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Critical phenomenon of the near 
room temperature skyrmion 
material FeGe
Lei Zhang1, Hui Han1,2, Min Ge3, Haifeng  Du1, Chiming Jin1, Wensen Wei1, Jiyu Fan4, 
Changjin Zhang1, Li Pi1,3 & Yuheng Zhang1,3

The cubic B20 compound FeGe, which exhibits a near room temperature skyrmion phase, is of great 
importance not only for fundamental physics such as nonlinear magnetic ordering and solitons but also 
for future application of skyrmion states in spintronics. In this work, the critical behavior of the cubic 
FeGe is investigated by means of bulk dc-magnetization. We obtain the critical exponents 
(β = 0.336 ± 0.004, γ = 1.352 ± 0.003 and β = 5.276 ± 0.001), where the self-consistency and reliability 
are verified by the Widom scaling law and scaling equations. The magnetic exchange distance is found 
to decay as J r( )≈ r−4.9, which is close to the theoretical prediction of 3D-Heisenberg model (r−5). The 
critical behavior of FeGe indicates a short-range magnetic interaction. Meanwhile, the critical 
exponents also imply an anisotropic magnetic coupling in this system.

In recently years, skyrmion state, which is a topologically protected nanoscale vortex-like spin structure, has 
attracted great interest due to its potential application in spintronic storage function1–12. It has been demonstrated 
that the skyrmion phase is thermodynamically stable magnetic vortex state in magnetic crystals13,14. In addition, 
writing and deleting single magnetic skyrmion have been realized in PdFe bilayer on Ir(111) surface15,16. These 
findings pave a significant path to design quantum-effect devices based on the tunable skyrmion dynamics. The 
room-temperature skyrmion materials hosting stable skrymion phase are paid considerable attention17. The cubic 
FeGe belongs to the space group P2 31 , in which the non-centrosymmetric cell results in a weak Dzyaloshinskii- 
Moriya (DM) interaction. The competition of DM interaction between the much stronger ferromagnetic 
exchange finally causes a long modulation period of a helimagnetic ground state1,2,18. A bulk FeGe sample exhibits 
a long-range magnetic order at Curie temperature TC =  278.2 K, and displays a complex succession of 
temperature-driven crossovers in the vicinity of TC

19,20. The skyrmion phase emerges in a narrow temperature 
range just below TC in the filed range from 0.15 to 0.4 kOe. The existence of the near room temperature skyrmion 
phase in FeGe, to our knowledge the highest TC in B20 skyrmion compounds, makes it one of the most promising 
candidate of the next generation spintronic devices. Recently, more stable skyrmion phase has been realized in 
FeGe thin film, and it has been claimed that the skyrmions can be tuned by the crystal lattice21–23. On the other 
hand, multiple and complex magnetic interactions have also been found in FeGe. An inhomogeneous helimag-
netic state has been discovered above TC due to the strong precursor phenomena19,24. More interestingly, it has 
been revealed that the helical axis (q-vector direction) orientates depending on temperature. At zero magnetic 
field, the helical axis is along the < >100  direction below 280 K. With decreasing temperature, it changes to the 
< >111  direction at 211 K20.

In view of the potential application and abundant physics in FeGe, a deep investigation of its magnetic 
exchange is of great importance not only for fundamental physics such as nonlinear magnetic ordering and soli-
tons but also for creation of a basic for future application of skyrmion states and other chiral modulations in 
spintronics. In this work, the critical behavior of FeGe has been investigated by means of bulk dc-magnetization. 
The critical exponents (β = . ± .0 336 0 004, γ = . ± .1 352 0 003, and δ = . ± .5 267 0 001) are obtained, where the 
self-consistency and reliability are verified by the Widom scaling law and the scaling equations. These critical 
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behavior of FeGe indicates a short-range magnetic interaction with a magnetic exchange distance decaying as 
≈ − .J r r( ) 4 9. The obtained critical exponents also imply an anisotropic magnetic coupling in FeGe system.

Results and Discussion
It is well known that the critical behavior for a second-order phase transition can be investigated through a series 
of critical exponents. In the vicinity of the critical point, the divergence of correlation length ξ leads to universal 
scaling laws for the spontaneous magnetization MS and initial susceptibility χ0. Subsequently, the mathematical 
definitions of the exponents from magnetization are described as25,26:

ε ε= − < <βM T M T T( ) ( ) , 0, (1)S C0

χ ε ε= > >γ− T h M T T( ) ( / ) , 0, (2)C0
1

0 0

ε= = =δM DH T T, 0, (3)C
1/

where ε = −T T T( )/C C is the reduced temperature; M h/0 0 and D are the critical amplitudes. The parameters β 
(associated with MS), γ (associated with χ0), and δ (associated with TC) are the critical exponents. Universally, in 
the asymptotic critical region ε < .( 0 1), these critical exponents should follow the Arrott-Noakes equation of 
state27:

= − +γ βH M T T T M M( / ) ( )/ ( / ) (4)C C
1/

1
1/

Therefore, the critical exponents β and γ can be obtained by fitting the M T( )S  and χ − T( )0
1  curves using the 

modified Arrott plot of βM1/  vs γH M( / )1/ . Meanwhile, δ can be generated directly by the M H( ) at the critical tem-
perature TC according to Eq. (3).

Generally, the critical temperature TC can be roughly determined by the temperature dependence of magneti-
zation [M T( )]. Figure 1(a) shows the M T( ) curves for FeGe under zero-field-cooling (ZFC) and field-cooling (FC) 
with an applied field H =  100 Oe. The M T( ) curves exhibit an abrupt decline with the increase of temperature, 
corresponding to the paramagnetic-helimagnetic (PM-HM) transition. A sharp peak is observed at T =  278.5 K. 
The inset of Fig. 1(a) gives dM dT/  vs T, where TC ≈  283 K is determined from the minimum of the dM dT/  curve. 

Figure 1. (a) The temperature dependence of magnetization [M T( )] for FeGe under H =  100 Oe [the inset 
shows the derivative magnetization (dM dT/ ) vs T]; (b) the isothermal magnetization M H[ ( )] at 4 K (the inset 
gives the magnified region in the lower field regime).
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Wilhelm et al. has demonstrated that a long-rang magnetic order occurs below 278.2 K, however, an inhomogene-
ous helical state has existed above that temperature due to the strong precursor phenomena19,28. The higher TC 
determined here indicates the appearance of precursor phenomena which may be caused by the strong spin fluc-
tuation24. Figure 1(b) shows the isothermal magnetization M H( ) at 4 K, which exhibits a typical magnetic ordering 
behavior. The inset of Fig. 1(b) plot the magnified M H( ) in lower field regime, which shows that the saturation field 
HS ≈  3000 Oe. No magnetic hysteresis is found on the M H( ) curve, indicating no coercive force for FeGe.

Usually, the critical exponents can be determined by the Arrott plot. For the Landau mean-field model with 
β = .0 5 and γ = .1 029, the Arrott-Noakes equation of state evolves into = +H M A BM/ 2, the so called Arrott 
equation. In order to construct an Arrot plot, the isothermal magnetization curves M H( ) around TC are measured 
as shown in Fig. 2(a). The Arrott plot of M2 vs H M/  for FeGe is depicted in Fig. 2(b). According to the Banerjee’s 
criterion, the slope of line in the Arrott plot indicates the order of the phase transition: negative slope corresponds 
to first-order transition while positive to second-order one30. Therefore, the Arrott plot of FeGe implies a 
second-order phase transition, in agreement with the specific heat measurement28. According to the Arrott plot, 
the M2 vs H M/  generally present a series of parallel straight lines around TC, where H M/  vs. M2 at TC just pass 
through the origin31. One can see that all M2 vs H M/  curves show quasi-straight lines with positive slopes in high 
field range. However, all lines show an upward curvature and are not parallel to each other, indicating that the 
β = .0 5 and γ = .1 0 within the framework of Landau mean-field model is unsatisfied. Therefore, a modified 
Arrott plot should be employed.

Four kinds of possible exponents belonging to the 3D-Heisenberg model β = .( 0 365, γ = .1 336), 3D-Ising 
model β = .( 0 325, γ = .1 24), 3D-XY model β = .( 0 345, γ = .1 316), and tricritical mean-field model β = .( 0 25, 
γ = .1 0)29,32 are used to construct the modified Arrott plots, as shown in Fig. 3 (a–d). All these four constructions 
exhibit quasi-straight lines in the high field region33–35. Apparently, the lines in Fig. 3(d) are not parallel to each 
other, indicating that the tricritical mean-field model is not satisfied. However, all lines in Fig. 3(a–c) are almost 
parallel to each other. To determine an appropriate model, the modified Arrott plots should be a series of parallel 
lines in the high field region with the same slope, where the slope is defined as = β γS T dM d H M( ) / ( / )1/ 1/ . The 
normalized slope (NS) is defined as =NS S T S T( )/ ( )C , which enables us to identify the most suitable model by 
comparing the NS with the ideal value of ‘1’33. Plots of NS vs T for the four different models are shown in Fig. 4. 
One can see that the NS of 3D-Heisenberg model is close to ‘1’ mostly above TC, while that of 3D-Ising model is 
the best below TC. This result indicates that the critical behavior of FeGe may not belong to a single universality 
class.

Figure 2. (a) The initial magnetization around TC for FeGe; (b) Arrott plots of M2 vs H M/  [the M H( ) curves 
are measured at interval ∆ =T 1 K, and ∆ = .T 0 5 K when approaching TC].
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The precise critical exponents β and γ should be achieved by the iteration method36. The linear extrapolation 
from the high field region to the intercepts with the axes βM1/  and γH M( / )1/  yields reliable values of M T( , 0)S  and 
χ − T( , 0)0

1 , which are plotted as a function of temperature in Fig. 5(a). By fitting to Eqs. (1) and (2), one obtains a 
set of β and γ. The obtained β and γ are used to reconstruct a new modified Arrott plot. Consequently, new 
M T( , 0)S  and χ − T( , 0)0

1  are generated from the linear extrapolation from the high field region. Therefore, 
another set of β and γ can be yielded. This procedure is repeated until β and γ do not change. As one can see, the 
obtained critical exponents by this method are independent on the initial parameters, which confirms these crit-
ical exponents are reliable and intrinsic. In this way, it is obtained that β = . ± .0 336 0 004 with 
= . ± .T 283 18 0 05C  and γ = . ± .1 352 0 003 with = . ± .T 282 87 0 08C  for FeGe. The critical temperature TC 

from the modified Arrott plot is in agreement with that obtained from the derivative M T( ) curve, indicating 
strong critical fluctuation before the formation of the long-range ordering in FeGe24. This critical fluctuation is in 
agreement with the precursor phenomenon reported by Wilhelm et al.28. The modulated precursor states and 

Figure 3. The isotherms of βM1/  vs γH M( / )1/  with (a) 3D-Heisenberg model; (b) 3D-Ising model; (c) 3D-XY 
model; and (d) tricritical mean-field model.

Figure 4. The normalized slopes [ =NS S T S T( )/ ( )C ] as a function of temperature.
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complexity of the magnetic phase diagram near the magnetic ordering are explained by the change of the charac-
ter of solitonic inter-core interactions and the onset of specific confined chiral modulations19,28.

Figure 5(b) shows the isothermal magnetization M H( ) at the critical temperature =T 283C  K, with the inset 
plotted on a −lg lg scale. One can see that the M H( ) at TC exhibits a straight line on a −lg lg scale for 
>H HS. We determine that δ = . ± .5 297 0 001 in the high field region >H H( )S . According to the statistical 

theory, these critical exponents should fulfill the Widom scaling law37:

δ γ
β

= +1
(5)

As a result, δ = . ± .5 024 0 005 is calculated according to the Widom scaling law, in agreement with the results 
from the experimental critical isothermal analysis. The self-consistency of the critical exponents demonstrates 
that they are reliable and unambiguous.

Finally, these critical exponents should obey the scaling equations. Two different constructions have been used 
in this work, both of which are based on the scaling equations of state. According to the scaling equations, in the 
asymptotic critical region, the magnetic equation is written as25:

ε ε ε= β β γ
±

+M H f H( , ) ( / ) (6)

where ±f  are regular functions denoted as 
+f  for >T TC and −f  for <T TC. Defining the renormalized magnet-

ization as ε ε≡ β−m M H( , ), and the renormalized field as ε≡ β γ− +h H ( ), the scaling equation indicates that m vs 
h forms two universal curves for >T TC and <T TC respectively38,39. Based on the scaling equation = ±m f h[ ( )], 
the isothermal magnetization around TC for FeGe is replotted in Fig. 6(a), where all experimental data collapse 
onto two universal branches. The inset of Fig. 6(a) shows he m2 vs h m/ , where all − −M T H  curves should 
collapse onto two independent universal curves. In addition, the scaling equation of state takes another form25,38:

ε
=






δ β

H
M

k
H (7)1/

where k x( ) is the scaling function. Based on Eq. (7), all experimental curves will collapse onto a single curve. 
Figure 6(b) shows the δ−MH 1/  vs ε β γ− +H 1/( ) for FeGe, where the experimental data collapse onto a single curve, 
and TC locates at the zero point of the horizontal axis. The well-rescaled curves further confirm the reliability of 
the obtained critical exponents.

The obtained critical exponents of FeGe and other related materials, as well as those from different theoretical 
models are summarized in Table 1 for comparison. One can see that the critical exponent γ of FeGe is close to that 

Figure 5. (a) The temperature dependence of MS and χ 0−1 for FeGe with the fitting solid curves; (b) the 
isothermal M H( ) at TC with the inset plane on −lg lg scale (the solid line is fitted).
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of 3D-Heisenberg model, while β approaches to that of 3D-Ising or 3D-XY mode, indicating that the critical 
behavior of FeGe do not belong to a single universality class. Anyhow, all these three models indicate a short-range 
magnetic coupling, implying the existence of short-range magnetic interaction in FeGe. As we know, for a homo-
geneous magnet, the universality class of the magnetic phase transition depends on the exchange distance J r( ). 
M. E. Fisher et al. have treated this kind of magnetic ordering as an attractive interaction of spins, where a renor-
malization group theory analysis suggests J r( ) decays with distance r as40,41:

≈ σ− +J r r( ) (8)d( )

where d is the spatial dimensionality and σ is a positive constant. Moreover, there is41,42:

Figure 6. (a) Scaling plots of renormalized magnetization m vs renormalized field h around the critical 
temperatures for FeGe (the inset shows the m2 vs h m/ ); (b) the rescaling of the the M H( ) curves by δ−MH 1/  vs 
ε β γ− +H 1/( ).

Composition technique Ref. TC(K) β γ δ

FeGePC MAP This work 283 0.336 ±  0.004 1.352 ±  0.003 5.267 ±  0.001

3D-Heisenberg theory 29 – 0.365 1.386 4.8

3D-XY theory 29 – 0.346 1.316 4.81

3D-Ising theory 29 – 0.325 1.24 4.82

Tricritical mean-field theory 32 – 0.25 1.0 5.0

Mean-field theory 29 – 0.5 1.0 3.0

MnSiSC MAP 48 30.5 0.242 ±  0.006 0.915 ±  0.003 4.734 ±  0.006

Fe0.8Co0.2SiPC Hall 45 36.0 0.371 ±  0.001 1.38 ±  0.002 4.78 ±  0.01

Cu2OSeO3
SC AC 46 58.3 0.37(1) 1.44(4) 4.9(1)

Table 1.  Comparison of critical exponents of FeGe with different theoretical models and related 
materials (MAP = modified Arrott plot; Hall = Hall effect; AC = ac susceptibility; SC = single crystal; 
PC = polycrystal).
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, n is the spin dimensionality. For a three dimensional material 

(d =  3), we have ≈ σ− +J r r( ) (3 ). When σ ≥ 2, the Heisenberg model (β = .0 365, γ = .1 386 and δ = .4 8) is valid 
for the three dimensional isotropic magnet, where J r( ) decreases faster than r−5. When σ ≤ 3/2, the mean-field 
model β = .( 0 5, γ = .1 0 and δ = .3 0) is satisfied, expecting that J r( ) decreases slower than − .r 4 5. From Eq. (9) 
σ = . ± .1 908 0 007 is generated for FeGe, thus close to the short-range magnetic coupling of σ ∼ 2. Subsequently, 
it is found that the magnetic exchange distance decays as ≈ − .J r r( ) 4 9, which indicates that the magnetic coupling 
in FeGe is close to a short-range interaction. Moreover, we get the correlation length critical exponent 
ν = . ± .0 709 0 008 (where ν γ σ= / , ξ ξ= − ν−T T T( )/C C0 ), and α ν= − = − .d(2 ) 1 127 ±  0.008. Theory 
gives that α = − .0 115(9) for 3D-Heisenberg model and α = .0 110(5) for 3D-Ising model43,44. Therefore, these 
critical exponents indicates that the critical behavior in FeGe is close to the 3D-Heisenberg model with 
short-range magnetic coupling. However, the discrepancy of the critical exponents to 3D-Ising or 3D-XY models 
indicates an anisotropic magnetic exchange interaction.

As can be seen from Table 1, the critical exponents of Fe0.8Co0.2Si and Cu2OSeO3, which also exhibit a helimag-
netic and skyrmion phase transition with similar crystal symmetry, are close to the universality class of the 
3D-Heisenberg model45,46, indicating a isotropic short-range magnetic coupling. However, the critical behavior of 
MnSi belongs to the tricritical mean field model47,48. In macroscopic view, the magnetic ordering in cubic FeGe is 
a DM spiral similar to the structure observed in the isostructural compound MnSi49. However, in microscopic 
view, the magnetic coupling types in these two helimagnets are different. The critical behavior of FeGe is roughly 
similar to those of Fe0.8Co0.2Si or Cu2OSeO3, except a magnetic exchange anisotropy. In MnSi the spiral propagates 
are along equivalent < >111  directions at all temperatures below = .T 29 5C  K. However, it has been revealed that 
the helical axis (q− vector direction) in FeGe depends on temperature. It is along the < >001  direction below 280 K, 
and changes to the < >111  direction in a lower temperature range at 211 K with the decrease of temperature at zero 
magnetic field20. This unique change of helical axis in FeGe may be correlated with the anisotropy of magnetic 
exchange in this system, since the magnetic exchange anisotropy also plays an important role in determination of 
the spin ordering direction. In addition, it should be expounded that the magnetic exchange anisotropy is essen-
tially different from the magnetocrystalline anisotropy. The magnetocrystalline anisotropy is correlated to the crys-
tal structure, while magnetic exchange anisotropy originates from the anisotropic magnetic exchange coupling J.

Conclusion
In summary, the critical behavior of the near room temperature skyrmion material FeGe has been investigated 
around TC. The reliable critical exponents (β = . ± .0 336 0 004, γ = . ± .1 352 0 003, and δ = . ± .5 267 0 001) are 
obtained, which are verified by the Widom scaling law and scaling equations. The magnetic exchange distance is 
found to decay as ≈ − .J r r( ) 4 9, which is close to that of 3D-Heisenberg model (r−5). The critical behavior indicate 
that the magnetic interaction in FeGe is of short-range type with an anisotropic magnetic exchange coupling.

Methods
A polycrystalline B20-type FeGe sample was synthesized with a cubic anvil-type high-pressure apparatus. The 
detailed preparing method was described elsewhere, and the physical properties were carefully checked [H. Du. et 
al., Nat. Commun. 6, 8504 (2015)]. The chemical compositions were determined by the Energy Dispersive X-ray 
(EDX) Spectrometry as shown in Fig. S1 and Table S I, which shows the atomic ratio of Fe : Ge ≈  50.52: 49.48. The 
magnetization was measured using a Quantum Design Vibrating Sample Magnetometer (SQUID-VSM). The 
no-overshoot mode was applied to ensure a precise magnetic field. To minimize the demagnetizating field, the 
sample was processed into slender ellipsoid shape and the magnetic field was applied along the longest axis. In 
addition, the isothermal magnetization was performed after the sample was heated well above TC for 10 minutes 
and then cooled under zero field to the target temperatures to make sure curves were initially magnetized. The 
magnetic background was carefully subtracted. The applied magnetic field Ha has been corrected into the internal 
field as = −H H NMa  (where M is the measured magnetization and N is the demagnetization factor) [A. K. 
Pramanik et al., Phys. Rev. B 79, 214426 (2009)]. The corrected H was used for the analysis of critical behavior.
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