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Abstract: Advances in molecular technologies, from genomics and transcriptomics to epigenetics,
are providing unprecedented insight into the molecular landscape of pediatric tumors. Multi-omics
approaches provide an opportunity to identify a wide spectrum of molecular alterations that account
for the initiation of the neoplastic process in children, response to treatment and disease progression.
The detection of molecular markers is crucial to assist clinicians in accurate tumor diagnosis, risk
stratification, disease subtyping, prediction of treatment response, and surveillance, allowing also
for personalized cancer management. This review summarizes the most recent developments in
genomics research and their relevance to the field of pediatric oncology with the aim of generating an
overview of the most important, from the clinical perspective, molecular markers for pediatric solid
tumors. We present an overview of the molecular markers selected based on therapeutic protocols,
guidelines from international committees and scientific societies, and published data.

Keywords: pediatric solid tumors; molecular markers; prognostic and predictive marker; molecular
target for therapy

1. Introduction

Recent decades have witnessed an intensive development of molecular research, which
has contributed significantly to a more complete understanding of the molecular basis
of childhood cancers. The published studies reveal a high heterogeneity of molecular
alterations that account for the initiation of the neoplastic process, response to treatment
and disease progression. These findings clearly indicate that the profile of molecular
changes occurring in childhood malignancies differs significantly from the one observed in
adult cancers. Thus, it is not possible to directly extrapolate the knowledge and experience
with molecular markers from adults to the pediatric population. The differences observed
pertain not only to the molecular basis, but also to the disease itself, its anatomical site and
its histopathological features demanding the development of a different diagnostic and
therapeutic approach for this group of patients.

Knowledge of specific childhood cancer genetic alterations present in tumor cells
(somatic markers) as well as germline alterations is useful throughout the entire diagnostic
and therapeutic process. There are genetic markers specific for histological types of cancer
which are necessary for making a correct diagnosis (a group of diagnostic markers). Fur-
thermore, there are molecular markers that correlate to the tumor’s grade, allowing us to
predict the course of disease and prognosis (a group of prognostic markers) as well as to
predict responses to a specific treatment (a group of predictive markers). Most promising
are the molecular markers for targeted therapies. Extensive research on the biology of
cancers, including their molecular profile, has influenced the current way of practicing
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medicine in the field of cancer diagnosis and treatment as well as the development of the
so-called “personalized or precision medicine”. In recent years, there has been an attempt
to change the paradigm of anticancer treatment, which assumes that the occurrence of
specific molecular alterations may determine the efficacy of the administered treatments
irrespective of the site and histological type of the tumor.

In addition to the changes occurring in the neoplasm itself, which are used as targets
for therapy, alterations identified in the genetic material from patients’ peripheral blood
(germline alterations) are also important. They allow us to determine whether the occur-
rence of a particular cancer is caused by the presence of a molecular defect. If the identified
molecular alteration may have been inherited, assessing its presence in other family mem-
bers enables us to identify individuals at a higher-than-average risk of developing cancer.
These individuals should be screened systematically for early cancer detection. Germline
alterations can also constitute prognostic and predictive markers.

Childhood cancers are rare, but they remain the second-leading cause of death in the
pediatric population. Their incidence is 14–15 cases per 100,000 per year. They account for
about 1–1.5% of cancers in the general population. Solid tumors account for approximately
60% of all childhood malignancies. Their broad spectrum includes [1–3]:

• Central nervous system (CNS) tumors (~20–23% *),
• Neuroblastoma (8–10% *),
• Wilms tumors, (7–8% *),
• Malignant bone tumors, (osteosarcoma and Ewing tumor) (~7% *),
• Soft tissue sarcomas (~7% *),
• Germ cell tumors (3–6% *),
• Hepatoblastoma, rarely hepatocarcinoma (0.5–2% *),
• Retinoblastoma (2.5–3% *),
• Other malignant epithelial neoplasms and malignant melanomas
• Other and unspecified carcinomas.

* of all malignant neoplasms of developmental age
Since the mid-1970s, the cure rates for most pediatric solid tumors have increased by

as much as 50% [4]. At present, more than 80% of children with cancer are cured. These
excellent cure rates are achieved with multidrug chemotherapy combined with surgery
and/or radiotherapy in the case of solid tumors. However, there is not much to offer to
children with refractory or relapsed disease after first- or second-line treatment. For these
patients, innovative and effective medicines are needed.

In recent decades personalized treatments based on molecular markers have been
developed for adults with cancer. Nevertheless, not enough progress has been made
in the development and authorization of targeted therapies for childhood malignancies.
Though molecular markers are routinely used in diagnosis, establishing risk groups in
pediatric oncology, and novel medicinal products are being developed, with some ex-
ceptions, few breakthrough medicines have come to the market for children. Only few
such medicinal products received marketing authorization for the treatment of pediatric
malignancies. Among them are ABL-class inhibitors for Philadelphia positive acute lym-
phoblastic leukemia, anti-CD antibodies for B cell lymphomas, and anti-GD2 antibodies
for children with high-risk neuroblastoma. Recently, Larotrectinib for children with NTRK
fusion solid tumors and Crizotinib for children and young adults with relapsed or refrac-
tory systemic anaplastic large-cell lymphoma received marketing authorization. Phase
2/3 studies with Crizotinib in children and adolescents with recurrent, progressive, and
unresectable inflammatory myofibroblastic tumors are forthcoming.

Moreover, genetic data are lacking on the difficulty to treat refractory or relapsed solid
tumors, limiting our knowledge of the molecular composition of such entities. To further
improve cure rates in pediatric cancer it is essential to continue research and targeted
medicine trials using tumor molecular profiling in children and adolescents.
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This article describes a spectrum of molecular markers of clinical relevance in pediatric
solid tumors. The markers were selected based on therapeutic protocols, guidelines from
international committees and scientific societies, and a review of the current literature.

2. Molecular Markers of Clinical Significance in Childhood Solid Tumors
2.1. Central Nervous System Neoplasms

Central nervous system (CNS) neoplasms are the most common solid tumors in
children and a leading cause of childhood cancer-related deaths. Moreover, out of all
survivors of childhood cancer, patients cured from CNS tumors present with the most
severe treatment-related health conditions. At present, CNS neoplasms are the greatest
challenge for pediatric oncology in its broad diagnostic and therapeutic aspects.

Nevertheless, it is molecularly the best-understood group of childhood solid tumors.
The results of multi-omics research led, amongst other things, to the definition of molecular
subgroups in medulloblastoma, which have solid clinical implications (e.g., the WNT-
activated medulloblastoma is associated with good prognosis and is the subject of de-
escalation therapy trials, reducing late effects of treatment). There are also other CNS
tumors with molecularly defined subgroups.

The clinical validity of molecular markers in diagnostic management has already been
demonstrated in the WHO 2016 classification of central nervous system tumors, and their
role was further emphasized in the guidelines prepared by an international consortium
cIMPACT-NOW (The Consortium to Inform Molecular and Practical Approaches to CNS
Tumor Taxonomy). In the latest WHO 2021 classification of tumors of the CNS, molecular
markers are fundamental for making a proper diagnosis [5].

At the same time, there has been an increase in the number of molecularly targeted
drugs in cancer. The selection of optimal therapy absolutely requires the assessment
of specific molecular alterations (point mutations, amplifications, fusions, chromosomal
rearrangements).

A set of clinically relevant molecular markers for pediatric central nervous system
tumors is provided in Table 1 [5–21].

2.2. Neuroblastoma

Neuroblastoma (NBL) is the most frequent pediatric extracranial tumor originating
from neural crest progenitor cells. It accounts for approximately 10% of all childhood
malignancies and for up to 15% of deaths in children from cancer [22]. It is the most
common cancer diagnosed in children under 12 months of age with a median age at
diagnosis of 17 months [23]. Neuroblastoma can present along the sympathetic nervous
system, with the most common abdominal location in the adrenal gland or sympathetic
chain. It is a heterogenous disease which is reflected in its clinical course of spontaneous
regression, differentiation or rapid progression despite intensive multimodal treatment.
Patients with low- and intermediate-risk neuroblastoma have good prognosis, with cure
rates over 85%, while the survival of children with high-risk disease is less than 50%.

The most significant prognostic factors in NBL are the child’s age at diagnosis, disease
stage [4], tumor histology, DNA ploidy, MYCN amplification status and the presence of
characteristic chromosomal aberrations (Table 2).

Recommendations are based on current therapeutic protocols and diagnostic guide-
lines from the European Neuroblastoma Group (SIOPEN group) and the INRG (Interna-
tional Neuroblastoma Risk Group Biology Committee) [24].

A set of molecular markers clinically relevant for neuroblastoma is provided in
Table 2 [24–28].
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Table 1. Molecular markers—central nervous system tumors of childhood.
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Table 1. Molecular markers—central nervous system tumors of childhood. 

Tumor Type 
Genes/Molecular  

Profiles Characteristically  
Altered 

Diagnostic 
Marker 

Prognostic, Predictive Marker,  
Target for Therapy 

 
Gliomas, glioneuronal tumors, and neuronal tumors 

Pediatric-type diffuse  
low-grade gliomas 

Diffuse astrocytoma,  
MYB- or MYBL1-altered 

MYB  
MYBL1  

IDH-wild type (IDH1, IDH2) 
H3-wild type  

(H3-3A, HIST1H3B, HIST1H3BC) 

+ 
Alterations involving MYB and MYBL1 

genes: 
favorable prognostic factor 

Angiocentric glioma MYB (usually MYB:QKI) + Favorable prognostic factor 

Polymorphous low-grade  
neuroepithelial tumor of the young 

BRAF  
FGFR family + 

Potential targets for tyrosine kinase 
inhibitors  

(depending on the alteration detected) 
Diffuse low-grade glioma,  
MAPK pathway-altered 

FGFR1 
BRAF  + 

Potential targets for tyrosine kinase 
inhibitors  

(depending on the alteration detected) 
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Pediatric-type diffuse  
high-grade gliomas  

Diffuse midline glioma,  
H3 K27-altered 

H3-3A, HIST1H3B, HIST1H3BC: 
p.K28M  

TP53  
ACVR1  

PDGFRA  
EGFR  

EZHIP  

+ 

Pathogenic variants in genes encoding 
histone H3.3 - an unfavorable prognostic 

factor.  
Potential targets for targeted therapy  

(depending on the alteration detected) 

Diffuse hemispheric glioma, H3 G34-mutant H3-3A: p.G35R/V  
TP53  
ATRX 

MGMT 

+ 
MGMT - a favorable prognostic factor 
associated with increased sensitivity to 

temozolomide 

Diffuse pediatric-type  
high-grade glioma,  
H3-wildtype and 
IDH-wildtype 
(subgroups:  
pedRTK1, pedRTK2, pedMYCN) 

IDH-wild type (IDH1, IDH2)  
H3-wild type (H3-3A, HIST1H3B 

HIST1H3BC) 
PDGFRA 
MYCN 
EGFR 

(methylome)  

+ 
Potential therapeutic targets  

(depending on the alteration detected) 

Infant-type hemispheric glioma NTRK1/2/3  
ALK  

ROS1 
MET  

+ 
Potential target for tyrosine kinase 

inhibitors  
(depending on the alteration engraved) 

Circumscribed  
astrocytic  

gliomas 

Pilocytic astrocytoma KIAA1549-BRAF  
BRAF  
NF1 

fusions involving  
NTRK1 and NTRK2 genes 

+ 

Potential targets for tyrosine kinase 
inhibitors  

(depending on the alteration detected) 
KIAA1549-BRAF, BRAF alteration-  

a favorable prognostic factor 
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High-grade astrocytoma with piloid features IDH1/IDH2 - wild type  
EGFR amplification wild type 

MAPK signaling pathway primarily: 
BRAF (mainly fusions),  

NF1 
ATRX  

CDKN2A/B, 
(methylome) 

+ 
Potential targets for tyrosine kinase 

inhibitors  
(depending on the alteration detected) 

Pleomorphic  
xanthoastrocytoma 

BRAF  
CDKN2A/B + 

Potential targets for tyrosine kinase 
inhibitors  

(depending on the alteration detected) 
Subependymal giant cell  
astrocytoma 

TSC1 
TSC2 

+ Potential targets for mTOR inhibitors 

Astroblastoma,  
MN1-altered 

MN1  
(primarily a fusion with BEND2) + Favorable prognostic factor 

Other Ganglioglioma MAPK signaling pathway:  
BRAF 
RAS 

FGFR1/2 
RAF1 

NTRK2 
NF1 

+ 
Potential targets for tyrosine kinase 

inhibitors  
(depending on the alteration detected) 

Desmoplastic infantile  
ganglioglioma/desmoplastic infantile 
astrocytoma 

MAPK signaling pathway: primarily 
BRAF alterations 

+ 
Potential targets for tyrosine kinase 

inhibitors  
 (depending on the alteration detected) 
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Dysembryoplastic  
neuroepithelial tumor 

FGFR1  + 
Potential targets for tyrosine kinase 

inhibitors 
Rosette-forming 
glioneuronal tumor 

FGFR1  
PIK3CA 

NF1 
+ 

Potential therapeutic targets   
(depending on the alteration detected) 

Myxoid glioneuronal tumor PDFGRA + - 
Diffuse leptomeningeal 
glioneuronal tumor 

MAPK signaling pathway,  
primarily a fusion KIAA1549-BRAF,   

1p structural rearrangements, 
(methylome) 

+ 
Potential targets for tyrosine kinase 

inhibitors  
  (depending on the alteration detected) 

 
Dysplastic cerebellar 
gangliocytoma  
(Lhermitte-Duclos disease) 

PTEN + - 

Extraventricular  
neurocytoma 

IDH-wildtype (IDH1, IDH2)  
FGFR (FGFR1-TACC1 fusion)  

+ - 

Ependymal tumors 

Supratentorial 
ependymoma 

Supratentorial ependymoma,  
ZFTA fusion-positive ZFTA -RELA  + 

Fusion involving the YAP1 gene -  
a favorable  

prognostic factor 
Supratentorial ependymoma,  
YAP1 fusion-positive 

YAP1- MAMLD1  + 
Fusion involving the ZFTA gene -  
an unfavorable prognostic factor 

Posterior fossa 
ependymoma 

Posterior fossa ependymoma, group PFA  global reduction of H3 K27me3  
(methylome)  

+ Unfavorable prognostic factor 

Posterior fossa ependymoma, group PFB H3 K27me3  
(maintaining methylation levels) 

(methylome)  
+ Favorable prognostic factors 
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Spinal ependymoma Spinal ependymoma,  
MYCN-amplified 

NF2  
MYCN  

+ MYCN - an unfavorable prognostic factor 

Choroid plexus tumors  
Choroid plexus carcinoma 

TP53 - 
Unfavorable prognostic factor associated  

with reduced  
indications for radiotherapy 

Embryonal tumors 

Medulloblastomas,  
molecularly defined 

Medulloblastoma,  
WNT-activated 

CTNNB1 
APC  

+ Favorable prognostic factors 

Medulloblastoma,  
SHH-activated and TP53-wildtype 

TP53- wild type 
PTCH1 
SUFU 
SMO 

MYCN 
GLI2 

(methylome)  

+ 
Potential targets for SHH pathway 

inhibitors.  
Unfavorable prognostic factors (MYCN) 

Medulloblastoma,  
SHH-activated and TP53-mutant 

TP53 
PTCH1 
SUFU 
SMO 

MYCN 
GLI2 

(methylome)  

+ 

Potential targets for SHH pathway 
inhibitors.  

Unfavorable prognostic factors (TP53, 
MYCN) 

Medulloblastoma, 
non-WNT/non-SHH 

MYC 
MYCN 
PRDM6 

(methylome)  

+  
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Other CNS 
embryonal  

tumors 

Atypical teratoid/rhabdoid tumor SMARCB1 
SMARCA4 

rearrangements of chromosome 22 
+ 

SMARCB1 - unfavorable prognostic factor, 
SMARCA4 - a standard prognostic factor 

Embryonal tumor with  
multilayered rosettes 

C19MC- DICER1  + - 

CNS neuroblastoma, FOXR2-activated FOXR2  + - 
CNS tumor with BCOR  
internal tandem duplication 

BCOR + unfavorable prognostic factor 

Pineal tumors 
 

Pineoblastoma RB1 
DICER1 

+ - 

Desmoplastic myxoid  
tumor of the pineal region,  
SMARCB1-mutant 

SMARCB1 + - 
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Table 2. Molecular markers—neuroblastoma.
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Table 2. Molecular markers—neuroblastoma. 

Tumor Type 
Genes/Molecular  

Profiles Characteristically Altered 
Diagnostic 

Marker 
Prognostic, Predictive Markers,  

Target for Therapy 

Neuroblastoma 

MYCN (amplification) - 

Unfavorable prognostic factor in patients older 
than 18 months at diagnosis. The presence of 
MYCN gene amplification is associated with a 
significantly higher risk of recurrence and death 
from progression. 

(NCA)—numerical changes in the 
number of chromosomes in 
the genetic material of 
cancer cells  

- 

Diploidy as observed in the genetic material of the 
tumor tissue is associated with an unfavorable 
course of the disease. In infants, hyperploidy is a 
favorable prognostic factor (it is associated with 
good response to chemotherapy). 

(SCA)—segmental chromosomal 
changes most commonly 
involving chromosome 
regions 1p, 1q, 2p, 3p, 4p, 
11q and 17q  

- 
Most frequently observed in advanced stages of 
the disease in older children, unfavorable 
prognostic factors. 

ALK: 
-SNP (most frequent: p.F1174L,  
p.F1245C, p.R1275Q) 
-amplification 
-fusions 

- A potential target for ALK kinase inhibitors, 
unfavorable prognostic factor. 

2.3. Renal Tumors 
2.3. Renal Tumors

Wilms tumor (nephroblastoma, WT) is the most common pediatric renal malignancy,
accounting for over 90% of renal tumors. Other less frequently occurring malignancies of
the kidney include:

• clear cell sarcoma of kidney (CCSK),
• renal cell carcinoma associated with MiTF/TFE translocations,
• malignant rhabdoid tumor of kidney (MRTK),
• congenital mesoblastic nephroma (CMN), and others.

The incidence of Wilms tumor is approximately 7 cases per 1 million children younger
than 15 years of age, accounting for 5–7 percent of all childhood malignancies. WT can
occur in both kidneys (bilateral disease), found in 5–8% of cases. The mean age at diagnosis
is 44 months in unilateral cases and 31 months for bilateral cases of Wilms tumor. Wilms
tumor is rare in patients older than age 15. A total of 1.5% of cases occur in related
family members. Approximately 5% of WTs are associated with known constitutional
predisposition syndromes.

Pathogenic changes in suppressors that regulate growth, differentiation and prolifera-
tion of embryonic kidney tissue play an essential role in the pathogenesis of this cancer.
Alterations in WT1, CTNNB1 or AMER1 (WTX) genes are observed in about one-third of
Wilms tumor cases [29,30]. Other important genes that regulate miRNA processing, such
as DROSHA, DGCR8, DICER1 and XPO5, are also involved [31–34]. The third important
group consists of certain genes, the expression of which plays a significant role in the early
stages of kidney development, such as SIX1 i SIX2, EP300 (CREBBP), MLLT1, BCOR and
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MYCN. Alterations in the TRIM28 gene are associated with the epithelial subtype of Wilms
tumor [35]. In anaplastic Wilms tumors, the presence of TP53 gene alterations is noted.
An observed loss of heterozygosity within chromosome regions 1p and 16q as well as an
increase in the amount of genetic material within chromosome 1q are associated with an
unfavorable prognosis [36–38].

Recommendations are based on guidelines from two groups: Children Oncology
Group (COG), continuing work of The National Wilms Tumor Study Group (NWTS) and
The International Society of Paediatric Oncology-Renal Tumors Study Group (SIOP-RTSG),
as well as the UMBRELLA therapeutic protocol and literature data [39–42].

A set of molecular markers clinically relevant for pediatric renal tumors is listed in
Table 3 [35–37,43–47].

Table 3. Molecular markers—renal tumors of childhood.
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relies on clinicopathological and radiological correlation. The recommended molecular 
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Ewing sarcoma and chondrosarcoma, determination of the status of pathogenic variants 
in the H3F3A gene that are relevant for the diagnostics of giant cell tumor of soft tissue, as 
well as assessment of the presence of MDM2, PRIM1, and CDK4 amplifications to differ-
entiate lower grade osteosarcoma. The standard was prepared based on the current liter-
ature data [48–51]. 

A set of molecular markers clinically relevant for malignant bone tumors of child-
hood is listed in Table 4 [4,50–59]. 

  

2.4. Malignant Bone Tumors, including Osteosarcoma and Ewing Sarcoma

Malignant bone tumors account for 6% of all childhood malignancies. The estimated
incidence rate is 0.8 per million. The most common are osteosarcoma (56%), followed by
Ewing sarcoma (34%) and chondrosarcoma (10%). The diagnosis of primary bone tumors
relies on clinicopathological and radiological correlation. The recommended molecular
assays include among others assessment of the presence of translocations characteristic of
Ewing sarcoma and chondrosarcoma, determination of the status of pathogenic variants in
the H3F3A gene that are relevant for the diagnostics of giant cell tumor of soft tissue, as well
as assessment of the presence of MDM2, PRIM1, and CDK4 amplifications to differentiate
lower grade osteosarcoma. The standard was prepared based on the current literature
data [48–51].

A set of molecular markers clinically relevant for malignant bone tumors of childhood
is listed in Table 4 [4,50–59].
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Table 4. Molecular markers—malignant bone tumors.
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Osteosarcoma 

TP53  
RB1 

8q21-24 (amplification)  
MDM2 (amplification) 

extensive and comprehensive  
chromosomal rearrangements 

+ 

Ewing sarcoma 

t(11;22)(q24;q12) 
EWSR1-FLI1 

t(21;22)(q12;q12) 
EWSR1-ERG 

t(2;22)(q33;q12) 
EWSR1-CREB1 
t(7;22)(p22;q12) 
EWSR1-ETV1 

t(17;22)(q12;q12) 
EWSR1-E1AF 

inv(22)(q12;q12) 
EWSR1-ZSG 

t(16;21)(p11;q22) 
FUS-ERG 
and others 

+ 

Chondrosarcoma 

HEY1-NCOA2 
t(1;5)(q42;q32) 
RF2BP2-CDX1 

IDH1  
IDH2 
TP53  

+ 

Giant cell tumor of soft tissue 
H3F3A 
HRAS 
TP53 

+ 
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set with p.L122R MYOD1 gene pathogenic variant. The presence of MYOD1 alteration is 
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2.5. Soft-Tissue Sarcomas (STS)

Soft-tissue sarcomas are a heterogeneous group of malignant neoplasms that arise
from embryonic mesenchymal and neuroectodermal tissue. They include neoplasms of
muscle, connective and vascular tissue. Most cases occur in children aged 2–6 years and
adolescents older than 12 years. The incidence rate, regardless of gender, ranges from
0.2–1.0/100,000 per year.

The most common STS in the pediatric group (70%) is rhabdomyosarcoma (RMS), with
the age of onset usually before 10 years. The most common type of RMS is embryonal RMS.
However, it is important to identify the alveolar RMS subtype for therapeutic management
due to its worse prognosis. Recently, sclerosing and spindle cell rhabdomyosarcoma was
separated as a stand-alone pathologic entity, in which two subtypes are molecularly defined:
the infantile subset with VGLL2, TEAD1 and SRF fusion as well as the subset with p.L122R
MYOD1 gene pathogenic variant. The presence of MYOD1 alteration is associated with
poor outcomes and response to therapy [60].

The remaining neoplasms belong to the non-rhabdomyosarcoma soft tissue sarcoma
NRSTS group, which is more common in older children and young adults. Synovial
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sarcoma and MPNST (malignant peripheral nerve sheath tumor) are the most common
neoplasms in this group. Other pathological entities are much less prevalent in children.

The recommendations were prepared based on the current literature data. A set of
clinically relevant molecular markers for pediatric soft tissue sarcomas is provided in
Table 5 [4,58,59,61].

2.6. Germ Cell Tumors

Germ cell tumors (GCTs) are derived from germ cells at different stages of their
differentiation. They present a wide variety of site, histologic, and biological diversity.
GCTs account for approximately 3–6% of all malignancies in children. The most common
age of onset is between 1 and 6 years. Patients with GCT have good prognosis with cure
rates over 85%.

Currently, the recommended molecular assays for germ cell tumors include karyotyp-
ing of patients with symptoms of gonadal dysgenesis, gonadoblastoma and mediastinal
tumors (for boys) and bilateral ovarian tumors (for girls), in order to detect/rule out the
presence of genetic syndromes such as Turner, Swyer, Klinefelter, Fraser, Denys-Drash and
others. The literature data also indicate the presence of somatic rearrangements involving
chromosomes 1, 6, 11, 12, 16, 20, and 22, the clinical significance of which is currently
unknown.

The standards were developed following the guidelines of the French TGM-95 protocol
(1995), protocols elaborated by the international expert consortium MaGIC-Malignant Germ
Cell International Collaborative and literature data [62].

2.7. Liver Tumors

The most common pediatric liver tumor is hepatoblastoma. The incidence of hepato-
blastoma is 2–3 cases per 1 million children under 15 years of age; however, approximately
98% of all cases occur in children under 5 years of age. The mean age at diagnosis is
18 months [63]. Survival rates for children with hepatoblastoma exceed 80%. Molecular
alterations reported in hepatoblastoma primarily involve genes, the protein products of
which regulate the WNT and NF-κB pathway. Thus, the most common somatic alterations
are those in genes: CTNNB1 (80–90%), APC (2–3%), AXIN1, AXIN2 and PIK3CA as well
as TERT (2–6%) and NFE2L2 (5–10%) [63–69]. The results of chromosomal rearrangement
analysis indicate that this group of cancers has a higher rate of somatic rearrangements
within chromosomes 1, 2, 8, and 20. However, the clinical significance of their occurrence
is still unknown [64,65,70]. One of the objectives of the Pediatric Hepatic International
Tumor Trial (PHITT (NCT03017326)), which has been running since 2017, is to determine
the clinical significance of molecular findings including complete genomic, transcriptomic,
and epigenomic profiling for hepatoblastoma patients [71].

Other hepatic tumors of childhood include: hepatocellular carcinoma (HCC) which is
very rarely diagnosed in children, usually in older patients (10–14 years), but has been also
found in children younger than 5 years of age. The prognosis is dismal, after conservative
surgical treatment (30% of children achieving 3-year survival). Liver transplantation in
children with HCC contributed to the improvement of overall survival (>70%). The most
frequently reported somatic alterations in this cancer are alterations in the TERT and
TP53 genes (60% and 25–30%, respectively); however, the molecular background is still
unknown [72,73];

• undifferentiated embryonal sarcoma of the liver (UES) which is a rare liver tumor with
onset in children mostly aged between 6 and 10 years. The molecular background
of this neoplasm is not fully understood; however, according to literature data, the
characteristic features of this neoplasm comprise frequent and extensive chromosome
rearrangements, also in the form of chromothripsis [74]. Additionally, alterations were
observed within the 19q13.4 region, including a t(11;19) (q13;q13.4) translocation and
overexpression of the C19MC region (miRNA cluster). The presence of TP53 gene
alterations was also observed [75–78].



Cells 2022, 11, 1238 14 of 33

Table 5. Molecular markers—soft tissue sarcomas.
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Rhabdomyosarcoma 
Alveolar 

t(2;13)(q35;q14) 
PAX3-FOXO1 

t(1;13)(p36;q14) 
PAX7-FOXO1 
t(2;2)(q35;p23) 
PAX3-NCOA1 
t(X;2)(q35;q13) 

PAX3-AFX 

+ 

Rhabdomyosarcoma 
Embryonal 

loss of heterozygosity 11p15,  
trisomy 2, 8, 11, 12, 13 and 20 

pathogenic variants  
in RAS pathway genes  

(NRAS, KRAS, HRAS, NF1, FGFR4) 

+ 

Rhabdomyosarcoma 
Sclerosing and spindle cell 

VGLL2, TEAD1, SRF fusion 
MYOD1 (p.L122R) + 

Synovial sarcoma 

t(X;18)(p11,q11)  
SS18-SSX1,  
SS18-SSX2,  
SS18-SSX4 

+ 

Malignant peripheral nerve 
 sheath tumor 

complex chromosomal aberrations, 
pathogenic alterations  

in SUZ12 and EED genes,  
NF1 inactivation  

+ 

Alveolar soft-part sarcoma 
t(X;17)(p11;q25) 

ASPL(ASPSCR1)-TFE3 + 

Angiomatoid fibrous histiocytoma 

t(12;16)(q13:p11)  
FUS-ATF1  

t(2;22)(q33;q12)  
EWSR1-CREB1  

t(12;22)(q13;q12)  
EWSR1-ATF1 

+ 

BCOR—rearranged sarcoma 

inv(X)(p11.4p11.22) 
BCOR-CCNB3 
t(X;4)(p11;q31) 
BCOR-MAML3 
t(X;22)(p11;q13) 
ZC3H7B-BCOR 

+ 

CIC—rearranged sarcoma 

t(4;19)(q35;q13) 
t(10; 19)(q26;q13) 

CIC-DUX4 
t(X;19)(q13;q13.3) 

CIC-FOXO4  

+ 

Clear cell sarcoma t(12;22)(q13;q12)  
EWSR1-ATF1 

+ 
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t(2;22)(q33;q12) 
EWSR1-CREB1 

Dermatofibrosarcoma protuberans 

t(17;22)(q21;q13)  
COL1A1-PDGFB, 
ring chromosome 

r(17;22) 

+ 

Desmoid-type fibromatosis 
5q21 loss,  

trisomy 8, 20,  
pathogenic alterations in CTNNB1 gene 

+ 

Desmoplastic small round  
cell tumor 

t(11;22)(p13;q12)  
EWSR1-WT1 + 

Dedifferentiated Liposarcoma 

ring and marker chromosome, 
 

12q13-15: MDM2, CDK4  
region amplification  

+ 

Epithelioid sarcoma 

deletion 22q 
SMARCB1 

t(8;22)(q22;q11) 
t(10;22) 

+ 

Epithelioid hemangioendothelioma 

t(1;3)(p36;q25), 
WWTR1-CAMTA1, 

t(X;11)(p11;q22) 
YAP1-TFE3 

+ 

Extraskeletal myxoid chondrosarcoma 

t(9;22)(q22;q12) 
EWSR1-NR4A3 
t(9;17)(q22;q11) 

TAF15 (TAF2N)-NR4A3 
t(9;15)(q22;q21) 
TCF12-NR4A3 
t(3;9)(q11;q22) 

TFG-NR4A3 fusion 
t(9;17)(q22;q11) 

RBP56-NR4A3 fusion 

+ 

Giant cell fibroblastoma 
t(17;22)(q22;q13)  
COL1A1-PDGFB + 

Infantile fibrosarcoma 

t(12;15)(p13;q25) 
 ETV6-NTRK3, 
t(2;15)(p21;q25) 
EML4-NTRK3, 
LMNA-NTRK1, 

1q deletion, 
trisomy 8, 11, 17, 20 

+ 

Inflammatory myofibroblastic tumor 

Translocations involving  
the 2p23 region; 

fusions involving the ALK gene  
(with multiple partner genes) 

t(3;6)(q12;q22) 
TFG-ROS1 

+ 

Leiomyosarcoma Complex aberrations,  
frequently with 1p deletion 

+ 

Lipoblastoma t(7;8) (q21q12) + 
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Low-grade fibromyxoid sarcoma 
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t(11;16)(p11;p11)  
FUS-CREB3L1 

+ 

Mesenchymal chondrosarcoma 
t(8;8)(q13;q21)  
HEY1-NCOA2 + 

Myoepithelioma 

t(6;22)(p21;q12)  
EWSR1-POU5F1  
t(1;22)(q23;q12)  
EWSR1-PBX1 

(19;22)(q13;q12) 
EWSR1-ZNF444  

+ 

Myxoid round cell liposarcoma 

t(12;16)(q13;p11)  
FUS-DDIT3  

t(12;22)(q13;q12)  
EWSR1-DDIT3 (CHOP)  

+ 

Myxoinflammatory fibroblastic sarcoma t(1;10)(p22;q24) 
TGFBR3/MGEA5 
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Myxofibrosarcoma ring chromosome + 

Solitary fibrous tumor inv(12)(q13q13) 
NAB2-STAT6 

+ 

Undifferentiated embryonal sarcoma of the liver  t(11;19)(q13,q13)  
MALAT1-MHLB1 

+ 

2.6. Germ Cell Tumors 
Germ cell tumors (GCTs) are derived from germ cells at different stages of their dif-

ferentiation. They present a wide variety of site, histologic, and biological diversity. GCTs 
account for approximately 3–6% of all malignancies in children. The most common age of 
onset is between 1 and 6 years. Patients with GCT have good prognosis with cure rates 
over 85%.  

Currently, the recommended molecular assays for germ cell tumors include karyo-
typing of patients with symptoms of gonadal dysgenesis, gonadoblastoma and mediasti-
nal tumors (for boys) and bilateral ovarian tumors (for girls), in order to detect/rule out 
the presence of genetic syndromes such as Turner, Swyer, Klinefelter, Fraser, Denys-
Drash and others. The literature data also indicate the presence of somatic rearrangements 
involving chromosomes 1, 6, 11, 12, 16, 20, and 22, the clinical significance of which is 
currently unknown. 

The standards were developed following the guidelines of the French TGM-95 pro-
tocol (1995), protocols elaborated by the international expert consortium MaGIC-Malig-
nant Germ Cell International Collaborative and literature data [62].  

2.7. Liver Tumors 
The most common pediatric liver tumor is hepatoblastoma. The incidence of hepato-

blastoma is 2–3 cases per 1 million children under 15 years of age; however, approximately 

The diagnostic standards for hepatoblastoma according to the International Childhood
Liver Tumors Strategy Group (SIOPEL) were included in forming these guidelines. A set of
clinically relevant molecular markers for hepatic tumors of childhood age is provided in
Table 6 [64,70,78–80].

Table 6. Molecular markers of liver tumors.
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Table 6. Molecular markers of liver tumors. 

Tumor Type Genes/Molecular Profiles 
Characteristically Altered 

Diagnostic 
Marker 

Prognostic, Predictive 
Markers 

Hepatoblastoma 

CTNNB1 + - 
APC +/- - 

NFE2L2 - unfavorable  
prognostic factor 

Undifferentiated embryonal sarcoma of 
the liver (UES) 

t(11;19)(q13;q13.4) + - 
the C19MC region amplification + - 

Malignant rhabdoid tumor of the liver SMARCB1 + - 

2.8. Retinoblastoma 
Retinoblastoma is the most common primary malignant intraocular cancer in chil-

dren and the second most common cancer of the eye in all age groups after choroidal 
melanoma. It accounts for 3% of all childhood tumors. The number of cases ranges from 
1 in 14,000–1 in 18,000 live births [3,81]. The following forms of retinoblastoma are distin-
guished as: 
• bilateral or multifocal (25–30% of cases, hereditary form),  
• unilateral or unifocal (70–75% of cases, sporadic form),  
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2.8. Retinoblastoma

Retinoblastoma is the most common primary malignant intraocular cancer in children
and the second most common cancer of the eye in all age groups after choroidal melanoma.
It accounts for 3% of all childhood tumors. The number of cases ranges from 1 in 14,000–1
in 18,000 live births [3,81]. The following forms of retinoblastoma are distinguished as:

• bilateral or multifocal (25–30% of cases, hereditary form),
• unilateral or unifocal (70–75% of cases, sporadic form),
• trilateral form, in which the presence of bilateral disease is accompanied by an embry-

onic intracranial tumor (pineoblastoma) localized in the midline (4%—only in children
with the hereditary form of the disease).

Most cases are diagnosed between the ages of 1 and 3 years. The bilateral form of
retinoblastoma is diagnosed earlier, before the age of 1. Rarely, the disease is diagnosed
after the age of 5 years.

This cancer is associated with high (85–95%) penetrance RB1 gene alterations [81].
There are recent reports of molecular alterations in retinoblastoma patients in genes other
than RB1—Table 7 [82–85].

Table 7. Molecular markers—retinoblastoma.
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of the eye originating from melanocytes. The incidence is 1 case per 1 million children 
under 15 years of age. In the pediatric group, melanoma can present with one of three 
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2.9. Melanoma

Melanoma is a malignant neoplasm of the skin, mucous membranes, or the choroid of
the eye originating from melanocytes. The incidence is 1 case per 1 million children under
15 years of age. In the pediatric group, melanoma can present with one of three types:

• Spitzoid melanoma (SM), the most common form,
• Melanoma that arises from a congenital melanocytic nevus (CMN)
• Classic melanoma (“adult-type melanoma”), most similar in terms of causes and risk

factors to melanoma diagnosed in adults.

Most commonly, melanoma is associated with molecular changes in genes that regulate
the MAPK pathway. The recommendations were prepared following the current literature
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data. A set of molecular markers clinically relevant for childhood melanoma is provided in
Table 8 [86–91].

2.10. Ovarian Cancers

The occurrence of ovarian cancer in girls may be associated with syndromes such as
DICER1 or RTPS (rhabdoid tumor predisposition syndrome); therefore, both germ cell and
somatic alterations are also observed in DICER1 (sertoli-Leydig cell tumors) and SMARCA4
(primary small cell carcinoma of the ovary, hypercalcemic type-SCCOHT) (Table 9) [92].

Table 8. Molecular markers—melanoma.
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BRAF, MAPK, MET, RET genes + potential therapeutic targets  
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homozygous deletion of the 9p21 region + unfavorable prognostic factor 
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BRAF (most commonly p.V600E) + potential therapeutic targets  
(depending on the alteration 

detected) 
TERT (promoter changes) + 

segmental rearrangements within chromosomes - 

2.10. Ovarian Cancers 
The occurrence of ovarian cancer in girls may be associated with syndromes such as 

DICER1 or RTPS (rhabdoid tumor predisposition syndrome); therefore, both germ cell 
and somatic alterations are also observed in DICER1 (sertoli-Leydig cell tumors) and 
SMARCA4 (primary small cell carcinoma of the ovary, hypercalcemic type-SCCOHT)  
(Table 9) [92]. 

  

Table 9. Molecular markers—ovarian cancers.
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Sertoli–Leydig cell tumors DICER1 + - 
Primary small cell carcinoma of the 

ovary, hypercalcemic type, SCCOHT SMARCA4 + - 

3. Targeted Treatments for Pediatric Solid Tumours 
Treatments for pediatric malignancies have changed vastly over the last several dec-

ades and cure rates now reach over 80%. However, there are still children with uncurable 
malignancies and those who are cured experience treatment related chronic health condi-
tions. The progress in the field of molecular biology, the ability to analyze tissue on ge-
nome-wide scales, to identify cancers with specific gene alterations with the intent to de-
velop novel targeted treatments has created new opportunities to further improve sur-
vival of childhood cancer patients and their quality of life. To date the use of targeted and 
immune- therapies in children has been limited. Despite many obstacles of drug develop-
ment in pediatric oncology some medicinal products have come to the market and are 
used in front-line treatment. There are ongoing pediatric phase I/II biomarker-driven tri-
als in most difficult to treat solid tumors in children. Table 10 presents selected targeted 
treatments authorized or in development. 

3. Targeted Treatments for Pediatric Solid Tumours

Treatments for pediatric malignancies have changed vastly over the last several
decades and cure rates now reach over 80%. However, there are still children with uncur-
able malignancies and those who are cured experience treatment related chronic health
conditions. The progress in the field of molecular biology, the ability to analyze tissue
on genome-wide scales, to identify cancers with specific gene alterations with the intent
to develop novel targeted treatments has created new opportunities to further improve
survival of childhood cancer patients and their quality of life. To date the use of targeted
and immune- therapies in children has been limited. Despite many obstacles of drug
development in pediatric oncology some medicinal products have come to the market and
are used in front-line treatment. There are ongoing pediatric phase I/II biomarker-driven
trials in most difficult to treat solid tumors in children. Table 10 presents selected targeted
treatments authorized or in development.
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Table 10. Selected targeted treatments for pediatric solid tumours—authorized or under development.
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Specific Gene 
Mutation/Alteration 

Targeted Treatment Development Phase Clinical Trial 
Identifier 

Target Population 

ALK alterations: 
-fusions 
-point mutations 

AKL- inhibitors: Phase I/II NCT00939770 
Anaplastic lymphoma kinase (ALK) positive tumors, 

relapsed or refractory solid tumors or anaplastic large cell lymphoma, 

Crizotinib 

Phase II/III NCT03874273 inflamatory myofibroblastic tumor 

Phase III NCT03126916 neuroblastoma 

Phase II NCT02034981 
patients harboring an alteration on  

ALK, MET or ROS1 

Ensartinib Phase II NCT03213652 
Relapsed or refractory advanced solid tumors, Non-Hodgkin 

lymphoma, or histiocytic disorders with ALK or ROS1 alterations 

Anti-CD 20 antibody Rituximab Authorized - Mature B cell Lymphoma 

Anti-GD 2 antibody Dinutuximab Authorized - Neuroblastoma 
Anti-CD-30 antibody Brentuximab 

Vedotin 
Phase III 

NCT02166463 
NCT01979536 

Hodgkin Lymphoma 
ALCL 

BRAF alterations:  
- point mutations 
(including p.V600E) 
- Fusions 

(KIAA1549:BRAF) 

Dabrafenib Phase I/II NCT01677741 
Advanced BRAF V600 mutation-positive  

solid tumors 

Dabrafenib + 
Trametinib 

Phase II NCT02684058 
BRAF V600 mutation positive low grade glioma or relapsed or 

refractory high grade glioma 
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Vemurafenib Phase II NCT03220035 

Relapsed or refractory advanced solid tumors, Non-Hodgkin 
Lymphoma, or histiocytic disorders with BRAF V600 mutations, 

Langerhans cell histiocytosis (LCH),  
and other histiocytic disorders. 

Cobimetinib Phase II NCT04079179 
Refractory langerhans cell histiocytosis (LCH), and other histiocytic 

disorders. 

Trametinib Phase II NCT03363217 
Pediatric neuro-oncology patients with refractory tumor and 

activation of the MAPK/ERK pathway 

Selumetinib Phase III NCT04576117 Recurrent or progressive low-grade glioma 

CDKN2A/B deletion 

Palbociclib Phase II NCT03526250 
Rb positive advanced solid tumors,  

Non-Hodgkin Lymphoma, or histiocytic disorders with activating 
alterations in cell cycle genes 

Ribociclib with 
Everolimus 

Phase I NCT03387020 Recurrent or refractory malignant brain tumors 

EZH2 alterations Tazemetostat Authorized - Epithelioid sarcoma ≥16 years 
FGRF alterations 

Erdafitinib Phase II NCT03210714 
Patients with relapsed or refractory advanced solid tumors, Non-

Hodgkin lymphoma, or histiocytic disorders with FGFR alterations 

H3-3A, HIST1H3B,  
HIST1H3BC 
point mutation 

Panobinostat Phase I NCT02717455 DIPG (H3K27M) 

Vorinostat Phase II NCT02035137 Neuroblastoma 

GD2 CART-cell Phase I NCT03635632 Relapsed or refractory neuroblastoma and other GD2 positive cancers 

LSD1 Seclidemstat Phase I NCT03600649 Ewing or Ewing-related sarcomas 
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MEK alterations 
Cobimetinib Phase I/II NCT02639546 

Gliomas, sarcomas, neuroblastoma, melanoma, MPNST, rhabdoid 
tumors, including atypical teratoid/rhabdoid tumor (AT/RT),  

NF1-associated tumors or RASopathy-associated tumors 

Selumetinib 
Phase III NCT04576117 Recurrent or progressive low-grade glioma 

Authorized - Plexiform neurofibroma 
MET: 

-amplifications 
-fusions 

Volitinib Phase I NCT03598244 Recurrent or refractory primary CNS tumors 

mTOR pathway genes 
alterations, including 
TSC1, TSC2 

Everolimus Authorized - Subependymal giant cell astrocytoma (SEGA)  

Temsirolimus Phase III NCT02567435 Rhabdomyosarcoma 

NTRK gene fusions 
Vitrakvi/Larotrectinib 

Entrectinib Authorized - 
Treatment of adult and paediatric patients with solid tumours that 

display a neurotrophic tyrosine receptor kinase  
(NTRK) gene fusion 

PARP alterations Olaparib Phase I NCT04236414 Pediatric solid tumours 

PD-1/PD-L1 Pembrolizumab Authorized - R/R classic Hodgkin Lymphoma, 
melanoma ≥12 years Ipilimumab Authorized - 

Pembrolizumab Phase I NCT02359565 
Recurrent, progressive, or refractory high-grade gliomas, diffuse 

intrinsic pontine gliomas, hypermutated brain tumors, ependymoma 
or medulloblastoma 

Nivolumab Phase II NCT03173950 
Medulloblastoma, ependymoma, choroid plexus tumors, 

atypical/malignant  
meningioma 
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Table 10. Cont.
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RET alterations 
Selpercatinib Authorized - 

Treatment of adults and adolescents 12 years and older with advanced 
RET-mutant medullary thyroid cancer (MTC) 

ROS1 fusions 
Repotrectinib Phase I/II NCT04094610 

Pediatric and young adult subjects harboring ALK, ROS1, or 
NTRK1/2/3  

Entrectinib Phase I/II NCT02650401 Locally advanced or metastatic solid or primary CNS tumors 

Ensartinib Phase II NCT03213652 
Relapsed or refractory advanced solid tumors, non-hodgkin 

lymphoma, or histiocytic disorders with ALK or ROS1 alterations 

SMARCB1 
-point mutations 
-CNVs 

Tazemetostat Phase I NCT02601937 Rhabdoid tumors, INI1-negative tumors 

SMO alterations 
Vismodegib Phase II 

NCT01878617 
Medulloblastoma SHH subtype 

NCT01601184 

Sonidegib Phase I/II NCT01125800 
Medulloblastoma, advanced pediatric solid potentially dependent on 

the Hedgehog-signaling pathway 

VEGFR, PDGFR 
alterations 

Pazopanib Phase II NCT01956669 Pediatric solid tumors 

Regorafenib Phase II NCT02048371 
Selected sarcoma subtypes: 

(Ewing sarcoma, rhabdomyosarcoma, 
osteosarcoma) 

VEGFR1, VEGFR3, 
FGFR3, FGFR4, PDGFRA 
alterations 

Lenvatinib Phase I/II NCT02432274 Refractory or relapsed solid malignancies 
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4. Germline Alterations

In recent years, we have been witnessing great progress in understanding the molec-
ular profile of childhood cancers and applying this knowledge to clinical practice. This
includes somatic as well as germline alterations. The published findings of different multi-
omics studies further highlight the differences between childhood and adult cancers. The
global number of somatic alterations, as expressed by the Tumor Mutational Burden (TMB),
in childhood malignancies is much lower than in adults. With respect to germline alter-
ations, the opposite is true. The occurrence of childhood cancers is more often determined
by the presence of alterations responsible for genetic syndromes. More than 200 such
syndromes have been identified, and this number is steadily growing. The fact that congen-
ital cancers are also diagnosed underscores the significance of germline alterations in the
pathogenesis of childhood cancers. It is estimated that approximately 7–8% of hematologic
malignancies and solid tumors in children are determined by germline alterations [93].
Furthermore, these data appear to be underestimated since germline mosaicism, which is
difficult to identify, or epigenetic changes, such as loss of imprinting of the 11p15 region or
hypermethylation of the CDKN2A suppressor, are rarely assessed in the routine diagnosis
of cancer.

Assessment of the presence of germline alterations is also important in optimizing
therapeutic management. If patients present with lesions that result from chromosomal
instability or that occur in DNA repair genes, the omittance of radiotherapy or a reduced
radiation dose are recommended. One such example is children with choroid plexus carci-
noma and germline alterations in TP53 gene. Patients with germline RB1 alterations who
underwent radiotherapy have twice the risk of developing secondary cancers compared
with patients who did not receive radiotherapy [94]. The presence of germline alterations
in the NF1 gene in patients with low-grade gliomas is associated with a better prognosis;
hence, the treatment undertaken may be less aggressive [95]. However, patients with
germline alterations in genes belonging to the (MMR mismatch repair system) such as
MLH1, MSH2, MSH6, and PMS2 with brain cancers require more aggressive chemother-
apy [96]. The presence of a germline alterations may also contribute to the earlier cancer
onset. Rhabdoid tumors occur more frequently in patients under 4 years of age; however,
the mean age of onset in patients with germline SMARCB1 alterations is 6 months [97,98].
Therefore, it seems highly appropriate to introduce the assessment of germinal alteration
status into the algorithm of diagnostic and therapeutic management of pediatric cancers.

The following tables (Tables 11 and 12) present selected genetic syndromes associated
with the occurrence of childhood cancers, as well as information about which genes should
be assessed in selected cancers of this age group.
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Table 11. Selected genetic syndromes associated with childhood cancers.
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Syndrome Cancers Gene/Chromosome Region 
Li-Fraumeni sarcomas, leukemias, brain cancers, hepatoblastoma TP53 

Xeroderma pigmentosum melanoma XPA, XPC, DDB2, ERCC2  

Neurofibromatosis type 1 
lymphomas, brain cancers, sarcomas, optic nerve gliomas, meningiomas, Wilms 

tumor, rhabdomyosarcoma NF1, SPRED1 

Ataxia-telangiectasia CNS, GI tumors, leukemias ATM 
Bloom syndrome acute leukemia, GI cancers BLM 

Fanconi anemia acute leukemia, liver tumors 
FANCA, FANCB, FANCC, PALB2  

and others 
Nijmegen syndrome  leukemias, lymphomas, medulloblastoma, glioma, rhabdomyosarcoma NBN 

Beckwith-Wiedemann syndrome nephroblastoma, hepatoblastoma, rhabdomyosarcoma, gonadoblastoma CDKN1C/11p15  
Chromosomal syndromes  

(Down syndrome, Klinefelter syndrome) 
leukemias, CNS tumors trisomy 21, 47XXY 

Familial retinoblastoma retinoblastoma RB1 
Familial Wilms tumor nephroblastoma WT1, WT2 and others 
Familial polyposis coli hepatoblastoma APC, MUTYH 

Cardiofaciocutaneous syndrome (CFC)  acute lymphoblastic leukemia, rhabdomyosarcoma, hepatoblastoma, lymphomas BRAF, MAP2K1, MAP2K2, KRAS,  

Noonan syndrome neuroblastoma, acute lymphatic leukemia, glioma, rhabdosarcoma PTPN11, RAF1, BRAF, SOS1, 
NRAS, CBL  

Costello syndrome rhabdosarcoma, neuroblastoma, fibrosarcoma  HRAS 
Sotos syndrome Wilms tumor, neuroblastoma, hepatoblastoma NSD1 

Von Hippel–Lindau syndrome renal tumors, CNS tumors-especially of the cerebellum, tumors of the adrenal glands, 
and tumors of the retina. 

VHL 

Gorlin syndrome medulloblastoma PTCH1 

Rubinstein–Taybi syndrome medulloblastoma, meningiomas, acute lymphatic leukemia, pheochromocytoma, 
rhabdomyosarcoma 

CREBBP 

Turcot syndrome medulloblastoma, gliomas APC 



Cells 2022, 11, 1238 25 of 33

Table 11. Cont.
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DICER syndrome 
pleuropulmonary blastoma, nephroblastoma, renal and brain sarcomas, thyroid 

adenomas and carcinomas, gonadal tumors DICER1 

Multiple endocrine neoplasia type 1 and 2 adenomas/carcinomas of the endocrine system MEN1 and RET 
Tuberous sclerosis brain and kidney tumors TSC1 i TSC2 

Trisomy 18 hepatoblastoma trisomy 18 
Simpson–Golabi–Behmel syndrome type 1 hepatoblastoma GPC3 

Glycogen storage disorder type 1a, III, IV, VI hepatoblastoma G6PC, AGL, GBE1, PYGL 
Tyrosinemia type 1 hepatocellular carcinoma FAH 
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Table 12. Germline alterations in selected solid tumors in children.
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Tumor Type Gene (MIM Number) 

AT/RT 
SMARCB1 (MIM 601607) 
SMARCA4 (MIM 603254) 

Choroid plexus carcinoma TP53 (MIM 191170) 

Congenital melanocytic nevi  MC1R (MIM 155555) 

Familial melanomas CDKN2A (MIM 600160), 
CDK4 (MIM 123829) 

Glioma of the optic pathway NF1 (MIM 613675) 
Hemangioblastoma VHL (MIM 608537) 

Malignant nerve sheath tumor 
NF1 (MIM 613675), 
TP53 (MIM 191170) 

Medulloblastoma 

APC (MIM 611731) 
BRCA2 (MIM 600185) 
MLH1 (MIM 120436) 
MSH2 (MIM 609309) 
MSH6 (MIM 600678) 
PMS2 (MIM 600259) 
PALB2 (MIM 610355) 
PTCH1 (MIM 601309) 
SUFU (MIM 607035) 
SMOH (MIM 601500) 
TP53 (MIM 191170) 

CREBBP (MIM 600140) 
GLI3 (MIM 175700) 

Meningioma 

NF2 (MIM 607379) 
PTCH1 (MIM 601309) 
PTEN (MIM 601728) 

SMARCB1 (MIM 601607 
SMARCE1 (MIM 603111) 

SUFU (MIM 607035) 
WRN (MIM 604611) 
MEN1(MIM 613733) 

Pineoblastoma DICER1 (MIM 606241) 
RB1 (MIM 614041) 

Schwannoma 
NF2 (MIM 607379) 

PRKAR1A (MIM 188830) 

Schwannomatosis 
LZTR1 (MIM 600574) 

SMARCB1 (MIM 601607) 
Spinal cord ependymoma NF2 (MIM 607379) 
Subependymal giant cell 

astrocytoma TSC1/TSC2 (MIM 605284/191092) 

Neuroblastoma 
PHOX2B (MIM 603851) 

ALK (MIM 105590) 

Hepatoblastoma APC (MIM 611731), 
uniparental disomy at 11p15.5 

Retinoblastoma RB1 (MIM 614041) 
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5. Material and Conditions for Its Preservation for Genetic Testing

The starting point for most oncogenetic tests used is a tumor tissue sample. Formalin
fixation and paraffin embedding (FFPE) is the most common form of tissue preservation;
however, for NGS-based protocols, tissue preservation by freezing is much more beneficial.
In selected tumors (e.g., neuroblastoma), the impression smear of tumor tissue may serve
as the material for genetic assay. To identify germline alterations, the patient’s peripheral
blood, saliva and/or buccal swab samples are also collected in addition to the tumor tissue.

Due to the heterogeneous nature of tumors (particularly neuroblastoma and selected
gliomas), it is recommended that at least two specimens be collected from the respective
tumor tissue. In cases of tumor recurrence and probable changes in the molecular profile of
the relapsed tumor tissue, resampling is indicated.

Each tumor tissue specimen for molecular assay should be evaluated for the percent-
age of tumor cells in the tested specimen. This assessment is routinely performed by a
pathologist. If more than one biological sample is available, the most appropriate sample
should be selected based on the type of molecular assay planned, the availability of the
biological material and the need for it at subsequent stages of diagnostic process.

It is also very important to maintain sterility when collecting material for molecular
assays. NGS methods can detect mosaic-type alterations at very low levels. In cases of
contamination of the specimen with even a very small amount of material from another
patient, false results may be obtained.

6. Future Directions
6.1. Methylation Profile

The rapid development of high-throughput next-generation sequencing methods
has significantly contributed to the understanding of the molecular profile of the most
common pediatric cancers. Today, we know that, on the one hand, these tumors exhibit a
great variety of molecular alterations, but, on the other hand, their total number is small
compared to the number of somatic alterations detected in tumors occurring in adults. This
is reflected very frequently in the low TMB score, which translates into limited applicability
of immunotherapy. Effective immunotherapy can also be limited by the suppressive tumor
microenvironment with relatively few effector cells. Generally, this type of therapy in
pediatric solid tumors still remains in the early stages of development and significant
clinical benefit has yet to be demonstrated.

In contrast, epigenetic changes occupy a special place in the vast spectrum of molecular
alterations that are identified in childhood cancers. It seems that this type of alteration
is crucial for the initiation of carcinogenesis-related processes. A confirmation of this
assumption is the occurrence of different genome DNA methylation patterns in different
tumor subtypes. A unique epigenetic signature that represents both the tumor origin
and the presence of acquired oncogenic alterations affecting chromatin state constitutes
a very promising diagnostic tool for, among others, central nervous system tumors in
children. The classification system developed by German National Cancer Institute (DKFZ)
in Heidelberg, based on the methylome pattern [99] is slowly becoming a routine tool
to accurately classify CNS tumors into distinct molecular subtypes. As a result, it may
improve the accuracy of diagnosis and standardize pathomorphological assessment. This
diagnostic approach is limited by the requirement for specialized equipment, software, and
a large reference database. To address this problem, the DKFZ team developed a free online
tool, Classifier [100], which allows for the processing of data obtained in a given laboratory
and comparing them to a reference database containing the results of methylation profile
analysis from over 2800 cases. An additional advantage of this solution is the ability to
verify the histopathological diagnosis in morphologically ambiguous cases and, in the
future, also the ability to identify new, very rare tumor subtypes, not only of the central
nervous system.
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6.2. Liquid Biopsy

There is a growing number of published studies demonstrating the important role
of liquid biopsy in the diagnostic and therapeutic management of a number of cancers,
including pediatric malignancies. It is a complementary or alternative method to surgical
biopsy, as well as a non-invasive, promising tool for early cancer detection, that may
also overcome problems of tumor accessibility and heterogeneity of tumor tissue. Various
biological fluids, including peripheral blood, urine, cerebrospinal, synovial and ocular space
fluids, can be used to obtain such circulating material as tumor cells (CTCs), tumor DNA
(cfDNA), RNA (cfRNA), proteins and extracellular vesicles (EVs) for diagnostic assays.
Thanks to the advances in technology, it is possible to obtain and analyze such biological
material with increased effectiveness. There are data demonstrating the usefulness of
liquid biopsy in variety of analysis including small- and large-scale mutation analysis, high
throughput sequencing technologies, and analysis of structural or copy number alterations.
From a clinical perspective, the results from liquid biopsy can provide reliable data as to
the status of the disease and allow us to monitor treatment and to evaluate predictive,
prognostic and resistance markers. In some cases, it may be helpful in early detection
of recurrence. Thus, liquid biopsy, although still a relatively new method, appears to
be a significant application for cancer diagnosis and treatment. The results of published
research on neuroblastoma, sarcoma, Wilms tumor, hepatoblastoma and retinoblastoma
appear to be very promising [101]. Nevertheless, the implementation of liquid biopsy
into clinical practice is still to be completed. Its limitations are mainly due to the lack of
standardized, validated methods for such analyses and the rarity and instability of obtained
tumor biomolecules. However, researchers agree that liquid biopsy represents a potentially
major new method that can be used to detect, monitor and treat cancers. Further studies
are required to address the limitations of this technique.

7. Conclusions

The introduction of technologies such as massively parallel DNA sequencing and RNA
sequencing, as well as tools for the interpretation of the vast amounts of data obtained with
these methods, including bioinformatic or crystallographic methods, creates an opportunity
to elucidate the molecular mechanisms of childhood cancers and to develop targeted
therapies. Artificial intelligence methods are also becoming increasingly employed to
design therapeutic algorithms and identify prognostic and predictive markers [102]. The
introduction of monitoring of circulating tumor DNA (ctDNA) using next-generation
sequencing will enable future precise monitoring of treatment. The integration of a broad
spectrum of data from “-omics” studies provides the basis for the development of cancer-
specific classifiers used for precise diagnostics. More novel in vivo and in vitro models
as well as 3D cultures are being developed and used to test drugs specifically dedicated
to pediatric cancers. The aim of all of these efforts is to identify molecular markers and
move them into the clinical setting for more precise diagnosis, risk stratification, and more
effective and less toxic treatment in this therapeutically challenging group of patients.
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