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The development of non-invasive, inexpensive, and effective early diagnosis tests
for gastric and small-bowel lesions is an urgent requirement. The introduction of
magnetically guided capsule endoscopy (MGCE) has aided examination of the small
bowel for diagnoses. However, the distribution of the fecal microbiome in abnormal
erosions of the stomach and small bowel remains unclear. Herein, alternations in
the fecal microbiome in three groups [normal, small-bowel inflammation, and chronic
gastritis (CG)] were analyzed by metagenomics and our well-developed method
[individual-specific edge-network analysis (iENA)]. In addition to the dominant microbiota
identified by the conventional differential analysis, iENA could recognize novel network
biomarkers of microbiome communities, such as the genus Bacteroide in CG and
small-bowel inflammation. Combined with differential network analysis, the network-hub
microbiota within rewired microbiota networks revealed high-ranked iENA microbiota
markers, which were disease specific and had particular pathogenic functions. Our
findings illuminate the components of the fecal microbiome and the importance of
specific bacteria in CG and small-bowel erosions, and could be employed to develop
preventive and non-invasive therapeutic strategies.

Keywords: magnetically guided capsule endoscopy, metagenomics, edge-network analysis, chronic gastritis,
small bowel erosion

INTRODUCTION

Choung and colleagues reported that in the United States, 338 out of 31,255 adult residents were
diagnosed with diseases of the digestive system (Choung et al., 2017). In particular, chronic gastritis
(CG) and small-bowel erosion account for >60% of cases diagnosed by magnetically guided capsule
endoscopy (MGCE) in China (Ding et al., 2019) and South Korea (Lim et al., 2015). Introduction
of MGCE has expanded clinical diagnosis of gastrointestinal diseases, including CG and small-
bowel erosion (Aktas and Mensink, 2012). However, the unbiopsied state, high cost, and time
consumption of MGCE limit its application in diagnoses (Costamagna et al., 2002; Niv and Niv,
2005). Development of non-invasive, effective detection in small-bowel lesions is needed urgently.

Metagenomics using next-generation sequencing (mNGS) is becoming a promising approach
for identifying the microbiome community in human diseases (Wilson et al., 2019). Some
studies have shown an increased ratio of Basidiomycota:Ascomycota, increased proportion of
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Candida albicans, and a decreased abundance of Saccharomyces
cerevisiae in inflammatory bowel disease (IBD) (Sokol et al.,
2017). Significant differences in levels of bacterial genera have
been used to detect atrophic gastritis/intestinal metaplasia,
and gastrointestinal tumors (Coker et al., 2017; Zhang et al.,
2019). mNGS can also be used to distinguish the functions
of the gut microbiome in IBD and irritable bowel syndrome
(IBS) (Vich Vila et al., 2018). Small-bowel microbiota not only
regulate assimilation of the adaptive responses to lipids in
germ-free mice (Martinez-Guryn et al., 2018) but also act by
assessing the small-bowel damage induced by non-steroidal anti-
inflammatory drugs (Otani et al., 2017). However, use of the
fecal microbiome for identification of gastric and small-bowel
abnormalities has not been done.

An accurate clinical diagnosis can enable monitoring,
quantification, and progression of a disease (Zeng et al., 2014; Yu
et al., 2015), and can be realized using sample-specific biomarkers
(Zeng et al., 2016). Previously, we proposed an individual-
specific edge-network analysis (iENA) to detect the early warning
signals or pre-disease state before disease onset (Yu et al., 2017).
Also, we carried out proof-of-concept research on the rewiring
community of intestinal ecosystems by an adjusted iENA method
on the basis of 16S rRNA data (Wang et al., 2018; Yu et al., 2019).

Here, we used the method of computational systems biology
that we had developed to analyze the dominant microbiota and
network on the basis of fecal metagenomics data. We identified
specific bacteria that had key roles in the clinical classification
of erosive lesions of the small bowel and CG that might offer
prevention and non-invasive treatment strategies.

MATERIALS AND METHODS

Ethical Approval of the Study Protocol
The study protocol was approved by the Ethics Committee of
Shanghai Sixth People’s Hospital, which is affiliated with Shanghai
Jiao Tong University (Shanghai, China). Written informed
consent was obtained from all individuals. Personal data were
anonymized and omitted.

Study Enrollment
The study ran at Shanghai Sixth People’s Hospital from May
1, 2017 to September 1, 2018. The individuals who agreed to
complete examinations of MGCE (Ankon Medical Technologies,
Shanghai, China) and mNGS examination of their stools (n = 15)
were recruited. The procedures of enrollment, fecal mNGS,
and MGCE classification were completed independently by
different investigators who were blinded to the results of each
other’s examinations. Fisher’s exact test was used for evaluation
of statistical difference in comparisons between three groups.
p < 0.05 was considered statistically significant.

MGCE and Stool Collection
At least three stool samples were collected from each eligible
individual and stored at−80◦C. All patients underwent intestinal
preparation with an electrolyte solution of polyethylene glycol,
fasted all night, and completed MGCE in the morning.

Healthy individuals (H group) were characterized by an
absence of lesions in the stomach and small bowel through
MGCE. Gastric inflammation (G group) was identified based on
the Updated Sydney System (Dixon et al., 1996). Inflammation
located in one out of three parts of the small bowel (duodenum,
jejunum, and ileum) but not in the stomach was defined as “small
intestinal inflammation” (I group).

We recorded (i) mucosal lesions, such as erosions; (ii)
capillary lesions (angiodysplasias, petechiae); (iii) mucosal
changes (erythema, edema, prominent mucosal folds);
(iv) changes in villi (flat mucosa, coarsened villi); (v)
lymphangiectasias/lymphocellular infiltrates.

DNA Sampling
Samples of total DNA from fecal samples were extracted using a
Fast DNA SPIN extraction kit (MP Biomedicals, Santa Ana, CA,
United States) and stored at −20◦C. The quality and quantity of
isolated DNA were assessed by agarose gel electrophoresis and
a NanoDropTM ND-1000 spectrophotometer (Thermo Fisher
Scientific, Waltham, MA, United States).

mNGS
DNA extracted from fecal samples was used for mNGS.
Metagenomic libraries were constructed with a TruSeqTM DNA
Sample Preparation kit (Illumina, San Diego, CA, United States)
and sequenced at Shanghai Personal Biotechnology (Shanghai,
China) on an Illumina HiSeq system with a 150-bp paired-
end protocol. Reads from each sample were retained and then
merged by megahit (Li et al., 2015) and, if not, matched to
human genome sequences (hg19) using Bowtie 2 (Langmead
and Salzberg, 2012). The remaining results of merging were
contigs of length ≥500 bp. Gene prediction was carried
out based on MetaGeneMark (Noguchi et al., 2006) and
then combined into a gene set. The protein sequences of
genes were clustered to remove redundancy using cd-hit (Li
and Godzik, 2006), with an identity cutoff of 90%, which
resulted in unique gene sets. Reads from each sample were
mapped to obtain their unique gene set. “Gene abundance”
in each sample was the number of reads mapped to each
gene sequence divided by the gene length. The percentage
of gene abundance in the whole gene catalog was called the
“relative abundance.” Diamond (Buchfink et al., 2015) was
introduced to gene alignment and gene annotation in the
National Center for Biotechnology Information-NR database
with an e-value cutoff of 10-fold of the minimum value. Based
on the alignment results, the algorithm of nearest common
ancestors was taken into account for species annotation on
genes. We annotated genes to species with in-house Perl scripts.
The abundance of species in each sample was defined as
the sum of gene abundance annotated to the same species.
Functional classification was carried out by mapping to the
Kyoto Encyclopedia of Genes and Genomes (KEGG) protein
database and Clusters of Orthologous Groups of Proteins (COG)
database (Tatusov et al., 2000) using KEGG Orthology-Based
Annotation System (KOBAS) (Xie et al., 2011) and Diamond,
respectively. Kruskal–Wallis analysis (Segata et al., 2011) was
applied for classification and analyses of differentially expressed
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genes among dissimilar groups (p < 0.05, fdr < 0.05). In addition,
principal component analysis (PCA) was used to analyze and
visualize the sample distribution and discrimination among
different disease groups.

Differential Function of Expressed Genes
We compared any two sets of samples from H, G, and I
groups by the relative abundance of genes. In each comparison,
we removed the genes detected in less than five samples and
continued analysis of abundance for the remaining genes using
the Wilcoxon rank sum test, and the genes with test significance
p < 0.05 were selected (Supplementary Table S1).

For additional analysis of differential function, the genes
annotated in KEGG and COG databases were used for functional
categories. For example, we used the differential genes of the G
and H groups for analysis of hypergeometric distribution with
unique genes as the background. Also, function annotations
with p < 0.05 and fdr < 0.05 were enriched functions.
Conversely, we counted the number of genes annotated in KEGG
and COG functional categories and compared such functional
categories between any two groups of samples by the Wilcoxon
rank sum test. A function with p < 0.05 and fdr < 0.05
was determined to be a significantly differential function
(Supplementary Table S2).

Analysis of Dominant Microbiota and
Networks in Bowel Inflammation and CG
Previously, we proposed an advanced computational framework
(i.e., iENA) to provide a powerful network-analysis tool to
quantify disease progression in an individual patient. Recently,
we implemented an adjusted iENA using samples from healthy
individuals as a network reference due to a limited number
of individual samples and applied it in a proof-of-concept
study on microbiota dynamics (Yu et al., 2019). Here, we
used our approach to analyze the dominant microbiota and
network to quantify different disease states using metagenomics
data in three steps.

Constructing a Microbiota Edge-Network by iENA
After selecting reference samples, we constructed a co-expression
network for one sample with our single-sample measurement
of the Pearson correlation coefficient (sPCC) (Yu et al.,
2017). Because of the absence of a background network for
microbial communities, the top-ranked edges (i.e., one pair
of species/genus) with strong relationships were selected as
the background “nodes” for constructing the subsequent edge-
network, which could consist of a conventional node-network
or microbiota community (Wang et al., 2016; Sung et al., 2017).
Furthermore, we continued quantification of the fourth-order
correlation coefficient for each edge-pair (i.e., two species/genus
pairs) by sPCC (Yu et al., 2017) for each single sample.
Similarly, we only computed the correlations between the pre-
selected high-ranked relations (edges) so that we could reduce
unnecessary computations drastically. Finally, we obtained the
microbiota-pair community/network corresponding to each
sample from different disease states.

Recognizing and Quantifying Individual-Specific
Microbiota Biomarkers
We selected top-ranked edge-pairs as edge-biomarkers, which
have strong high-order compositional correlations and can be
viewed as feature candidates represented as a set called “Markers.”
In theory, each individual-specific biomarker is related to the
clinical phenotype to some extent because the closely contacted
candidates are identified in a certain disease state. As a warning
signal (Chen et al., 2012; Zeng et al., 2013), we extended the
dynamic network biomarker model in a manner of a single
sample with its quantification criterion [i.e., composite index
(sCI)] to quantify the disease state of each sample:

sCI =

∑
x,y∈Marker |sPCC(x, y)|∑

x∈Marker,y/∈Marker |sPCC
(
x, y

)
|

×

∑
x∈Marker

|x− ux|

where PCCin is the average absolute value of PCC of a
species/genus in the Marker group in one sample; PCCout is the
average absolute value of PCC of a species/genus between the
Marker group and the other in one sample; SDin is the average
standard deviation in the Marker group. “Marker” was the set
of dominant species/genus identified by iENA. Then, the sCI of
individual markers could be used to indicate the possible disease
signals when its value was sufficiently large.

Comparing Disease-Specific Markers and Their
Discrimination for Disease
We could obtain the different individual-specific biomarkers
to indicate disease-specific signals. Microbiota features that
always present in the same disease group are more robust and
representative in terms of disease specificity (Supplementary
Table S3). Thus, we used the union set of microbiota features
from patients with CG and small-bowel inflammation to
characterize the varying microbiota community corresponding
to disease states. In expectation of disease discrimination, we
re-obtained the sCI value for each subject in different disease
groups using such union markers, which indicated different
etiologic mechanisms.

RESULTS AND DISCUSSION

Study Populations
From May 1, 2017 to September 1, 2018, 38 people with
symptoms such as chronic abdominal pain, abdominal
distention, and diarrhea participated in this study. They
were screened across the Department of Gastroenterology of
Shanghai Sixth People’s Hospital (Figure 1A).

Among them, 33 patients completed MGCE and stool
collection, and the feces of 15 patients were processed through
mNGS (Figure 1). The cohort primarily comprised, as defined by
MGCE, individuals with gastric inflammation (G group), small
bowel inflammation (I group), and a healthy population (H
group), with five people in each group (Figure 1B and Table 1).
The median age of the 15 patients was 53.0 years (Table 1). The
proportion of male in these individuals was 40.0%, which was
significantly high in patients with I group (26.7%) compared to
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FIGURE 1 | Generalization of the study. (A) The screening and enrollment of patients through the study. (B) Representative magnetically guided capsule endoscopy
(MGCE) images (stomach, duodenum, jejunum, and ileum) of the H group (health group), G group (chronic gastritis), and I group (small bowel inflammation). (C) The
protocol for the metagenomic next-generation sequencing (mNGS) assay. After samples of stool are received in the hospital, DNA is isolated, followed by
construction of a metagenomic NGS library and sequencing.

H group (Supplementary Table S4). Recent studies observed no
evidence for associations between gastrointestinal inflammation
and gender (Khalili et al., 2020). The median value of alanine
aminotransferase and total bile acid was 18 U/L and 3.35 µmol/L,
respectively. Fourteen patients did have negative fecal occult
blood in their feces (Table 1).

Analyses of Microbiota Composition to
Distinguish Between Small-Bowel
Inflammation and CG
Using mNGS, we demonstrated the quality of sequencing and
obtained the microbe abundance through a standard pipeline.
There were 52,820 differential genes between the G group and
H group; 22,537 genes between the I group and H group; 17,670
genes between the G group and I group. We obtained two
important results (Figure 2).

First, the distribution of different species in samples indicated
the varying microbiota compositions. Also, the samples in the
same group/state tended to have similar microbiota compositions
(Figure 2A). The different species diversities displayed consistent
measurements, and the microbiota compositions in healthy states
were more diverse than those in the disease state (Figure 2B
and Supplementary Figure S1), thereby suggesting remarkable
disruption of the microbiota community when diseases occurred.
The microbiota compositions in small-bowel inflammation were

more diverse than those in CG (Figure 2B), which suggested
that CG might be more serious than small-bowel inflammation
at the microbiota level. A few microbes with different abundance

TABLE 1 | Demographic and clinical characteristics of the 15 subjects.

Characteristic Value

Age, years [median (range)] 53 (24–65)

Gender male/female 6/9

Diagnosis

Health 5 (33.3%)

Gastritis alone 5 (33.3%)

Small intestinal inflammation

Duodenum erosion lesion 1 (6.7%)

Jejunum erosion lesion 1 (6.7%)

Ileum erosion lesion 3 (20.0%)

Alanine aminotransferase

Median (range), U/L 18 (4–26)

Total bile acid

Median (range), µmol/L 3.35 (0.7–7.7)

Fecal occult blood testing

Weakly positive 1 (6.7%)

Negative 14 (93.3%)

Data are n (%) unless otherwise indicated.
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FIGURE 2 | Microbiota composition distinguishing small-bowel inflammation and chronic gastritis. (A) The distribution of microbes in different samples. (B) The
alpha-diversity of samples in different groups. (C) The abundance heatmap of differential microbes. (D) Principal component analysis (PCA) of samples with genus
features. (E) PCA of samples with species features. (F) The differential functions between groups G (chronic gastritis), I (small bowel inflammation), and H (health
group). (G) The differential functions between groups G and H.
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between different groups were detected, although they seemed to
not have effective discrimination together (Figure 2C).

Second, PCA supported the observation mentioned above that
the microbiota community in healthy samples was consistent and
similar, but had varying degrees of alterations in small-bowel
inflammation or CG samples at the level of genus (Figure 2D)
or species (Figure 2E). Functional analysis using metagenomics
revealed that, compared with samples from healthy people,
samples from people with small-bowel inflammation had
dysfunction of the microbiome on metabolism (Figure 2F)
(e.g., N-Glycan biosynthesis, biosynthesis of secondary bile
acids, and metabolism of -Linolenic acid). Recent study has
revealed that patients with IBD have a higher abundance of
large-size glycans, as well as lower levels of galactosylation and
fucosylation (Clerc et al., 2018). Those data are contrary to
studies showing that levels of core fucosylation are increased
in T cells in patients with IBD with an inflamed mucosa and
in mice with colitis (Fujii et al., 2016). Moreover, supplements
of related metabolites (e.g., diets of sage oil or hydrolyzed
protein) can be efficacious treatment of chronic enteropathy.
Rats with IBD or colitis have much lower mRNA levels of
pro-inflammatory factors in the colon, resulting in a lower
inflammatory response, significantly less colonic damage, and
enhanced histological repair after administration of sage-oil diets
(Reifen et al., 2015). Secondary bile acids consist of lithocholic
acid and deoxycholic acid. A diet of hydrolyzed protein increases
can lead to growth inhibition of Escherichia coli and Clostridium
perfringens in rats suffering from chronic enteropathy. Moreover,
the bile-acid producers C. hiranonis and C. scindens are
related to diet-induced remission in rats with dextran sulfate
sodium-induced colitis and children with IBD (Wang et al.,
2019). CG samples showed greater changes in diverse KEGG
functions (e.g., skeletal proteins in cellular processes, amino acid-
related enzymes in metabolism, and glutamatergic synapses in
organismal systems) (Figure 2G). The chromosome 1-related
dominant trait is linked to resistance in mice to the autoimmune
gastritis (Fujii et al., 2014). Besides, high levels of aneuploidy
in chromosomes 4, 8, 20, and 17 (p53) have been detected
in gastritis, dysplasia, intestinal metaplasia, and cancer samples
(Williams et al., 2005).

Analyses of Microbiota Communities to
Distinguish Small-Bowel Inflammation
and CG Using iENA
The data shown above indicated that the microbe abundance
reflected the distribution of groups of samples (even though
a simple combination of microbes could not be used to
distinguish between disease states). Thus, the variance in
microbe abundance was expected to supply more discriminative
information, which could be detected by our proposed iENA
approaches. Indeed, using one CI score with iENA-identified
marker microbes, each sample could be assigned to a suitable
group correctly. In accordance with the analysis stated above,
CG samples had the highest scores, indicating the greatest
variation/alteration in the microbiota community, whereas
samples from healthy people had the lowest scores (which

represented the stable microbiota community in individuals)
(Figure 3A). More importantly, as reported in our previous
study (Yu et al., 2019), the abundance of microbes could
not be used to group samples with different phenotypes
directly (Figure 3B). However, the co-expressed abundances
of two microbes (e.g., edge makers detected using iENA) had
the power to distinguish samples within dissimilar groups
(Figures 3C,D). Such variation of the microbiota community can
be used to quantify rewiring of microbiota networks. Hence, we
reconstructed the correlation network of microbes corresponding
to healthy samples, CG samples, and samples of small-
bowel inflammation, respectively. In particular, the network-hub
microbes in the different networks were the key microbiota
involved in pathogenic processes (Supplementary Table S5). For
example, CG-specific network-hub microbes tended to interact
with many other microbes in the CG state but not in healthy
or small-bowel-inflammation states (Figures 3E–G). Similarly,
the small bowel inflammation-specific network-hub microbes
tended to interact with many other microbes in the small-
bowel-inflammation state, but not in the healthy or CG states
(Figures 3E–G).

Key Microbiota and Networks Revealed
the Specific Pathogenesis Underlying
Small-Bowel Inflammation and CG
Three important trends were observed in this part of our study.

First, for the key microbiota with differential abundance
identified by conventional analysis, some well-known pathogenic
microbes were discovered.

Microbes from the genera Roseburia and Enterobacter were
related to Helicobacter pylori (HP) in gastritis and Clostridioides
difficile infection (CDI) in IBD. The absence of Roseburia has
been observed in HP-positive samples (Zhao et al., 2019),
whereas the genus Enterobacter is dominant in HP-free patients
(Hsieh et al., 2018).

Microbes from the genera Blautia, Roseburia, and
Flavonifractor assist in the clinical classification and prognosis
assessment of intestinal diseases, including IBS, IBD, and
colorectal cancer (CRC) (Labus et al., 2017; Machiels et al.,
2017; Ai et al., 2019; Gupta et al., 2019). The genera Blautia
and Flavonifractor contribute to discrimination of IBS or CRC
from controls (Labus et al., 2017; Ai et al., 2019). The decreased
abundance of Roseburia and Blautia in feces specimens of
patients with ulcerative colitis (UC) indicates a higher risk of
pouchitis after ileal–anal pull-through surgery (Machiels et al.,
2017). In particular, patients with IBD or CDI have lower levels
of Blautia than those without CDI (Sokol et al., 2018). Also, the
genus Blautia is enriched after 26 weeks of quadruple treatment
with bismuth in patients with asymptomatic HP-related gastritis
(He et al., 2019). Also, the abundance of Roseburia increases
significantly after 1-week administration of vitamin D in Crohn’s
disease (CD) cases (Schäffler et al., 2018).

In addition, E. cloacae is associated significantly with CD
patients without antibodies to Saccharomyces cerevisiae (Kansal
et al., 2019). Also, many microbes are associated with the
immune response and therapeutic results in gut inflammation.
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FIGURE 3 | Microbiota community distinguishing small-bowel inflammation and chronic gastritis. (A) The distribution of CI scores distinguishes different groups on
genus level. (B) The distribution of CI scores distinguishes different groups on species level. (C) The abundance heatmap of microbes in iENA markers. (D) The
sPCC heatmap of microbe-pairs involved in iENA markers. (E) The microbe association network characterizing healthy state. (F) The microbe association network
characterizing chronic gastritis state. (G) The microbe association network characterizing small bowel-inflammation state.

For example, oral administration of Citrobacter koseri JCM1658
aggravates systemic allergic reactions and reduced numbers of
intestinal T-helper-17 cells (Matsui et al., 2019).

Second, for the key microbiota with differential
abundance identified by iENA, some were indeed candidate
pathogenic microbes, though they did not have significantly
different abundances.

Microbes from the family Erysipelotrichaceae and genus
Klebsiella are strongly related to inflammation in the stomach
and intestine. The family Erysipelotrichaceae is overgrown in
mice with basal colitis (Chen et al., 2017) or HP infection
(Pan et al., 2016). Conversely, the genus Klebsiella has not only

been identified in case reports of acute phlegmonous gastritis
(Kim et al., 2011; Matsuura et al., 2018) but is also the most
familiar strain isolated from the small intestine of patients
with small-intestinal bacterial overgrowth or UC (Pyleris et al.,
2012; Tanaka et al., 2019). In particular, K. pneumoniae has
been detected in the vast majority of patients with autoimmune
gastritis (Furuta et al., 2018). Also, K. oxytoca is regarded as a
pathogen that induces colitis (Högenauer et al., 2006), and its
levels are increased in patients with active IBD compared with
those in controls (Sánchez et al., 2013).

Third, for the key microbiota with intensive interactions with
other microbes recognized by network-hub ranking, there is also
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considerable evidence of their pathogenic roles in gastroenteric
inflammation or tumor.

Microbes are associated with inflammation in the gut,
including E. coli-induced infectious ileitis (Alvarado et al., 2019)
and the effect of K. oxytoca on gastritis and colitis, as mentioned
above. Acinetobacter lwoffii has been isolated in a gastric-tissue
culture in a case of acute phlegmonous gastritis (Kim et al.,
2011). Non-HP organisms can induce gastritis, particularly
inflammation or lwoffi (Rathinavelu et al., 2003) and Listeria
monocytogenes in mice (Park et al., 2004).

Besides, the genera Bacteroides and Bacillus are strongly
associated with patients with CG accompanied with a yellow
tongue coating (Ye et al., 2016) or Barrett’s esophagus
(Gutiérrez-Escobar et al., 2014). Moreover, different dietary
strategies can alter the Bacteroides composition post-intervention
in patients with superficial CG, such as a high-fat diet
with increased Bacteroides (Wan et al., 2019) and wheat
peptides/fucoidan with increased B. intestinalis (Kan et al.,
2019). Some microbes are used in the treatment of diarrhea-
predominant IBS and IBD, including B. coagulans MTCC 5856
(Majeed et al., 2016; Shinde et al., 2019) and E. coli Nissle 1917
(Sassone-Corsi et al., 2016).

In particular, microbe co-occurrence can have a combined
effect during disease. The genera Acinetobacter and Bacteroides
are increased significantly in IBD patients during the active
phase (Andoh et al., 2012; Tang et al., 2015), though a massive
amount of Dialister invisus has been identified in the state of
inactivity or dormancy in the gut of patients with IBD (Schirmer
et al., 2018). Also, the genus Tyzzerella and a greater abundance
of Dorea and Bacteroides have shown good performance in
distinguishing between patients with gastric cancer (Thomas
et al., 2016; Qi et al., 2019) and rectal cancer (Dong et al.,
2019). Also, B. fragilis has been identified to contribute to CRC
development (Kwong et al., 2018).

CONCLUSION

Recent studies have shown a high prevalence of small-bowel
diseases (66% in Korea and 65.6% in China) in MGCE-examined
subjects according to the data from multiple medical centers (Lim
et al., 2015; Ding et al., 2019). Thus, increasing numbers of studies
have focused on multiple microbiome compositions and their
clinical applications through NGS, including CG, IBD, and IBS
(Coker et al., 2017; Sokol et al., 2017; Vich Vila et al., 2018).
However, the distribution of the fecal microbiome for explaining
non-specific, mild inflammation (e.g., erosions) is largely unclear.
We revealed the distribution of different species compositions,
important alterations in microbiota, and metabolic dysfunction
of the microbiome in fecal mNGS samples from patients with
bowel inflammation or CG using a standard procedure. The
metabolic dysfunctions in intestinal inflammation have been
confirmed by other studies. Indeed, supplements of related
metabolites can result in efficacious treatment of IBD, including
diets of sage oil (rich in α-linolenic acid) and hydrolyzed protein
(increased levels of secondary bile acids) (Reifen et al., 2015;
Wang et al., 2019).

We used our own iENA approaches and discovered that
two network-hub microbes with co-expression abundances were
in ability to recognize samples in multiple clinical groups. In
particular, the pivotal microorganisms in different networks were
the key microbiota involved in pathogenesis. Recent reports have
shown the pathogenic roles of microbes in bowel inflammation or
CG, such as the genera Acinetobacter and Bacteroides in patients
with IBD (Andoh et al., 2012; Tang et al., 2015).

The network-hub microbiota, significant rewiring of
microbiota networks, and differential network analysis
demonstrated that high-ranked iENA microbiota markers
were disease specific and had particular pathogenic functions.
Using mNGS combined with iENA represents a potential
non-invasive step in the discrimination between gastrointestinal
inflammation and healthy individuals. This approach could guide
more targeted therapies against pathogens, assist in identification
of disease phenotypes, and accelerate prognosis assessment
of intestinal inflammation. Nevertheless, the pathogenesis,
preferred timing of treatment, and patient population for clinical
mNGS testing must be elucidated fully through further research.
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