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Abstract: All-polymer solar cells (all-PSCs) are organic solar cells in which both the electron donor
and the acceptor are polymers and are considered more promising in large-scale production. Thanks
to the polymerizing small molecule acceptor strategy, the power conversion efficiency of all-PSCs
has ushered in a leap in recent years. However, due to the electrical properties of polymerized small-
molecule acceptors (PSMAs), the FF of the devices is generally not high. The typical electron transport
material widely used in these devices is PNDIT-F3N, and it is a common strategy to improve the
device fill factor (FF) through interface engineering. This work improves the efficiency of all-polymer
solar cells through interfacial layer engineering. Using PDINN as the electron transport layer, we
boost the FF of the devices from 69.21% to 72.05% and the power conversion efficiency (PCE) from
15.47% to 16.41%. This is the highest efficiency for a PY-IT-based binary all-polymer solar cell. This
improvement is demonstrated in different all-polymer material systems.

Keywords: organic photovoltaics; all-polymer solar cells; power conversion efficiency; electron
transport layer

1. Introduction

Organic solar cells (OSCs) are advantageous for distributed photovoltaic applications
due to their flexibility, semitransparency, high indoor light matching, high power generation
per unit weight, patternable design, etc. [1–7]. While the classical OSCs active layer
consists of a polymer donor and a fullerene derivative acceptor [8], with the development
of non-fullerene acceptor materials, the mainstream of research has now shifted to a
material system based on a polymer donor and a non-fullerene acceptor [9–17]. Compared
with fullerene acceptors, non-fullerene acceptors have flexible chemical structure designs
and thus easily tunable optoelectronic properties, endowing them with more compatible
absorbance spectra and electrical properties with the donor. Additionally, the resulting
devices usually exhibit lower voltage losses [18], which improve device efficiency [19]. In
terms of materials, non-fullerene acceptors are divided into two main categories: small-
molecule acceptors and polymer acceptors. In contrast to the small molecule acceptor, when
the acceptor is polymer, all-polymer solar cells (All-PSCs) can be prepared by combining
with a polymer donor. In addition to similar advantages to small-molecule acceptor-based
OSCs, All-PSCs possess better mechanical properties [20,21], such as higher tensile and
flexural toughness, and potentially higher thermal stability, which provide them with better
prospects for large-scale production [22]. The all-PSCs field has evolved over 20 years,
starting with the earliest polymer donor materials based on poly(p-phenylene vinylidene)
(PPV) units. The widespread use of aromatic imide repeating units, e.g., Naphthalimide
(NDI) and Perylenediimide (PDI), has led to significant advances in the power conversion
efficiency (PCE) of all-PSC devices. Nevertheless, the fill factor (FF) of all-polymer solar cell
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devices is relatively low (Figure 1) compared to their fullerene or small molecule acceptor
counterparts, mainly due to complicated morphology control. Even the highly efficient
devices developed in the past two years have difficulty in surpassing 70% FF.
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The current molecular design strategy, namely, polymerizing the high-performance
small molecular acceptor, led to a surge of polymer acceptors with excellent photovoltaic per-
formance, which significantly improved device efficiency in this field. However, despite the
fact that the state-of-the-art devices based on the polymerized small molecule acceptors (PS-
MAs) exhibit high open-circuit voltages (VOCs) and short circuit currents (JSCs), the FFs for a
large fraction of them are relatively low due to the difference in the morphological and elec-
trical properties between the polymer donor (high degree of polymerization) and the PSMA
(low degree of polymerization). One of the solutions to this issue is optimizing the morphol-
ogy and charge transport property, but for a given set of donor and acceptor materials, this
can be difficult. From the experience of device engineering for organic photovoltaics in recent
decades, another angle to tackle this problem, other than modifying the active layer directly,
is interface engineering. So far, most high-performance all-PSCs utilize N,N′-Bis(N,N-
dimethylpropan-1-amine oxide)perylene-3,4,9,10-tetracarboxylic diimide (PDINO), MoOx,
or poly [(9,9-bis(3′-(N,N-dimethylamino)propyl)2,7-fluorene)-alt-5,5′-bis(2,2′-thiophene)-2,6-
naphthalene1,4,5,8-tetracaboxylic-N,N′-di(2-ethylhexyl)imide] (PNDIT-F3N) as the electron
transport material (ETM). Among them, PNDIT-F3N and its bromide version PNDIT-
F3N-Br, are the workhorse ETMs in small molecule-based OSCs. However, the FFs of
PNDIT-F3N-based all-PSCs are generally not high (hardly more than 70%, see Figure 1),
which limits the further improvement of device efficiency [23–36]. For instance, Ref. [37]
studied PM6:PYF-T devices with an efficiency of 14.10% and an FF of 67.73%. Ref. [38]
researched PM6:PY-IT-based all-PSCs and reported an efficiency of 15.15% and an FF of
67.70% [39]. In 2020, Li’s group reported a new PDI-derived electron transport material,
aliphatic amine-functionalized perylene-diimide (PDINN), which showed better contact
with non-fullerenes active layers and better conductivity. The enhanced interfacial stability
and higher conductivity, as well as the ability to reduce the work function of the metal
cathode, make it more suitable for use as an electron transport material. In addition, PDINN
is simple to synthesize and could be synthesized in large quantities by a one-step reaction.
Therefore, PDINN is a low-cost alternative ETM for OSCs and has great promise for future
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large-scale production. Since its first report, PDINN has been most utilized in polymer:small
molecule acceptor OSCs and proved effective in different cases, but it has not been adopted
in all-PSCs with PCEs >16%.

In this work, we report all-PSCs with PM6 as the donor, PYF-T-o or PY-IT as the
acceptor, and PNDIT-F3N or PDINN as the electron transport material. We systematically
compare the performance of the all-PSC devices with PDINN and PNDIT-F3N, and we
show that the device performance for PDINN-based devices is higher than those of PNDIT-
F3N-based ones. Particularly, we show that the FF of the devices increases from 69.21%
(PNDIT-F3N) to 72.05% (PDINN) for the PY-IT-based all-PSCs, with a corresponding effi-
ciency increase from 15.47% to 16.41%, which is the highest power conversion efficiency
(PCE) for PY-IT based binary all-PSCs. Through different characterizations, e.g., transient
photocurrent and transient photovoltage, we find that the difference in their optical proper-
ties does not contribute much to the device performance variation. Instead, we attribute the
main increase, i.e., the FF, of the PDINN-based devices, to the faster charge extraction and
enhanced charge carrier lifetime, which are observed in both all-PSC systems we studied.

2. Experiments
2.1. Materials

Poly[(2,6-(4,8-bis(5-(2-ethylhexyl-3-fluoro)thiophen-2-yl)-benzo [1,2b:4,5-b′]dithio-
phene))-alt-(5,5-(1′,3′-di-2-thienyl-5′,7′-bis(2-ethylhexyl)benzo [1′,2′c:4′,5′c′] dithio-phene-
4,8-dione)] (PM6) was purchased from Dongguan Volt Ampere Photo-electric Technol-
ogy Co., Ltd. (Dongguan, China). Poly[(2,2′-((2Z,2′Z)-((12,13-bis(2-octyldodecyl)-3,9-
diundecyl-12,13-dihydro [1,2,5]thiadiazolo [3,4e]thieno [2”,3”:4′,5′]thieno [2′,3′:4,5] pyrrolo
[3,2-g]thieno [2′,3′:4,5]thieno [3,2-b]-in-dole-2,10-diyl)bis(methanylylidene))bis(5-methyl-3-
oxo-2,3-dihydro-1Hindene-2,1-diyl-idene)) dimalononitrile-co-2,5-thiophene (PY-IT) and
N,N’-Bis{3-[3-(Dimethylamino)propylamino]propyl}perylene-3,4,9,10-tetracarboxylic di-
imide (PDINN) were purchased from Solarmer Materials Inc. (Beijing, China). Poly[(9,9-
bis(3′-(N,N-dimethylamino)pro-pyl)2,7-fluorene)-alt-5,5′-bis(2,2′-thiophene)-2,6-naphthalene1,
4,5,8-tetracabox-ylic-N,N′-di(2-ethylhexyl)imide] (PNDIT-F3N) and PYF-T-o were pur-
chased from eFlexPV Limited. Poly(3,4-ethylenedioxythiophene) polystyrene sulfonate
(PEDOT:PSS) (Clevios P VP 4083) were purchased from Heraeus Inc. (Hanau, Germany).
All the other reagents and chemicals were purchased from Sigma Aldrich or Aladdin
(Burlington, MA, USA and Shanghai, China) and used as received. Purity of solvents:
chloroform (>99.8%), methanol (>99.5%), and acetic acid (>99.5%).

Solubility of PDINN and PNDIT-F3N:
PDINN: the solubility was 26.7 mg/mL in methanol without the assistance of any

acid [40].
PNDIT-F3N: the solubility was >30 mg/mL in common organic solvents [41].

2.2. Device Fabrication

Organic solar cells were fabricated in a conventional device configuration of ITO(50 nm)/
PEDOT:PSS(30 nm)/active layer(100~150 nm)/ETL(PNDIT-F3N or PDINN)(5~10 nm)/
Ag(100 nm), as shown in the SEM image in Figure S3. The patterned indium tin oxide(ITO)
glass was scrubbed with detergent and then sonicated with deionized water, acetone, and
isopropanol sequentially and baked overnight in an oven. The glass substrate was treated
whit UV-Ozone for 10 min before use. PEDOT:PSS solution was spin-casted onto them at
5200 rpm for 20 s, then dried at 150 ◦C for 10 min in air.

The different kinds of devices:

1. The PM6:PYF-T-o blend (1:1.2 weight ratio) was dissolved in chloroform (the concen-
tration of donor was 6 mg mL−1 for all blends) with 1-chloronaphthalene (1% vol) as
an additive and stirred overnight in a nitrogen-filled glove box. The blend solution
was spin-casted at 2500 rpm for 30 s onto the PEDOT:PSS films, followed by a thermal
annealing step at 95 ◦C for 5 min.
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2. The PM6:PY-IT blend (1:1.2 weight ratio) was dissolved in chloroform (the concentra-
tion of donor was 6 mg mL−1 for all blends) with 1-chloronaphthalene (1% vol) as
an additive and stirred overnight in a nitrogen-filled glove box. The blend solution
was spin-casted at 2700 rpm for 30 s onto the PEDOT:PSS films, followed by a thermal
annealing step at 95 ◦C for 5 min.

For both types of devices, either methanol with 0.5% vol acetic acid blend solution
of PNDIT-F3N at a concentration of 0.5 mg mL−1 or a pure methanol solution of PDINN
at a concentration of 1.0 mg mL−1 was spin-coated onto the active layer, respectively, at
2000 rpm for 30s and 3000 rpm for 30 s as the electron transport layer (ETL). Around 100 nm
of Ag were evaporated under 1 × 10−4 Pa through a shadow mask. Then, encapsulation
was carried out.

2.3. Characterization

The current density–voltage (J-V) curves of the PSCs were measured using a Keithley
2400 Source Meter under AM 1.5 G (100 mW cm−2) using an Enlitech solar simulator. The
light intensity was calibrated using a standard Si diode with a KG5 filter to bring spectral
mismatch to unity. An optical microscope (Olympus BX51) was used to define the device
area (7.2 mm2) in a glove box filled with nitrogen (oxygen and water contents are smaller
than 0.1 ppm). EQEs were measured using an Enlitech QE-S EQE system equipped with a
standard single-crystal Si photovoltaic cell. Monochromatic light was generated from an
Enlitech 300 W lamp source.

Transient photovoltage (TPV) and transient photocurrent (TPC) measurements: In
TPV measurements, the devices were placed under background light bias enabled by a
focused Quartz Tungsten-Halogen Lamp with an intensity of similar to working devices,
i.e., the device voltage is close to the VOC under solar illumination conditions. Photo-
excitations were generated with 8 ns pulses from a laser system (Oriental Spectra, NLD520,
Hyderabad, India). The wavelength for the excitation was tuned to 518 nm with a spectral
width of 3 nm. A digital oscilloscope was used to acquire the TPV signal at the open-circuit
condition. TPC signals were measured under short-circuit conditions under the same
excitation wavelength without background light bias.

3. Results and Discussion

The chemical structural formulas of the donor PM6 and the acceptors PYF-T-o and
PY-IT are shown in Figure 2a. The chemical structural formulas of the electron transport
materials (PDINN and PNDIT-F3N) are shown in Figure 2b. Figure 2c shows the highest
occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO)
energy levels of the active layer materials, as well as the energy level diagrams of the
electron transport materials of PDINN and PNDIT-F3N.

To study the optical property of the two different interfacial layers, we measured the
transmittance and absorption of PNDIT-F3N and PDINN. To mimic the thickness of PNDIT-
F3N and PDINN used in devices, we used identical spin-coating parameters to prepare the
PNDIT-F3N and PDINN films. From the absorption and transmittance curves (Figure 3a,b),
we found that PNDIT-F3N showed absorption in the UV and visible regions. For instance,
the absorption of the PNDIT-F3N film, despite being weak, peaked at ~390 nm. In addition,
PNDIT-F3N also showed absorption in the range of ~570–650 nm. These absorptions of
PNDIT-F3N can be reflected in the overall absorption spectra of active layer/PNDIT-F3N,
which is shown in Figure 3c,d.
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For the PYF-T-o-based devices, the difference between VOC and JSC of PNDIT-F3N
and PDINN devices was not significant. The main difference derived from the change in FF,
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where PDINN improved the filling factor of the device from 68.30% to 69.90% for PNDIT-
F3N. For the PY-IT-based devices, PNDIT-F3N and PDINN had little effect on the JSC of
the device, and the main difference continued to come from the significant increase in the
fill factor, for which PDINN increased from 69.21% of PNDIT-F3N to 72.05% of the device.
As a result, these improvements significantly increased the efficiency of the PDINN-based
devices by 16.41%. The corresponding specific device performance parameters are listed
in Table 1 and Tables S2 and S3. We then conducted EQE, as shown in Figure 4b. From
the EQE curves, we found that the current obtained from the EQE integration is consistent
with the JSC obtained from the J-V test (Figure 4a).

Table 1. Photovoltaic parameters of the solar cell devices based on PM6:PYF-T-o and PM6:PY-IT
under AM 1.5 G illumination at 100 mW cm−2.

Devices VOC
(V)

JSC
(mA/cm2)

FF
(%)

PCEs
(%) S nid,l nid,d

PM6:PYF-T-o/
PNDIT-F3N

0.913 a

(0.910 ± 0.002)
24.91

(24.9 ± 0.53)
68.30

(66.7 ± 0.96)
15.47

(15.1 ± 0.27) 0.925 1.21 1.82

PM6:PYF-T-o/
PDINN

0.908
(0.907 ± 0.003)

24.83
(24.8 ± 0.31)

69.90
(69.1 ± 0.78)

15.78
(15.5 ± 0.17) 0.930 1.21 1.71

PM6:PY-IT/
PNDIT-F3N

0.938
(0.938 ± 0.005)

23.85
(23.6 ± 0.47)

69.21
(67.8 ± 0.83)

15.47
(15.1 ± 0.29) 0.936 1.13 1.62

PM6:PY-IT/
PDINN

0.950
(0.951 ± 0.002)

23.95
(24.0 ± 0.17)

72.05
(70.5 ± 0.89)

16.41
(16.1 ± 0.17) 0.961 1.05 1.58

a Parameters for devices with the highest PCEs. Values in brackets are average values and standard deviations
based on 10 independent devices.
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69.21 
(67.8 ± 0.83） 

15.47 
(15.1 ± 0.29) 0.936 1.13 1.62 

PM6:PY-
IT/PDINN  

0.950 
(0.951 ± 0.002) 

23.95 
(24.0 ± 0.17) 

72.05 
(70.5 ± 0.89） 

16.41 
(16.1 ± 0.17) 

0.961 1.05 1.58 

Figure 4. (a) J-V curves and (b) the corresponding EQE spectra of all-PSCs based on PM6 and PYF-T-o
or PY-IT.

To investigate recombination, we first measured the J-V characteristics of the four
devices under different light intensities (I). Figure 5a plots the relationship between JSC
and light intensity. By linearly fitting the JSC versus light intensity data, we obtained the
slope (S) for the four devices. The S values for the PM6:PYF-T-o/PNDIT-F3N, PM6:PYF-T-
o/PDINN, PM6:PY-IT/PNDIT-F3N, and PM6:PY-IT/PDINN devices are 0.925, 0.930, 0.936,
and 0.961, respectively. It is known that the closer S is to unity, the weaker the bimolecular
recombination. Therefore, the smallest S for PM6:PY-IT/PDINN suggests the weakest
bimolecular recombination in it, and among the four different devices, the trend of S is
consistent with the trend of the FF of the devices.
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To access trap-assisted recombination, we plot the VOC versus light intensity result
in Figure 5b. By fitting the VOC versus ln(I) curves, we obtained the ideality factor, nid,l,
from the equation nid,l =

q
kT

∂Voc
∂ ln(I) . The nid.ls of the PM6:PYF-T-o/PNDIT-F3N, PM6:PYF-T-

o/PDINN, PM6:PY-IT/PNDIT-F3N, and PM6:PY-IT/PDINN devices are 1.21, 1.21, 1.13, and
1.05, respectively. From diode theory, higher nid,l means that trap-assisted recombination
is stronger. Therefore, PM6:PY-IT/PDINN has the weakest trap-assisted recombination
(nid,l = 1.05) among the four devices, which agrees with its highest FF.

Another method to obtain the ideality factor is to fit the exponential region of the
dark J-V curve. We measured the dark J-V curves for the devices, and the results are
shown in Figure 5c. From the fitting, the nid,d of the PM6:PYF-T-o/PNDIT-F3N, PM6:PYF-T-
o/PDINN, PM6:PY-IT/PNDIT-F3N, and PM6:PY-IT/PDINN devices are 1.823, 1.719, 1.642
and 1.582, respectively. The difference between the magnitude of nid,l and nid,d is detailed
elsewhere [43], but the trend of the nid,d is overall consistent with that of nid,l.

To further study the charge recombination and charge extraction, we performed TPV
and TPC measurements. The details of the experimental setup for these measurements
can be found in the experimental section. As shown in Figure 6a, we fitted the decay
using a monoexponential function, which revealed that the decay constants have the
following relationship, τPDINN > τPNDIT-F3N, indicating that the charge carrier lifetime is
longer in devices based on PDINN than in PNDIT-F3N-based devices. This indicates that
the recombination in the PDINN-based devices is weaker than that in the PNDIT-F3N-
based devices. One hypothesis is that the PDINN has better/higher surface coverage than
PNDIT-F3N so the contact between the active layer and cathode is reduced in PDINN-
based devices, which reduces surface recombination and improves FF. In addition, from
the TPC measurements (Figure 6b) for both PYF-T-o and PY-IT-based devices, the charge
extraction in the PDINN-based devices is significantly faster than in the PNDIT-F3N-
based devices. This indicates that the charge collection efficiency of PDINN is higher than
that of PNDIT-F3N, which could be one of the determining factors of the high FF of the
PNDIT-F3N devices.

By analyzing the results of AFM (Figure 7), the RMS of the PDINN film is 1.37 nm,
and that of PNDIT-F3N is 1.87 nm. Leaving energetics alone, just from a morphological
point of view, the smoother surface of PDINN is beneficial for obtaining better coverage
on the active layer, which could then reduce the direct contact between the active layer
material and the metal electrode. This could reduce surface recombination, protect the
active layer from hot metal penetration or reaction during evaporation, increase device
shunt resistance, and enhance the FF of the device.
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4. Conclusions

In conclusion, we addressed the relatively low FF in PY-IT and PYF-T-o-based all-
polymer solar cells through active layer-cathode interface engineering. Specifically, we
used PDINN as an electron transport layer material in PM6:PYF-T-o and PM6:PY-IT-based
devices, compared it with the widely employed, high-performance ETM, PNDIT-F3N,
compared its photovoltaic performance, and investigated the charge extraction and re-
combination. It was found that the PDINN-based devices demonstrated faster charge
extraction and longer charge carrier lifetime compared to PNDIT-F3N devices. Conse-
quently, we demonstrated that PDINN could effectively promote the FF of the all-PSC
devices studied in this work and thus improve the PCE of the devices. Particularly in the
PM6:PY-IT-based device, the FF increased from 67.99% (PNDIT-F3N) to 72.05% (PDINN),
and the PCEs increased from 15.47% to 16.41%, which is the highest efficiency reported to
date for PY-IT-based binary all-polymer solar cells.
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