-

lation depends upon the activity of the corresponding kinase. By comparing lysates from cells

under different biological conditions, it is possible to determine the relative degree of kinase

activity, as well as anticipate the relative extent of modification of the proteins represented by

the peptides. Peptide arrays have proven a low-cost, versatile tool for kinome profiling. In par-

ticular, the opportunity to create customized arrays, coupled with the emergence of software

platforms that predict the phosphoproteome of virtually any species, enables a highly versatile

option for those looking to incorporate the technology, in particular for research where spe-

cies-specific reagents are limiting [4].

A key event in the advancement of the technology was the development of software custom-

ized for the biological and technological nuances associated with the peptide array data. The

Platform for Integrated, Intelligent Kinome Analysis (PIIKA) provides the ability to identify

differential phosphorylation events that are responsive to a particular treatment [5]. PIIKA

also enables identification of peptides with inconsistencies among the technical replicates on

an individual array as well as among biological replicates (e.g., different responses to the same

treatment). The PIIKA platform was later expanded upon with PIIKA2, which incorporated

addition tools in the categories of cluster analysis, statistical analysis, and data visualization

[6]. The peptide array technology, with analysis of the data through the PIIKA/PIIKA2 soft-

ware platform, has proven effective for investigation of a number of biological processes in a

range of species [7–9]. As the technology continues to evolve, a number of recurring unre-

solved technical issues have been identified that limit the extent to which biology can effec-

tively be extracted from the peptide microarray data: mislabelled pixels during scanning and

gridding of the arrays, inconsistency among datasets from apparent technical replicates, and

systematic regional differences that exist within the arrays.

To correct for these issues, we developed an upgrade to PIIKA with three major quality

control features that provide mechanisms to enhance the extraction of meaningful biological

information from kinome data. The first feature provides a metric by which the mislabelling

of pixels during scanning, a serious problem with kinome arrays, can be detected. The sec-

ond feature provides a metric that allows for determination of arrays that are significantly

deviant from other arrays in the experiment due to non-intended factors. These arrays have

the potential to greatly corrupt downstream analyses, especially analyses in which values are

aggregated together. The third feature is a new background correction technique that can

reduce spatial bias more greatly than background subtraction, which is the most commonly

used method for background correction. The new utilities are a crucial part of an improved

kinome analysis pipeline, and their results are provided to the user alongside the regular out-

put from PIIKA. In this paper, we describe the methodology behind, and benefits of, using

these new features to address some of the challenges present in kinome arrays. These new

features are applied to a well-characterized kinome microarray experiment and shown to

improve the final results.
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Materials and methods

The detection methodology dataset

The utility of the PIIKA 2.5 program was investigated within the context of peripheral blood

mononuclear cells stimulated with lipopolysaccharide (LPS), the ligand for Toll-like receptor 4

(TLR4) [10]. This ligand, in this cell population, is a well-characterized biological system,

including through kinome analysis [11, 12] and provides an established framework for investi-

gation of data analysis tools [13]. A distinct advantage of this system is the rapid induction of

expression and release of tumour necrosis factor alpha in response to LPS stimulation, which

provides a readily quantifiable indictor of cell responsiveness [14] as well as the ability to

dampen the LPS-induced tumor necrosis factor alpha (TNFa) release through the administra-

tion of cortisol [15]. There was a total of 27 arrays in this experiment, representing three bio-

logical replicates undergoing three treatments (control, LPS, LPS and cortisol) performed

identically on three different days.

Isolation and stimulation of immune cells

Porcine blood was collected and transferred to 50-mL polypropylene tubes and centrifuged at

1400 × g for 30min at 20˚C. The experimental protocol was approved by the University of Sas-

katchewan Animal Care and Use Committee-Livestock (AUP20190084) and sample collection

was in accordance with the Canadian Council on Animal Care guidelines. White blood cells

were isolated from the buffy coat and mixed with phosphate buffered saline (PBSA) + 0.1%

ethylenediaminetetraacetic acid (EDTA) to a final volume of 35mL. The cell suspension was

layered onto 15 mL of Ficoll-paque plus (Amersham Biosciences, GH healthcare) and centri-

fuged at 400 × g for 40min at 20˚C. Peripheral blood mononuclear cells (PBMC) from the

Ficoll-PBSA interface were collected and resuspended in 50ml cold PBSA +0.1% EDTA. The

suspension was centrifuged at 1200rpm for 10 minutes at 4˚C to wash. The resultant pellet was

resuspended in 50ml cold PBSA (no EDTA) and centrifuged at 1200rpm for 10 minutes at

4˚C. This wash was repeated again for a total of three washes and pellets from the same animals

were combined. Isolated PBMCs were cultured in RPMI medium (GIBCO) supplemented

with 10% heat-inactivated fetal bovine serum. Isolated PBMCs were rested overnight prior to

stimulation. Purified PBMCs (10×106) were stimulated with 100 ng/mL LPS (Escherichia coli
0111:B4) (Sigma-Aldrich), 100ng/mL LPS with 1μM hydrocortisone (added to media 30 min-

utes before LPS stimulation), or media for 4 hr at 37˚C. This quantity and type of LPS was pre-

viously shown to induce cellular responses in porcine monocytes. Cells were pelleted and

stored at −80˚C before use with the peptide arrays.

TNFa ELISA

Cell supernatants were diluted (1:2) and used for enzyme-linked immunosorbent assays (ELI-

SAs) for porcine tumor necrosis factor alpha (TNFa) as per the R&D Systems DuoSet Develop-

ment Systems ELISA kit.

Kinome analysis

Application of kinome arrays was performed using previously described protocols [4]. Arrays

were manufactured by JPT Innovative Peptide solutions. Peptides were chosen for the arrays

based on known phosphorylation sites relevant to the experiment, as well as other computa-

tionally predicted sites using DAPPLE [4]. A total of 27 arrays were analyzed, representing
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three animals and three different treatments (control, LPS, LPS + cortisol). This was done in

triplicate, with each set of replicates being analyzed on different days. Each array includes 282

unique peptides with nine replicates each.

Detection of inaccurate feature size

The vendor scanner software first creates a feature of an estimated size around each spot. It

defaults to a feature size that will capture even the largest spots on the array (Fig 1). Pixels of

the image inside the feature are labelled as foreground and pixels outside the area of the feature

are labelled as background. Mislabelling occurs when foreground pixels are labelled as back-

ground, or vice versa. This mislabelling can have major effects on the distribution of intensity

values obtained from an array (Fig 2) and on downstream analysis. Miscategorized pixels can

lead to inaccurate results. In PIIKA 2.5, inaccurate assessment of microarray spot size is

detected by utilizing the difference between the median and mean for each spot. Both of these

summary statistics are calculated from the intensity values of all foreground pixels deemed to

constitute the spot. In cases where the feature size is too large, the median intensity for each

spot is lowered (Fig 1C), as mislabelled spots vastly outnumber properly labelled spots as a

consequence of the overly large area of the labelling circle. The mean is not as shifted, however,

as the intensities of the most intense, properly labelled pixels are much higher than the intensi-

ties of mislabelled pixels. This contrasts with the expected median and mean values (Fig 1B).

One result of this effect is a skewed distribution of background-corrected mean intensity val-

ues and background-corrected median intensity values (Fig 2). Another result is that the slope

of the median vs. the mean across the entire array is appreciably lower than one (Fig 3A2).

Using this slope as a guideline, we have implemented a three-tiered “stoplight system” to pro-

vide feedback to the user. Arrays are given a green, amber, or red “light” depending on the

mean/median slope. A slope less than 0.85 (but at least 0.70) is given an amber light, an indica-

tion that manual intervention in the operation of the vendor scanner software may be

required. A slope less than 0.70 is given the red light, which indicates strong bias that is in

urgent need of correction. These values are based on the trends seen across hundreds of in-

house arrays but are ultimately arbitrary. More analysis is required to determine alternate

slope thresholds. In Fig 3, the data set shown in panel A2 was given a “red light”, while that in

B2 was given a “green light”.

Background scaling

The background scaling process is performed using the data output by the array scanning soft-

ware, which includes each probe’s foreground and background medians (median of all the pix-

els deemed to be foreground/background). For each probe, its foreground intensity is the total

of the intensities of all pixels deemed to be foreground pixels, and analogously for background

intensity. Typically, to compensate for various systematic sources of error related to the loca-

tion of a spot on the physical array (location bias), foreground intensity is “corrected” by sub-

tracting the background intensity. However, this does not take into account how the local

pixel intensities relate to those on the microarray as a whole. Background scaling does this.

With background scaling, both intensity values are first divided by the ratio between the local

background intensity and the median background intensity of the entire array (Eq 1). This

ratio is an additional factor accounting for location bias by considering the relationship

between local background pixels (for the spot under consideration) and the background

pixels across the entire array. As shown in results, background scaling sharply reduces the
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Fig 1. Over-estimation of spot size introduces error in estimation of mean and median spot intensity. A. The automated spot finding

provided by the scanner software defaults to using a feature size (shown by the white circle) that captures the entire area of all spots, even the

largest spots on the physical array. B. With an accurate feature size values of mean(y) and med(y) give a true representation of the spot. The

vertical edges of the rectangle show the boundary between actual foreground and background pixels constituting the spot. C. Overestimated

feature size, showing the resultant reduced mean (mean(y)) and further reduced median (med(y)). The mean estimated foreground intensity is

lowered from the true foreground intensity (yf), towards the true background intensity (yb). D. Under-estimating feature size results in

increased mean and median, though they are in the correct relationship and are closer to their true values than in panel C. This figure

represents a simplification as the rendering in 2 dimensions does not show that the number of pixels increases linearly with the area of a circle,

which itself increases as the square of the radius.

https://doi.org/10.1371/journal.pone.0257232.g001
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location-associated variation between technical replicates.

fs ¼
fl

bl=bm

� � �
bl

bl=bm

� � ¼
flbm
bl
� bm ð1Þ

Equation 1: fs is the scaled final foreground intensity for the target probe (f). fl and bl represent

the original local foreground and background intensities for f and bm is the median back-

ground intensity of the entire array.

Fig 2. Over-estimation of spot size can affect distribution of spot intensity values: Spots on array from the porcine TLR4 experiment described

earlier. Panel A1 shows an over-estimated feature size as a result of the automated procedure provided by the scanner and scanner software, while panel B1

shows the same spots subject to a manually adjusted feature size. Panels A2 and B2 show violin plots of calculated spot intensities for all spots on the array

using the corresponding feature size (A1 and B1, respectively). The over-estimated feature size (A1) results in a highly skewed distribution of background-

correct median spot intensities and background-corrected mean spot intensities (A2). The effects on the distribution of values includes the range of

intensity values, as shown in the y-axis limits shown in Panels A2 and B2. The feature sizes in panels A1 and B1 result in the situations shown in Fig 1C and

1D, respectively.

https://doi.org/10.1371/journal.pone.0257232.g002
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Outlier detection by inter-array comparison

Outlier detection is performed using techniques adapted from the R [16] Bioconductor [17]

packages arrayQualityMetrics [18] and affy [19]. Outlier arrays are determined by inter-array

comparisons using measurements of the mean absolute difference between the data for all cor-

responding probes between arrays. That is, we calculate the distance between each array pair

by determining the mean of the absolute values of the differences between all corresponding

probes on the two arrays. There is one such mean or distance for each pair of arrays. Then, for

each array, the distances between it and all other arrays in the experiment are collected and

totalled. Finally, the total distances for all arrays are subjected to a one-way analysis of variance

(ANOVA) and p-values calculated. Arrays that are significantly different past a margin of

p< 0.05 according to Tukey’s HSD test, corrected for multiple observations using the Bonfer-

roni correction, are marked as outliers. As in the determination of pixel mislabelling, a

Fig 3. Detection of mislabelled pixels due to errors in spot alignment. A1. Scanning grid where spot size is too large. A2. Linear

regression of foreground means (less background) on foreground medians (less background) of a typical suboptimal spot alignment where

the estimated spot (feature) size is much larger than the feature’s actual size (shown A1), capturing much of the background area of the

array. This leads to the indicative crest of points x< 5000 and a slope much lower than 1 (0.755). B1. More accurate spot size used for

scanning. B2. Linear regression of background-corrected foreground means on background-corrected foreground medians of a spot

alignment better optimized for kinome microarrays, manually selecting a much smaller diameter for each feature (shown B1). Improved

alignment removes the crest feature in the regression plot and raises the slope to 0.855. Frequency histograms along the x- and y-axes show

the overall distribution of the background-corrected median and the background-corrected median, respectively. In A1 and B1 actual spots

are shown in green, and the boundary of the area labelled as foreground pixels is shown in red. Data is taken from the TLR4 experiment

described earlier.

https://doi.org/10.1371/journal.pone.0257232.g003
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“stoplight system” is implemented here as well. Arrays marked as outliers are given a red light

and best practice is to remove them entirely. Arrays that trend towards significance (p< 0.1)

are given an amber light and could be included in subsequent analysis with caution. Other

arrays are given a green light by this analysis. One additional calculation is performed. For

each array, the sum of distances to all other arrays (i.e., all its inter-array distances) is also

determined. The calculation is part of the ANOVA, but the total can be used to represent the

variability of each array with respect to all the others. A threshold value is approximated for

the value of the sum of distances at which the ANOVA result has a p-value of 0.05. This thresh-

old is shown in visualizations (Fig 5A).

Results

In exploring the effects of the three new features of PIIKA 2.5 we consider each in isolation,

with remaining stages of analysis as typically performed with PIIKA. This is to ensure that the

behaviour observed is a result of the feature under discussion rather than the result of a combi-

nation of effects.

Detection of inaccurate feature size

Automatic alignment of microarray spots as implemented by the GenePix software is often

inaccurate on kinome arrays. Using the automatic alignment can cause over-estimation of the

size of the spot which in turn causes pixels in the spot that should be labelled as background to

be labelled as foreground and included with the foreground in the subsequent calculations of

the mean and median (Figs 1 and 2). This mislabelling yields a distortion of data that causes

the background-corrected mean and median values to diverge from the true values. The range

of intensity values is also reduced with an over-estimated feature size (Fig 2). A more reliable

radius of the spot should be smaller, containing less background area. Indeed, it is preferable

to make a spot too small as opposed to too large (Fig 1D). As the spot size becomes larger,

more background pixels become mislabelled, rapidly leading to the high intensity true fore-

ground pixels becoming outnumbered by the low intensity mislabelled background pixels.

This causes the median to shift much lower so that the median point is likely to be the intensity

of a mislabelled background pixel, while the mean remains high due to the very high values of

the true foreground (Fig 1C). This can skew the distribution of background-corrected mean

and median intensity values (Fig 2).

As a simplified example, consider a probe (spot) the size of a single pixel, with a true fore-

ground intensity of 1000 and a background area surrounding it with an intensity of 1. If the

spot size is overestimated to include the background pixels, this changes the value of the

median foreground intensity all the way to 1, the value of the true background intensity. The

mean is also shifted considerably lower, but not as extremely. This effect leads to two distinct

features of the data, most easily observed by examining a plot of the background-corrected

median and the background-corrected mean (Fig 3). First, the mislabelled points create a

region above the linear regression line, with a background-corrected median intensity less

than 5000, and a corrected mean intensity between 1000 and 12000. The region resembles a

fin. The second feature, caused by the greater lowering of the median than the mean in the

poorly aligned probes, is an overall linear regression line with a slope appreciably lower than

one. In comparable microarray technologies and other biological distributions this is a highly

unusual property.

Based on preliminary empirical study on hundreds of in-house datasets (results not

shown), a mean-over-median slope of 0.70 or lower was rarely seen. Therefore, a slope of 0.70

is a reasonable threshold for a dataset to be flagged as having unacceptable levels of bias due to
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over-estimated spot size and in urgent need of alignment correction. Similarly, a slope under

0.85 but greater than 0.70 is chosen as indicating a potentially problematic dataset that may

require either manual alignment or more caution with downstream analysis. Specifically,

within the porcine TLR4 signalling dataset, there are no arrays below the 0.70 threshold, but

three (11.11%) below 0.85. Realignment of the GenePix grid is the most straightforward way to

overcome this bias. These thresholds were not rigorously determined, though based on trends

seen through investigation of hundreds of datasets. Future investigation is required to deter-

mine thresholds in a more systematic manner.

Background scaling

Another common source of systematic error in kinome microarrays is an increased intensity

(background and foreground) towards one end of an array caused by the physical properties

of the array such as orientation. While background subtraction alone is effective at reducing

such location biases, the background scaling calculation as described in the Materials and

methods further decreases the location-associated variation. Background scaling is similar to

background subtraction except that it involves an additional factor that relates local back-

ground to the background across the entire array.

The reduction in location bias corrects for inherent location biases present in kinome

microarrays to a degree greater than background subtraction (Fig 4). Of the 27 arrays analysed,

74.07% of arrays showed a reduction of the Pearson correlation coefficient between the Y-axis

position of a probe and the probe foreground intensity, with the average significance of the

correlation decreasing from 0.07 to 0.32 (Table 1). Without correction, this bias is present

(p< 0.0001, based on the significance of the Pearson correlation coefficient) in all 27 arrays

analyzed in the dataset (Table 1). A binomial test performed on the data reveals a significant

effect on the probability of reducing the location bias (p = 0.0066) by using background scaling

over background subtraction, though the small sample size of 27 should be taken into consid-

eration when interpreting this result.

The table contains 4 major columns, each with a Pearson r-coefficient and a p-value subcol-

umn. The “Raw” column has no pre-processing applied, using the uncorrected foreground val-

ues; the “Subtraction” column uses the typical background subtraction method; and the

“Scaling column” uses the new background scaling technique. The fourth column is TRUE if

the background scaling outperforms the background subtraction, and FALSE otherwise. The

FALSE entries are highlighted in red. Arrays S1-3 are control, S4-6 are LPS and cortisol treated

arrays, and S7-9 are LPS treated arrays. For the Pearson r columns, the average is equal to the

arithmetic mean of all values in the column. For the p-value, the average is equal to the geo-

metric mean. For the final column, the value in the “average” row is the fraction of arrays in

which background scaling outperformed background subtraction.

Outlier detection by inter-array comparison

Arrays that are significant outliers from the other arrays in the experiment indicate a system-

atic error that can have profound consequences on data analysis. This error is not often corre-

lated with intended experimental factors and is largely independent of treatment or biological

replicate. Within the twenty-seven datasets under consideration, two arrays, occurring on dif-

ferent experimental days and reflecting different treatment conditions, were flagged as being

problematic (Fig 5A). For each pair of arrays, a distance was calculated by summing the mean

absolute differences between corresponding probes. Arrays with a significantly high sum of

distances (p< 0.05) as determined by one-way ANOVA are flagged as outliers. For each array,

the distance between it and all other arrays in the experiment can be summed. By determining

PLOS ONE PIIKA 2.5

PLOS ONE | https://doi.org/10.1371/journal.pone.0257232 September 10, 2021 9 / 17

https://doi.org/10.1371/journal.pone.0257232


the sum corresponding to a p-value of 0.05 from the ANOVA test, a quick visual synopsis of

the variation in datasets is possible (Fig 5A). A “stoplight” visualization is used to convey the

results to the user, with “green” and “red” indicating “no problem detected” and “outlier

detected”, respectively, with “amber” suggesting caution for use of a dataset subsequent

Fig 4. Background scaling to account for regional variations. A. Uncorrected output from an array showing a high degree of bias, creating

a correlation between probe foreground intensity and the spot location on the y-axis of the array. B. Output from the same array as A,

corrected using background subtraction. The bias has reduced substantially, but there still is a discernible and statistically significant

correlation, especially in the probes with higher intensities. C. Output from the same array as A and B, corrected using background scaling,

completely removing the correlation between probe intensity and y-axis. Data represents an array taken from the TLR4 experiment described

earlier that is neither an outlier nor required any manual alignment correction (mean/median slope> 0.85). Frequency histograms along the

x-axis show the distribution of the position of spots on the array (identical for all three panels). Frequency histograms along the y-axis show

the distribution of intensities which concentrate at lower values when correction is applied.

https://doi.org/10.1371/journal.pone.0257232.g004
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analysis. For the dataset from the TLR4 experiment, there are no arrays flagged as “amber”

(0.05< p< 0.1), but with arrays 8 and 18 (p < 0.05) getting a “red light”. All other arrays

received a green light.

While the occurrence of two problematic datasets among twenty-seven might seem incon-

sequential, it can have substantial impact on the downstream analysis. For example, principal

component analysis performed with the inclusion of the red-flagged datasets fails to separate

the datasets on the basis of treatment condition (Fig 6A). The same analysis, performed after

removal of the two flagged datasets, offers improved separation of the datasets according to

treatment groups (Fig 6B). This was confirmed by calculating both the Dunn index and Davis-

Bouldin Index (DBI) before and after removal of the outlier arrays. Before outlier removal, the

Dunn index and DBI were 0.62 and 0.82 respectively. Following removal, these values were

improved to 0.18 (DBI) and 0.97 (Dunn index). The treatment conditions were selected to

result in cell populations of distinct phenotypes. In particular, LPS stimulation is known to

induce Toll-like receptor signalling that manifests in the induced release of pro-inflammatory

cytokines such as TNFa. Within the LPS-stimulated cells there is a clear and consistent

response of induced TNFa release (Fig 6C). Cortisol serves to dampen pro-inflammatory

responses, including those induced by TLR agonists such as LPS. The pre-treatment of the

Table 1. Comparison of different background correction methods on correlation between y-axis location and probe intensity.

Array Raw Subtracted Scaled Scaling > Subtraction

Pearson r p-value Pearson r p-value Pearson r p-value

S1 Day 1 0.310 5.10E-69 0.065 4.30E-04 0.0002 0.990 TRUE

S1 Day 2 0.110 1.10E-09 0.025 0.170 -0.0013 0.940 TRUE

S1 Day 3 0.170 5.40E-22 0.034 0.061 0.0130 0.480 TRUE

S2 Day 1 0.230 8.60E-39 0.023 0.200 -0.0320 0.079 FALSE

S2 Day 2 0.110 4.80E-09 0.047 0.010 0.0590 0.001 FALSE

S2 Day 3 0.043 1.80E-02 0.056 0.002 0.0610 0.001 FALSE

S3 Day 1 -0.110 2.60E-09 -0.026 0.150 -0.0027 0.880 TRUE

S3 Day 2 0.330 4.80E-80 0.110 9.20E-10 -0.0013 0.940 TRUE

S3 Day 3 -0.071 9.90E-05 0.039 0.033 0.0710 8.80E-05 FALSE

S4 Day 1 0.240 1.70E-41 0.028 0.13 -0.0350 0.058 FALSE

S4 Day 2 0.190 3.40E-27 0.100 7.40E-09 0.0730 5.70E-05 TRUE

S4 Day 3 0.210 2.80E-31 0.086 2.30E-06 0.0420 0.022 TRUE

S5 Day 1 0.160 3.80E-18 0.024 1.80E-01 -0.0072 6.90E-01 TRUE

S5 Day 2 0.280 1.20E-54 0.130 2.80E-12 0.0650 0.000 TRUE

S5 Day 3 0.170 3.00E-21 0.030 9.50E-02 -0.0110 0.560 TRUE

S6 Day 1 0.370 6.50E-99 0.033 6.90E-02 -0.0320 0.078 TRUE

S6 Day 2 0.330 5.30E-78 0.051 0.0052 -0.0080 0.660 TRUE

S6 Day 3 -0.021 2.40E-01 -0.082 6.60E-06 -0.1000 8.60E-09 FALSE

S7 Day 1 0.330 1.30E-75 0.075 3.70E-05 -0.0090 0.620 TRUE

S7 Day 2 -0.180 1.50E-23 0.060 9.40E-04 0.0370 0.042 TRUE

S7 Day 3 0.090 6.40E-07 0.005 0.790 -0.0280 0.120 FALSE

S8 Day 1 0.260 1.60E-47 0.028 1.20E-01 -0.0210 0.250 TRUE

S8 Day 2 0.240 1.30E-40 0.072 7.50E-05 0.0240 0.180 TRUE

S8 Day 3 0.220 1.30E-34 0.055 2.50E-03 -0.0150 0.400 TRUE

S9 Day 1 0.360 3.70E-94 0.062 6.60E-04 0.0240 0.180 TRUE

S9 Day 2 0.330 1.10E-76 0.059 1.20E-03 0.0150 0.440 TRUE

S9 Day 3 0.270 9.20E-52 0.095 1.90E-07 0.0250 0.170 TRUE

Average 0.212 1.38E-39 0.056 0.001 0.030 0.039 0.741

https://doi.org/10.1371/journal.pone.0257232.t001
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cells with cortisol results in a clear and consistent reduction of LPS-induced TNFa release

(Fig 6C).

Discussion

Quality control analysis for microarray programs in several popular R packages has led to

increased reproducibility [20–22], one of the most important goals in modern high-through-

put data analysis. Given the challenges presented by the peptide array technology, it was desir-

able to have similar quality control filters integrated into PIIKA 2 that specifically targeted

major identifiable problems.

One of the most apparent issues in kinome quality control is the lack of a dedicated kinome

microarray imaging software. Using automatic grid alignment for the microarrays creates an

error caused by mislabelling pixels. One solution is manual realignment of the grid in the

imaging software, but this is time-consuming and prone to error. Unless specifically told the

proper way to estimate spot size (Fig 1), manual size adjustment can just as easily create the

same mislabelling error.

By comparing the mean and the median of each probe after background correction we can

get a measurement of the symmetry of the data (Fig 2). In a situation with proper pixel label-

ling, it is expected that the distributions of the means and medians of probes are roughly equiv-

alent (Fig 2B2), but when the foreground intensity is highly skewed (resulting in the median

and mean distributions being dissimilar (Fig 2A2)) it indicates that background pixels were

captured within the area labelled as foreground (Fig 1C). This is often easily recognizable by

the characteristic fin shape and low mean/median slope (Fig 3), but the effects may be more

obscure but still detrimental. The probes that lie in the fin area of the graph (typically between

Fig 5. Identification of outliers by inter-array comparison. A. Sum of pairwise distances between the given array and all other arrays (N = 27,

consisting of 3 biological replicates with 3 technical replicates each per treatment). The indicator line represents the point where the sum for a

given array is significantly greater than the others with a p-value of< 0.05 according to one-way ANOVA with Tukey’s HSD test, corrected for

multiple comparisons. Datasets 8 and 18 are outliers with p-values of 0.021 and< 0.001, respectively. B. Heatmap showing pairwise distances

between arrays. These are sorted from least significant to most significant difference of sums on the y-axis and the reverse on the x-axis. The color

bar on the right indicates the treatment group of the array shown on the x-axis, with red representing control, blue representing LPS alone, and

green representing LPS with cortisol. Datasets 8 and 18 are present in the bottom left of the heatmap and are marked by asterisks.

https://doi.org/10.1371/journal.pone.0257232.g005
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mean 5000–15000 and median < 5000) have been significantly shifted down in both back-

ground-corrected foreground mean and background-corrected foreground median. These

probes are relevant as, if the data were better conditioned, it could be that these probes would

have much higher overall intensities and be placed among the probes with the highest levels of

phosphorylation—the “top hits” in a differential phosphorylation analysis.

Background scaling is an important first step in the correction of location biases. We have

discovered that in kinome arrays there exists a systematic bias that causes the intensities to

increase as the y-axis value increases (Fig 4A). This bias exists uniformly across all 27 arrays

analyzed in the TLR4 experiment and is largely ubiquitous across all microarray technologies

[23, 24]. This is a result of the reagent used to selectively stain for phosphorylated peptides

being increasingly intense towards one end of the array. Location bias is not adequately cor-

rected with background subtraction alone (Fig 4B). In two-color arrays, many different back-

ground correction techniques are used, and have been rigorously analyzed [25]. Methods

similar to the one presented here have performed extremely well in reduction of false positives

associated with location-associated bias without compromising differential expressed genes in

two-color arrays [26]. However, in kinome microarrays, there are fewer options for back-

ground correction algorithms due to the relative scarcity of kinome microarray analysis soft-

ware. We have shown that the location-associated variation can be further reduced by scaling

the foreground and background with a local estimate of relative background location bias

Fig 6. Principal component analysis before (A) and after (B) removal of the arrays determined to be outliers in Fig 5A. The two

outliers removed are highlighted in panel A. This data represents 2 treatment groups (blue and green) and one control (red) with 3 biological

replicates performed on three different days. C. ELISA data showing differential TNFa levels across the different treatment groups. This

shows a strong difference in the immune response, which leads to the expectation that the PCA should show distinct clustering.

https://doi.org/10.1371/journal.pone.0257232.g006
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(bl/bm in Eq 1) prior to the background subtraction (Fig 4C). Our method is presented as an

alternative to background subtraction, adding to existing corrections which also outperform

background subtraction in reduction of location-associated biases [27]. Calibration probes

and other quality control standards which have been previously unsuccessful due the level of

noise between technical replicates can be reinvestigated with the application of background

scaling. Future efforts can be made to incorporate calibration probes to eliminate a wider vari-

ety of biases that can obfuscate the experimental results now that the location-associated varia-

tion can be more adequately corrected for.

Pairwise comparison of all the probes on each array is an effective tool for measurement of

how similar arrays are. The distance between all corresponding probes between two arrays is

measured and the mean of all distances from one array to all other arrays determined. Using

an ANOVA, the outliers are determined as arrays with a sum of pairwise distances to all other

arrays significantly different from the sum for other arrays. In-house trials have indicated that,

in general, arrays that are outliers are variant by a large margin (well beyond the outlier thresh-

old) while the non-outlying arrays are very consistent. Being an outlier therefore indicates

presence of a factor that affects all of the probes in the array systematically, as opposed to just a

particular subset of probes (the highest intensity probes, for example). There may be situations

where the outlier arrays represent a biological effect, so it is necessary for researchers to exer-

cise judgement on how to best proceed. In many cases, however, differentially phosphorylated

peptides between treatment groups represent only a small portion of the total number of pep-

tides in the array, so it is more likely that identification as an outlier is caused by sweeping sys-

tematic biases.

The quality control results are supplied to the user in a folder with the other data that

PIIKA provides, containing the analysis of the two metrics described here. The program sup-

plies figures similar to Figs 3 and 5 that show the median/mean slopes for each array analyzed

and the determined outlier arrays. A three-tiered stoplight system has been implemented to

further guide researchers in making decisions based on the data provided. This system is ulti-

mately subjective but uses objective data to categorize data into three categories: green (having

no observable problems), red (having a large detectable issue), and amber (potentially having

some issues) based on the criteria described in the Materials and methods. These colours are

integrated into the provided figures and more detailed explanations are offered in an accompa-

nying text file. Ideally, it would be possible to categorize the data into just two categories, but

the amount of variation in the data creates sufficient ambiguity to make a binary approach

impossible. Green quality assessments mean that there was no problem found with the data at

all, giving the user more confidence that their data is reliable. Red assessments are accompa-

nied by a message that strongly suggests some correction to the data or complete elimination

is required. There is also a third category, amber, for datasets that are not distinctly “bad” nor

distinctly “good”. Researchers could still use these datasets effectively with caution, but should

downstream analysis become problematic, a potential source of error has been identified.

In addition to the improved quality control and background scaling, there have also been

several other PIIKA improvements of note. Firstly, the old method of inputting data into the

PIIKA program required time-consuming work of manually pruning the data, removing

many of the microarrays’ built-in control spots. These data points would otherwise make the

analysis less accurate, as the points are for the use of scanner calibration and user confirmation

and are often read by scanners as either 0 values or extremely high values. The final step of this

input process required merging of the array files into a single text file. This process required

specific knowledge of the input format, which was not covered in great detail by the existing

documentation. This input process has been replaced with an automated one, implemented as

a Python script, that performs the same tasks. Users are able to upload a single.zip file
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containing all of their arrays as directly outputted by scanner software, saving time and

computational resources. Specific probes in the array files are removed by default, such as

‘printing-buffer’ and ‘blank’, but the user has the capability to alter this list to add or remove

rows that are not relevant to the data that they wish to analyse. Backwards compatibility is

retained among all new features, and users are still able to input experimental results as they

were before.

Despite this being a major improvement to the existing kinome microarray analysis pipe-

line, there are still challenges that have yet to be addressed. The lack of image analysis software

specifically tailored for kinome microarrays is a major limitation and addressing this would

mitigate many of the problems that are corrected by this update. A dedicated software suite

would also alleviate much of the time-consuming labour involved in manual alignment of the

array image with the data grid. While background scaling does provide correction for spatial

biases, the update to PIIKA does not correct for other systematic biases that we have deter-

mined to be evident in kinome microarrays—it only identifies them. It is feasible that eventu-

ally problems such as misalignment of the imaging grid, batch bias, and overall array quality

will not only be identifiable, but also correctable. Regardless of this, the identification of the

problems and their sources is the essential first step of correction. The update to PIIKA pro-

vides objective information for researchers to make subjective decisions about their data,

which will lead to increased accuracy and technical reproducibility.

PIIKA 2.5 is available in two forms: a web-based version, and a local version that can be

installed on the user’s computer. Both versions are available through the Saskatchewan PHos-

phorylation Internet REsource (SAPHIRE) website at http://saphire.usask.ca. PIIKA 2.5 is free

for academic use; users interested in PIIKA 2.5 for commercial purposes should contact the

authors.

Supporting information

S1 File. Zip folder containing GPR files. All arrays used in this experiment are available as txt

files in the GPR format contained within a single zip folder. Individual files are named as in

Table 1, where the first number, which follows S, represents the identifier for the samples.

Samples 1 2, and 3 are control, 4,5 and 6 are treated with LPS, and 7,8, and 9 are treated with

both LPS and cortisol. The number following this represents the day of experiment. For exam-

ple, S1_2.txt contains the data for sample number 1 from the experiment performed on day 2.

(ZIP)
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