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Abstract: Neovascularization (NV) of the cornea disrupts vision which leads to blindness. Investigation
of antiangiogenic, slow-release and biocompatible approaches for treating corneal NV is of great
importance. We designed an eye drop formulation containing gelatin/epigallocatechin-3-gallate
(EGCG) nanoparticles (NPs) for targeted therapy in corneal NV. Gelatin-EGCG self-assembled NPs
with hyaluronic acid (HA) coating on its surface (named GEH) and hyaluronic acid conjugated
with arginine-glycine-aspartic acid (RGD) (GEH-RGD) were synthesized. Human umbilical vein
endothelial cells (HUVECs) were used to evaluate the antiangiogenic effect of GEH-RGD NPs
in vitro. Moreover, a mouse model of chemical corneal cauterization was employed to evaluate the
antiangiogenic effects of GEH-RGD NPs in vivo. GEH-RGD NP treatment significantly reduced
endothelial cell tube formation and inhibited metalloproteinase (MMP)-2 and MMP-9 activity in
HUVECs in vitro. Topical application of GEH-RGD NPs (once daily for a week) significantly
attenuated the formation of pathological vessels in the mouse cornea after chemical cauterization.
Reduction in both vascular endothelial growth factor (VEGF) and MMP-9 protein in the GEH-RGD
NP-treated cauterized corneas was observed. These results confirm the molecular mechanism of the
antiangiogenic effect of GEH-RGD NPs in suppressing pathological corneal NV.
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1. Introduction

Corneal neovascularization (NV) is the formation of new vessels from pre-existing vascular
structures in the transparent cornea, resulting from a variety of ocular pathologic conditions which
are detrimental to vision [1–4]. These newly-formed vessels sprouting from the capillaries of the
pericorneal plexus may block light, compromise visual acuity, cause inflammation and corneal scarring,
and may eventually result in blindness [2,5–8]. Etiologies of corneal NV include infection, injury,
surgery, autoimmune disease, inflammation, neoplasm, dystrophy, deficiency of limbal barrier function,
corneal hypoxia, and improper use of contact lenses [9–12]. There were over 150 million people
worldwide wearing contact lenses in 2019, implying a large population is at risk of developing corneal
NV due to corneal hypoxia [13–18]. To combat this, vascular endothelial growth factor (VEGF) targeting
antigen-binding fragment has been developed to treat NV; it demonstrates great promise for the
treatment of corneal NV [2]. New drug/compounds for inhibiting vessel formation have also been
developed to effectively treat NV-related pathological corneal conditions [19].

Green tea is one of the most popular beverages in the world. Early studies have indicated that the
consumption of green tea can inhibit inflammation and angiogenesis [19]. The major active component
of green tea is a catechin-derived polyphenol, including (–)-epigallocatechin gallate (EGCG), which
has been shown to inhibit angiogenesis via inhibition of vascular endothelial cell growth [19–25]. The
EGCG has also been shown to effectively limit the upregulation of metalloproteinase (MMP)-9 and
VEGF in a mouse model of corneal NV treated by subconjunctival injection of EGCG [23]. Therefore,
EGCG was chosen to treat corneal NV in this study. During vascular remodeling and formation in
damaged and regenerated tissues, several integrins are found to be expressed in vascular endothelial
cells [26–29]. Among them, αvβ3 integrins are involved in ocular angiogenesis [27]. The adhesion
molecule integrins, αvβ3, plays an important role in angiogenesis, and several studies have shown that
arginine-glycine-aspartic acid (RGD) peptides particularly recognize αvβ3 integrins on the tumoral
endothelial cell membrane and newly-formed blood vessels during angiogenesis [27–31]. In a previous
study, we reported that RGD peptide modified nanoparticles (NPs) can specifically deliver EGCG to
human umbilical vein endothelial cells (HUVEC) [20]. Therefore, RGD-based targeting strategy could
be used to enhance biomaterial-endothelial cell interaction [29,30,32] to target pathological angiogenesis.

Conventional methods of ocular drug delivery include topical administration, intravitreal injection,
and intraocular implant [17,33–35]. The topical application with an eye drop formulation represents a
common, noninvasive approach for ocular drug delivery. The major drawbacks of eye drops include
poor ocular drug bioavailability, nasolacrimal duct drainage, and poor penetration to the posterior
segments of the eye [17,34,35]. Therefore, seeking a next-generation delivery material/strategy becomes
an urgent issue in the context of eye drop delivery. Recently, biodegradable NPs have been applied to
ophthalmic research for less invasive and cheaper intervention alternatives [3,34–36]. The application
of NPs on ocular diseases allows targeted delivery, slow-release, and enhanced pharmacokinetics,
thereby improving the bioavailability of drugs in the eyes [35,36]. However, the detailed therapeutic
mechanism and performance for this nanomedicine for corneal NV have not yet been elucidated.

In this study, we applied RGD-modified NPs containing EGCG as an eye drop formula for
the treatment of corneal NV. We conducted an in vitro functional assay using HUVECs as our
cellular model system. In addition to in vitro study, we also employed a mouse model of chemical
cauterization-induced corneal NV to investigate the antiangiogenic effect of RGD-modified NPs and
their underlying molecular mechanisms in corneal NV inhibition in vivo. This topical nanomedicine
could be a potential therapeutic alternative for the treatment of corneal NV (a schematic of this study
is shown in Figure 1).
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Figure 1. Schematic illustration of this study. (A) Synthesis of GEH-RGD NPs with EGCG loading 
and (B) application in corneal NV treatment as an eye drop formulation. Abbreviation: EGCG: 
epigallocatechin-3 gallate, HA: hyaluronic acid, NPs: nanoparticles, RGD: arginine-glycine-aspartic 
acid, GE: Gelatin/EGCG self-assembling NPs, GEH: GE NPs with HA surface coating, GEH-RGD: GE 
NPs with HA-RGD surface decoration, AFM: atomic force microscope. 

2. Materials and Methods 

2.1. Reagents and Chemicals 

HUVECs were purchased from Bioresource Collection and Research Center (Hsinchu, Taiwan) 
and grown in Medium 199 containing 10% fetal bovine serum (Thermo Fisher Scientific, Waltham, 
MA, USA) as well as Penicillin-Streptomycin (Life technologies, Eugene, OR, USA) and endothelial 
cell growth supplement (ECGS) (Merck Millipore, Darmstadt, Germany) at 37 °C under 5% CO2 in a 
humidified incubator. Upon reaching 90% confluence, cells were trypsinized with 0.25% (w/v) 
trypsin/1 mM EDTA (Gibco BRL, Gaithersburg, MD, USA) and split for further use. Gelatin type A 
(bloom 110, from porcine skin), EGCG (≥95%), 1-Ethyl-3-(3-dimethyllaminopropyl) carbodiimide 
hydrochloride (EDC), and N-Hydroxysuccinimide (NHS) were purchased from Sigma-Aldrich (St. 
Louis, MO, USA). One percent highly purified sodium hyaluronate (defined molecular weight 
600~1,200 kDa) in 3 mL was obtained from Maxigen (ArtiAid®, Maxigen Co. Ltd., Wu-gu district, 
New Taipei City, Taiwan). H-Gly-Arg-Asp-Ser-Pro-Lys-OH (GRGDSPK) was acquired from MDBio, 
Inc. (Shandong, China). Succinimidyl ester (TAMRA-SE) mixed isomers (a fluorescence dye) and 
5(6)Carboxytetramethyl rhodamine were acquired from Thermo Fisher Scientific (Waltham, MA, 

Figure 1. Schematic illustration of this study. (A) Synthesis of GEH-RGD NPs with EGCG loading
and (B) application in corneal NV treatment as an eye drop formulation. Abbreviation: EGCG:
epigallocatechin-3 gallate, HA: hyaluronic acid, NPs: nanoparticles, RGD: arginine-glycine-aspartic
acid, GE: Gelatin/EGCG self-assembling NPs, GEH: GE NPs with HA surface coating, GEH-RGD: GE
NPs with HA-RGD surface decoration, AFM: atomic force microscope.

2. Materials and Methods

2.1. Reagents and Chemicals

HUVECs were purchased from Bioresource Collection and Research Center (Hsinchu, Taiwan)
and grown in Medium 199 containing 10% fetal bovine serum (Thermo Fisher Scientific, Waltham,
MA, USA) as well as Penicillin-Streptomycin (Life technologies, Eugene, OR, USA) and endothelial
cell growth supplement (ECGS) (Merck Millipore, Darmstadt, Germany) at 37 ◦C under 5% CO2 in a
humidified incubator. Upon reaching 90% confluence, cells were trypsinized with 0.25% (w/v) trypsin/1
mM EDTA (Gibco BRL, Gaithersburg, MD, USA) and split for further use. Gelatin type A (bloom 110,
from porcine skin), EGCG (≥95%), 1-Ethyl-3-(3-dimethyllaminopropyl) carbodiimide hydrochloride
(EDC), and N-Hydroxysuccinimide (NHS) were purchased from Sigma-Aldrich (St. Louis, MO, USA).
One percent highly purified sodium hyaluronate (defined molecular weight 600~1200 kDa) in 3 mL
was obtained from Maxigen (ArtiAid®, Maxigen Co. Ltd., Wu-gu district, New Taipei City, Taiwan).
H-Gly-Arg-Asp-Ser-Pro-Lys-OH (GRGDSPK) was acquired from MDBio, Inc. (Shandong, China).
Succinimidyl ester (TAMRA-SE) mixed isomers (a fluorescence dye) and 5(6)Carboxytetramethyl
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rhodamine were acquired from Thermo Fisher Scientific (Waltham, MA, USA). The topical anesthesia
solution (0.5% Alcaine®) was from Alcon-Couvreur (Puurs, Belgium). Grafco®Silver Nitrate
Applicators were purchased from Medline Industries Inc. (Mundelein, IL, USA). All other reagent-grade
chemicals were from Sigma-Aldrich.

2.2. Preparation of Gelatin/EGCG NPs with Surface HA-RGD-Conjugation (GEH-RGD)

The HA solution (5 mg/mL, 2mL) was added to the EDC solution (38 mg/mL, 1mL) and mixed at
room temperature (RT) for 1 h. Then, 1µL of GRGDSPK peptide in 0.1 M NaHCO3 (10 mg/mL) solution
was added for peptide-HA conjugation [20]. This reaction was kept at 4 ◦C for 72 h. Nonreacting
residues were removed by centrifugation, the purified solution finally was lyophilized, and the dried
power of HA-RGD conjugation was obtained. The identification of conjugation by 1H-nuclear magnetic
resonance (NMR) and Fourier-transform infrared spectroscopy (FTIR) was described in a previous
study [20]. An equal volume of gelatin and EGCG solution (both in 0.44 w/v %) was mixed gently to
form the self-assembly NPs under stirring, named GE hereafter [20,37]. Surface-modified NPs were
then prepared, and 100 µL of HA or HA-RGD was separately added into the GE NP suspension (final
HA concentration, 0.25 w/v %). GE with HA coating on the surface is referred to as GEH hereafter,
and GEH-RGD is the abbreviation for GE with HA-RGD peptide modifications on the surface. A
schematic representation of the preparation process is shown in Figure 1A. The synthesized NPs were
then characterized by dynamic light scattering (DLS) for particle size and zeta potential measurement.
Similar to our previous study [20], the ζ-potential of GE is positive (+18 mV). After applying the HA
coating (GEH), the ζ-potential of GEH became negative (−13 mV) due to the HA possessing carboxyl
groups (–COO−). When HA-RGD was added to the particle surface, a positive ζ-potential of GEH-RGD
(+12.9 mV) was acquired, since the side chain of GRGDSPK peptide present many amide (–NH3

+)
groups on HA-RGD. This is one way to confirm the RGD on the particle surface. The encapsulation
efficiency of EGCG was determined by reacting with cation-radicals of 2,2′-azino-bis (3-ethylbenz
-othiazoline-6-sulfonic acid) diammonium salt (ABTS) (ABTS+, Sigma-Aldrich, St Louis, MO, USA;
Supplemental-1 in Appendix A) [37,38]. The EGCG loading rate in GEH or GEH-RHD NPs was
around 95%. The EGCG loaded NPs prepared from three batches (n = 6) were used in this test. The
morphology of nanoparticles was examined by an MFP-3D atomic force microscope (AFM, Asylum
Research, Santa Barbara, CA, USA) using tapping-mode. GEH-RGD NPs with EGCG and free-form
EGCG were freshly prepared for the experiments.

2.3. Functional Evaluation of GEH-RGD NPs on HUVECs

2.3.1. Tube Formation Assay

HUVECs were treated with EGCG, GEH, and GEH-RGD NP solution (EGCG: 20 µg/mL), and
then seeded on a Matrigel®-coated 96-well plate (Corning, Corning, NY, USA). The morphology of
tube formation was observed and images in each treatment were taken at 9 and 24 h (n = 3). Images
were acquired using an inverted fluorescence microscope (Olympus, IX81, Tokyo, Japan). The branch
points and tubule length were quantified by ImageJ (http://imagej.nih.gov/ij/; provided in the public
domain by the National Institutes of Health, Bethesda, MD, USA).

2.3.2. Gelatin Zymography

HUVECs were treated with EGCG, GEH, and GEH-RGD (20 µg/mL) containing media for 24 h,
and then the media was harvested. Preparation of separating gel included gelatin type A solution, (20
mg/mL, 1% w/v SDS), followed by sample loading and gel running. After gel electrophoresis, separating
gel was incubated in 2.5% Triton X-100-containing incubation buffer for 20 h in an incubator at 37 ◦C.
The gel was then stained 0.05% Coomassie Brilliant Blue G-250 for an hour. After gel destaining, the
gel was photographed, and the gelatinolytic area of each image was quantified by ImageJ (n = 3).

http://imagej.nih.gov/ij/
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2.4. Topical Delivery of NPs in a Mouse Model of Corneal NV

C57BL/6J male mice aged from 8 to 10 weeks were used in this study. The experimental procedure
was performed following the ARVO Statement for the Use of Animals in Ophthalmic and Vision
Research and approved by the Institutional Animal Care and Use Committee (IACUC) of the Taipei
Medical University (IACUC approval no. LAC-10-0289, 9 May 2013). Briefly, mice were anesthetized,
followed by pressing the tip of an applicator containing silver nitrate to the center of the cornea to
generate chemical cauterization. Each mouse only suffered one eye cauterization. The nanoparticles
containing eye drops (GEH or GEH-RGD NPs) were diluted in PBS to adjust the EGCG concentration
to 30 µg/mL for use in this test (Figure 1B). The free drug (EGCG solution) was also prepared in the
same EGCG concentration. Five microliters of tested eye drops were applied to the eye of the mice
once a day for seven days, and PBS topical application was used as vehicle control (n = 6/group). The
burn response and the severity of NV were assessed by a hand-held portable slit lamp (SL-17, Kowa
Company Ltd., Torrance, CA, USA) on anesthetized mice. Four batches of the animal experiment
were performed in this study. Seven days after cauterization, the extent of NV was assessed in the
anaesthetized mice by an ophthalmologist masked to the treatments under a slit-lamp and dissecting
microscope. The cauterized cornea was observed under a hand-hold portable slit lamp and each
quadrant was photographed. The image of the cauterized cornea was then processed using ImageJ
software (http://imagej.nih.gov/ij/) to quantify the NV area through the following steps: 1) remove the
eyeball background and retain the corneal area; 2) use the RGB function to remove a nonred color area
(nonvessel area); 3) calculate the vascular area (in red) among the total corneal area and present it as a
percentage. The area of corneal NV was calculated by averaging the four quadrants of the cornea.

2.4.1. Histopathology Examination of Corneal Sections

Mouse eyes were harvested and fixed in 10% formaldehyde. The extracted eyeballs were embedded
in paraffin and cut into 5-µm-thick sections, deparaffinized and hydrated, and stained with hematoxylin
and eosin (H&E stain). The sections were reviewed and evaluated under a light microscope.

2.4.2. Quantification of VEGF and MMP-9 in Cornea Extraction

Corneal tissues (6 eyeballs/group from two batches) were harvested and homogenized with protein
extraction buffer (Thermo Fisher Scientific). The mixture from each sample was then centrifuged, and
the supernatant was collected. Total protein of cornea lysate was quantified by Bradford assay (p010,
GeneCopoeia, Rockville, MD, USA). An equal amount of total protein (15 µg in 100 µL) from each
sample was used to quantify the VEGF and MMP-9 by ELISA (Quantikine ELISA kits, R&D system,
Minneapolis, MN, USA). This experiment was conducted according to the manufacturer’s protocol.

2.5. Statistical Analysis

All data are shown as mean ± standard deviation (SD) from three independent experiments.
Statistical differences between groups were tested by Student’s t-test or one-way ANOVA using
SPSS 17.0 (SPSS, Inc., Chicago, IL, USA). A probability (p) value less than 0.05 was considered
statistically significant.

3. Results

3.1. Characterization of EGCG-Loaded GEH-RGD NPs

The gelatin/EGCG NPs (GE) were first formed by self-assembling. The surface of NPs was then
decorated with HA or HA-RGD, termed GEH and GEH-RGD, respectively (Figure 1A). The particle
size of GE, GEH, and GEH-RGD was 91.90 ± 44.53, 277.40 ± 73.00, and 158.10 ± 11.06 nm, respectively
(Table 1). The GE presented a positive surface with a zeta (ζ) potential value at 18.4 ± 4.4 mV. The ζ

potential of GEH and GEH-RGD were the opposite. GEH was −13.2 ± 4.1 mV, and GEH-RGD was

http://imagej.nih.gov/ij/
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12.9 ± 4.1 mV. All NPs with low PDI value presented as monodispersed colloidal systems with narrow
size distribution. An image of GEH-RGD acquired from AFM examination (in Figure 1A) revealed
round particle deposition on the surface with no aggregation and proper dispersion.

Table 1. Characterization of variant NPs.

NP’s Group Particle Size (nm) Zeta Potential (mV) PDI

GE 91.90 ± 44.53 18.4 ± 4.4 0.30 ± 0.20

GEH 277.40 ± 73.00 −13.2 ± 4.1 0.38 ± 0.18

GEH-RGD 158.10 ± 11.06 12.9 ± 4.1 ± 0.03

Values represent: mean ± standard division (n = 6); PDI: Poly dispersive index; EGCG: epigallocatechin-3-gallate;
NPs: nanoparticles; RGD: arginine-glycine-aspartic acid; GE: Gelatin/EGCG self-assembling NPs; GEH: GE NPs
with hyaluronic acid (HA) surface coating; GEH-RGD: GE NPs with HA-RGD surface decoration.

3.2. GEH-RGD NPs Inhibit In Vitro Angiogenetic Activity

The in vitro tube formation assay was performed to evaluate the effect of EGCG NPs on
angiogenesis. When HUVECs were cultured on Matrigel, they gradually formed capillary-like tubular
structures which connected to each other, arranging themselves in a mesh-like network (Figure 2A,
control). The network gradually disappeared with time and less capillary structure was observed
when cocultured with variant EGCG formula addition (Figure 2A, EGCG/GEH/GEH-RGD). Almost no
mesh-like structure was found in the GEH-RGD NP-treated cells (Figure 2A). The GEH-RGD-treated
group has a smaller number of branch points (25.3 ± 2.5, Figure 2B) and the shortest tubule length
(5284.3 ± 54.6, Figure 2C) compared with the control group (60.7 ± 4.9; 7896.7 ± 437.6) at 24-hour time
points (*p < 0.05) (Figure 2B,C). Together, these results demonstrate that GEH-RGD NPs can effectively
inhibit angiogenic activity in vitro.
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Figure 2. EGCG NPs inhibit endothelial tube formation. (A) Representative images of HUVECs
cultured on Matrigel at a different time point (EGCG: 20 µg/mL, 100×). The images in each treatment
were taken at 9 and 24 h, and (B) the number of branch points and (C) total length of tubing cells
were quantified (n = 3). *p < 0.05 compared with control. Abbreviation: PBS: Phosphate buffer
saline, EGCG: epigallocatechin-3 gallate, HA: hyaluronic acid, RGD: arginine-glycine-aspartic acid, GE:
Gelatin/EGCG self-assembling.

3.3. GEH-RGD NPs Inhibit MMP-2 and MMP-9 Activities

The formation of corneal NV is closely associated with the activity of MMPs, such as MMP-2
and MMP-9. We examined the effect of EGCG NPs on the activity of MMPs secreted from the treated
HUVECs via gelatin zymography (Figure 3A,B). The gelatinolytic of the control group (only culture
medium) was normalized as 100%. Cells treated by EGCG revealed the gelatinolytic activity of MMP-2
at 90.1 ± 1.6% and MMP-9 at 71.4 ± 2.4%. Conditioned media harvested from GEH-RGD-treated cells
had a lower gelatinolytic activity of both MMP-2 (81.1 ± 1.5%) and MMP-9 (61.1 ± 1%) compared to
cells treated with other groups (*p < 0.05 for control, #p < 0.05 for EGCG). Our results indicate that
GEH-RGD NPs inhibit the activity of MMPs, which contributes to the inhibition of angiogenesis.
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Figure 3. EGCG NPs inhibit activity of MMPs in endothelial cells. (A) Results of gelatin zymography
from culture medium after 24 h incubation with a variant formulation for confirm the MMPs activity.
(B) Quantification of MMP-2 and MMP-9 activities compared with the control group (n = 3). *p < 0.05
compared with control, #p < 0.05 compared with EGCG. Abbreviation: EGCG: epigallocatechin-3
gallate, HA: hyaluronic acid, RGD: arginine-glycine-aspartic acid, GE: Gelatin/EGCG self-assembling
nanoparticles (NPs), GEH: GE NPs with HA surface coating, GEH-RGD: GE NPs with HA-RGD surface
decoration, MMP: metalloproteinase.

3.4. Topical Application of GEH-RGD NPs Suppresses the Corneal NV in a Mouse Model of
Chemical Cauterization

To further investigate whether the above in vitro findings were applicable in vivo, we then
tested the antiangiogenic effect of EGCG, GEH and GEH-RGD NPs in a mouse model of chemical
cauterization-induced corneal NV. The normal cornea was in a transparent and smooth surface, as
seen in Figure 4A. A white or cloudy patch on the center of the cornea accompanied by swelling was
observed immediately after chemical cauterization (Figure 4A, cauterization). Chemical cauterization
results in a growth of new blood vessels from limbus toward the burn scar. Dense ingrown vessels
surrounding the entire eyeball were observed from the corneal limbus to the burning edge in the
PBS (Figure 4A) and EGCG-treated groups acquired on day 7 (Figure 4A, EGCG). In contrast, fewer
and thinner visible NVs were observed in both GEH and GEH-RGD-treated groups (Figure 4A).
Moreover, better corneal transparency with the least amount of vessel formation was found in the
GEH-RGD-treated group compared to other treatment groups.

The quantification of NV areas in the cornea is shown in Figure 4B. The pathological blood vessels
absent in healthy cornea tissue was normalized as 0%. Our results indicate a good therapeutic potential
of GEH-RGD NPs, which shows the lowest NV area (20.7 ± 2.2%. *p < 0.05) compared with PBS (53.2
± 4.5%), while the EGCG- and GEH-treated group had a higher NV area (37.0 ± 10.5% and 40.1 ± 7.1%,
#p < 0.05) (Figure 4G).

We then evaluated the microstructure of corneas after treatment with GEH-RGD NPs. The outer
part of normal mouse cornea is composed of 3–5 layers of epithelium cells, bowman’s membrane, and
stroma (Figure 5A). After chemical cauterization, a thinner corneal epithelium was found in the PBS,
EGCG, GEH and GEH-RGD-treated groups (Figure 5B–E). We observed relatively loose and irregular
structures of stroma and more newly-formed blood vessels in the PBS, EGCG, and GEH-treated groups
(Figure 5B–D). In contrast, the GEH-RGD-treated group showed a relatively normal stroma and reduced
newly-formed vessel formation (Figure 5E). Therefore, these results demonstrate that GEH-RGD NPs
can effectively prevent the development of NV in the cornea after chemical cauterization.
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Figure 4. EGCG NPs inhibit neovessels formation in chemical cauterization-induced corneal
neovascularization (NV). (A) Representative images of normal cornea, cauterized cornea and PBS-,
EGCG-, GEH-, or GEH-RGD-treated cornea on day 7 following chemical cauterization. (B) The area of
blood vessels in the cornea was quantified (n = 6). *p < 0.05 compared with PBS, #p < 0.05 compared with
EGCG and GEH. Abbreviation: PBS: Phosphate buffer saline, EGCG: epigallocatechin-3 gallate, HA:
hyaluronic acid, RGD: arginine-glycine-aspartic acid, GE: Gelatin/EGCG self-assembling nanoparticles
(NPs), GEH: GE NPs with HA surface coating, GEH-RGD: GE NPs with HA-RGD surface decoration.
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Figure 5. Histological assessment of corneal sections after treatment. Representative images of the
central corneal section were depicted on day 7 following chemical cauterization. The development of
fibrovascular proliferation was observed (red arrows). Groups: (A) normal, (B) PBS, (C) EGCG, (D)
GEH, (E) GEH-RGD. Abbreviation: PBS: Phosphate buffer saline, EGCG: epigallocatechin-3 gallate, HA:
hyaluronic acid, RGD: arginine-glycine-aspartic acid, GE: Gelatin/EGCG self-assembling nanoparticles
(NPs), GEH: GE NPs with HA surface coating, GEH-RGD: GE NPs with HA-RGD surface decoration.

3.5. Topical Application of GEH-RGD NPs Attenuates the Expression of VEGF and MMP-9 in the Chemical
Cauterized Corneas

To further elucidate the factors that contribute to the GEH-RGD NP-mediated angiogenesis
inhibition in the cauterized corneas, the protein level of VEGF and MMP-9 protein in the cauterized
corneas were measured by ELISA. Normal corneas showed a concentration of (74.3 ± 4.0 pg/mL) for
VEGF, while the amount of MMP-9 was almost undetectable in corneal tissues. The PBS-treated corneas
showed the highest concentration of VEGF (124.6 ± 3.8 pg/mL) and MMP-9 (7554 ± 1678 pg/mL)
compared to all other treated groups after chemical cauterization (Figure 6A,B). The VEGF level was
significantly reduced in the EGCG- (100.8± 0.8 pg/mL), GEH- (98.1± 1.8 pg/mL) and GEH-RGD-treated
cauterized corneas (79.9 ± 5.0 pg/mL). The VEGF protein in the cauterized corneas with GEH-RGD
NPs treatment was reduced to the level similar to normal corneas (*p < 0.05 compared with control, &p
< 0.05 compared with PBS, #p < 0.05 compared with EGCG, >p < 0.05 compared with GEH; Figure 6A).
Moreover, the MMP-9 level in the cauterized cornea treated with GEH NPs and GEH-RGD NPs were
4762 ± 680 pg/mL and 2800 ± 2326 pg/mL, respectively. In contrast, EGCG solution had no effect
still representing high MMP-9 concentration (7295 ± 1630 pg/mL), similar to the PBS-treated corneas
(Figure 6B). These results indicate that GEH-RGD NPs inhibit corneal NV by inhibiting the production
of VEGF and MMP-9 in chemical-cauterized corneal tissue.
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Figure 6. GEH-RGD NPs inhibit the expression of angiogenic factors in the cauterized cornea. Mice
received chemical cauterization and were treated with PBS, EGCG, GEH NPs, GEH-RGD NPs-contained
eye drops once daily for 7 days. The corneas were harvested and homogenized, and the protein level
of (A) VEGF or (B) MMP-9 were assayed by ELISA (6 eyeballs/group from two batches). (*p < 0.05
compared with control, &p < 0.05 compared with PBS, #p < 0.05 compared with EGCG, >p < 0.05
compared with GEH). Abbreviation: PBS: Phosphate buffer saline, EGCG: epigallocatechin-3 gallate, HA:
hyaluronic acid, RGD: arginine-glycine-aspartic acid, GE: Gelatin/EGCG self-assembling nanoparticles
(NPs), GEH: GE NPs with HA surface coating, GEH-RGD: GE NPs with HA-RGD surface decoration.
MMP: metalloproteinase, VEGF: vascularization endothelium growth factor, ELISA: enzyme-linked
immunosorbent assay.

4. Discussion

The importance of this study lies in the demonstration that RGD-HA conjugation on the
gelatin/EGCG NP surface to target integrin can decrease the angiogenic activity in human endothelial
cells. Our data also suggest that the GEH-RGD NP eye drop formulation is superior to EGCG free
drug and nontargetable GEH NPs, as it can effectively inhibit corneal NV in a mouse model of
chemical injury.

EGCG is a dual-functional agent which has both antiangiogenic and anti-inflammatory
capacity [25,37–41]. EGCG has also been shown to inhibit angiogenesis by regulating endothelial cell
growth, thereby reducing pathological corneal NV [18]. Green tea extract inhibits the angiogenesis
of human endothelial cells through the reduction of expression of VEGFR [42]. Sánchez-Huerta et
al. revealed that the administration of EGCG to the ocular surface can suppress corneal NV due
to its ability to mediate a variety of inflammatory and angiogenic factors such as interleukin-1β,
cyclooxygenase 2 (COX2), VEGF, and MMPs [43]. Our previous study (Chang C.Y et al. 2017, [20]) and
current data suggest that EGCG, GEH, and GEH-RGD NPs can suppress the angiogenesis activity of
HUVECs, especially the GEH-RGD NPs.
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Many eye diseases can be treated by eye drops. The major disadvantages of eye drop dosage
include tear screening, nasolacrimal duct drainage, and corneal tight junction as a barrier that reduces
drug bioavailability in the eyes [33]. The application of a nanoformulation for ocular drug delivery
allows targeted transportation and slow drug release, as well as enhancing drug retention in the eye,
thereby improving the bioavailability of drugs. Positively-charged nanoparticles with a diameter of
250 nm consisting of EGCG with surface decoration by HA resulted in increased tear volume, reduced
inflammatory gene expression, and the restoration of a normal corneal architecture with improving
associated clinical signs [37]. The HA-RGD conjugated gelatin/EGCG NPs were around 160 nm in size,
and the ζ-potential presented a positive value at 12.9 mV (Table 1), which was in a similar range to what
was observed in our previous study, indicating that the synthetic quality for producing GEH-RGD NPs
is stable [20].

Under normal conditions, VEGF promotes endothelial migration and proliferation, which helps
to maintain normal vasculatures by preventing the apoptosis of endothelial cells [43]. Our results have
also demonstrated that EGCG NPs inhibit endothelial cell migration (Supplemental-2 in Appendix A).
However, overexpression of VEGF is associated with several vascular eye diseases such as diabetic
retinopathy [44], corneal NV [2,3], and choroidal NV [45]. For endothelial targeting, cell surface
markers such as P-selectin, E-selectin, vascular cell adhesion molecule-1, and integrin are considered
potential target moieties [46–49]. One of integrin with subunit in αvβ3 type is important in mediating
angiogenesis, blockingαvβ3 function which reduces the blood flow to certain tumors [29–31]. Moreover,
normal epidermis and corneal epithelium lack expression of α5β1 and αvβ3 integrins [27]. Therefore,
targeting RGD would not misrecognize the integrin expression on vascular endothelial cells on the
cornea. According to the specific targeting capacity of RGD [20], our designed GEH-RGD NPs can
be specifically uptaken by human endothelial cells and modulate the angiogenic activities with a
long-lasting effect due to the slow release of EGCG from GEH-RGD [20].

The antiangiogenic effect of GEH-RGD and its underlying molecular mechanism was confirmed
by employing a chemical cauterized mouse model. Chemical injury is a prevalent cause of corneal
NV clinically due to easy vessel observation [50]. In this study, corneal NV was induced by silver
nitrate cauterization to obtain a robust in vivo model for mimicking the clinical condition of corneal
injury. Considering that topical application is the most accessible and least invasive delivery route to
the ocular surface, a GEH-RGD NPs eye drop formulation was designed and manufactured. In this
study, EGCG concentration for the treatment of corneal NV was 30 µg/mL, given once a day for 7
days. Due to the slow release of EGCG from GEH-RGD NPs, only one dose per day can achieve the
therapeutic effect, i.e., inhibiting the formation of new blood vessels. The GEH/GEH-RGD NPs were
synthesized from biocompatible materials, i.e., gelatin and hyaluronic acid; these materials possess
good biocompatibility and prolonged ocular retention time [20,51].

Angiogenesis requires MMPs to dissolve the basement membrane to initial endothelial sprouting.
EGCG was found to decrease VEGF receptor phosphorylation and inhibit the secretion of MMP-2 and
MMP-9 in human endothelial cells [52]. Lee, H.S. et al. reported that EGCG could be an inhibitor of
ocular angiogenesis. They reported that EGCG can attenuate the expression of pro-angiogenic factors
(such as MMP-9 and VEGF) by inhibiting the generation of reactive oxygen species in human retinal
pigment epithelial cells, and block angiogenic activity in human retinal microvascular endothelial
cells [23]. In this study, our results show that GEH-RGD NPs blocked the activity of MMP-2 and
MMP-9 in HUVECs in vitro and reduced the MMP-9 and VEGF proteins in chemical cauterized corneas
in vivo. Interestingly, we did not observe a significant difference in MMP-9 activity between GEH
and GEH-RGD NPs. Since MMP-9 is secreted by a range of cell types, including immune cells and
fibroblasts, GEH NPs can interact with corneal cells and block the MMP-9 activity of the surrounding
cells by releasing EGCG. This noncell type-specific effect of EGCG may also be found in cornea treated
with GEH-RGD NPs. Overall, these data indicate that the mechanism underlying the inhibitory effects
of GEH-RGD NPs was, at least, through the reduction of MMPs and VEGF expression, and that further
antiangiogenesis effect in the damaged cornea was achieved.
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Koh CH et al. evaluated the topical delivery of 0.1% EGCG eye drops 4 times daily for 2
weeks in a rabbit model of silk suture-stimulated corneal NV [53]. They reported that topical
administration of EGCG effectively inhibits corneal vessel formation in rabbits via suppression of
VEGF and COX-2 [53]. In our study, a chemical cauterized mouse model was used and the targetable
nanoformulation, GEH-RGD, as eye drops can effectively inhibit corneal NV with one dosage per day
at a very lower concentration (30 µg/mL, 0.03% w/v). One study using curcumin-loaded polyethylene
glycol-block-polycaprolactone (PEG-PCL) NPs to treat corneal NV in mice with alkaline burned reveals
that this treatment can also successfully decrease vessel formation in the cornea using nano-curcumin
once daily up to 2 weeks [54]. These results suggest that using these specific nanoparticle-encapsulated
drug releasing systems as eye drops can reduce the dosing frequency thanks to the advantages of
nanoparticle interaction with the ocular surface to achieve higher drug bioavailability to effectively
inhibit the formation of vessels.

5. Conclusions

In conclusion, our study confirms the antiangiogenic effects of GEH-RGD NPs in vitro by inhibiting
vascular endothelial cells function. Our data evidence that an eye drop formulation with GEH-RGD
NPs can effectively target corneal vessels and thereby inhibit chemical cauterized-induced corneal NV
by a once-daily treatment. These findings suggest that the topical application of GEH-RGD NPs is a
potential therapeutic approach for the management of corneal NV.
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Appendix A.

Appendix A.1. Supplement 1—The Protocol for EGCG Quantification by ABST+Method

The supernatant with EGCG after centrifugation was assayed by determining unloaded EGCG
content with ABTS+ method. Added 88 µL K2S2O8 solution (0.14 M) into 5 mL of ABTS stock solution
(7 × 10−3 M), this mixture was kept overnight at room temperature for working solution (ABTS+)
preparation. Two microliter EGCG contained sample was added into the 800 µL ABTS+ working
solution reacted for 24 h., then measured the absorbance at 734 nm by Varioskan Flash spectral scanning
multimode reader (Thermo Fisher Scientific, Waltham, MA, USA). The OD value of sample was
compared with the EGCG standard curve to calculate the concentration [38]. The EGCG encapsulation
efficiency (EE) was counted by calculated as the following equation: EE % = (Total amount of EGCG −
Free EGCG)/(Total amount of EGCG) × 100.

Appendix A.2. Supplement 2—Transwell Migration Assay

HUVECs (1.2× 104 cells/well) were seeded in the Transwell®(Corning, Corning, NY, USA) then
putting in a 24-well plate. In the upper chamber, HUVEC cells were incubated with EGCG, GEH
NPs, and GEH-RGD NPs (EGCG: 20 µg/mL) overnight. After migration, cells on top of the transwell
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membrane were removed and the remaining cells pass through the transwell membrane were fixed
with 10% formaldehyde. Nuclei were stained with 4’,6-diamidino-2-phenylindole (DAPI, Thermo
Fisher Scientific, Waltham, MA, USA). Images were acquired using an inverted fluorescence microscope
(Olympus, IX81, Tokyo, Japan) and the number of migrated cells was quantified using ImageJ (n = 3).
Here, it is suggested that GEH-RGD NPs significantly inhibit endothelial migration through the
transwell membrane, less cells nuclei were observed (Figure A1A–D) and counted (Figure A1E,
*p < 0.05 compared with control).

Pharmaceutics 2020, 12, x FOR PEER REVIEW 14 of 17 

 

with 10% formaldehyde. Nuclei were stained with 4’,6-diamidino-2-phenylindole (DAPI, Thermo 

Fisher Scientific, Waltham, MA, USA). Images were acquired using an inverted fluorescence 

microscope (Olympus, IX81, Tokyo, Japan) and the number of migrated cells was quantified using 

ImageJ (n = 3). Here, it is suggested that GEH-RGD NPs significantly inhibit endothelial migration 

through the transwell membrane, less cells nuclei were observed (Figure A1 (A–D)) and counted 

(Figure A1(E), *p < 0.05 compared with control). 

 

Figure A1. EGCG NPs inhibit endothelial cell migration. Representative images of HUVECs invaded 

across the membrane treated by (A) culture medium as control, (B) EGCG solution, (C) GEH NPs, and 

(D) GEH-RGD NPs at EGCG concentration of 20 µg/mL (n = 3). (E) Numbers of invaded cells were 

calculated using ImageJ. *p < 0.05 compared with control, #p < 0.05 compared with GEH. Abbreviation: 

EGCG: epigallocatechin-3 gallate, HA: hyaluronic acid, RGD: arginine-glycine-aspartic acid, GE: 

Gelatin/EGCG self-assembling nanoparticles (NPs), GEH: GE NPs with HA surface coating, GEH-RGD: 

GE NPs with HA-RGD surface decoration, HUVECs: human umbilical vein endothelial cells. 

References 

1. Menzel-Severing, J. Emerging techniques to treat corneal neovascularisation. Eye 2012, 26, 2–12. 

2. Stevenson, W.; Cheng, S.F.; Dastjerdi, M.H.; Ferrari, G.; Dana, R. Corneal neovascularization and the utility 

of topical VEGF inhibition: Ranibizumab (Lucentis) vs. bevacizumab (Avastin). Ocul. Surf. 2012, 10, 67–83. 

3. Gonzalez, L.; Loza, R.J.; Han, K.Y.; Sunoqrot, S.; Cunningham, C.; Purta, P.; Drake, J.; Jain, S.; Hong, S.; 

Chang, J.-H. Nanotechnology in Corneal Neovascularization Therapy—A Review. J. Ocular Pharmacol. 

Ther. 2013, 29, 1–10. 

4. Chang, J.H.; Garg, N.K.; Lunde, E.; Han, K.Y.; Jain, S.; Azar, D.T. Corneal neovascularization: An anti-VEGF 

therapy review. Surv. Ophthalmol. 2012, 57, 415–429. 

5. Shakiba, Y.; Mansouri, K.; Arshadi, D.; Rezaei, N. Corneal neovascularization: Molecular events and 

therapeutic options. Recent Pat. Inflamm. Allergy Drug Discov. 2009, 3, 221–231. 

6. Whitcher, J.P.; Srinivasan, M.; Upadhyay, M.P. Corneal blindness: A global perspective. Bull. World Health 

Organ. 2001, 79, 214–221. 

7. Bachmann, B.O.; Bock, F.; Wiegand, S.J.; Maruyama, K.; Dana, M.R.; Kruse, F.E.; Luetjen-Drecoll, E.; 

Cursiefen, C. Promotion of graft survival by vascular endothelial growth factor a neutralization after high-

risk corneal transplantation. Arch. Ophthalmol. 2008, 126, 71–77. 

8. Feizi, S.; Azari, A.A.; Safapour, S. Therapeutic approaches for corneal neovascularization. Eye Vis. (Lond.) 

2017, 4, 1–10. 

9. Abdelfattah, N.S.; Amgad, M.; Zayed, A.A.; Salem, H.; Elkhanany, A.E.; Hussein, H.; El-Baky, N.A. Clinical 

correlates of common corneal neovascular diseases: A literature review. Int. J. Ophthalmol. 2015, 8, 182–193. 

10. Cope, J.R.; Collier, S.A.; Rao, M.M.; Chalmers, R.; Mitchell, L.; Richdale, K.; Wagner, H.; Kinoshita, B.T.; 

Lam, D.Y.; Sorbara, L.; et al. Contact lens wearer demographics and risk behaviors for contact lens-related 

eye infections—United States, 2014. MMWR Morb. Mortal Wkly Rep. 2015, 64, 865–870. 

Figure A1. EGCG NPs inhibit endothelial cell migration. Representative images of HUVECs invaded
across the membrane treated by (A) culture medium as control, (B) EGCG solution, (C) GEH NPs, and
(D) GEH-RGD NPs at EGCG concentration of 20 µg/mL (n = 3). (E) Numbers of invaded cells were
calculated using ImageJ. *p < 0.05 compared with control, #p < 0.05 compared with GEH. Abbreviation:
EGCG: epigallocatechin-3 gallate, HA: hyaluronic acid, RGD: arginine-glycine-aspartic acid, GE:
Gelatin/EGCG self-assembling nanoparticles (NPs), GEH: GE NPs with HA surface coating, GEH-RGD:
GE NPs with HA-RGD surface decoration, HUVECs: human umbilical vein endothelial cells.
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