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Abstract

The domains are the structural and functional units of proteins. With the avalanche of protein sequences generated in the
postgenomic age, it is highly desired to develop effective methods for predicting the protein domains according to the
sequences information alone, so as to facilitate the structure prediction of proteins and speed up their functional
annotation. However, although many efforts have been made in this regard, prediction of protein domains from the
sequence information still remains a challenging and elusive problem. Here, a new method was developed by combing the
techniques of RF (random forest), mRMR (maximum relevance minimum redundancy), and IFS (incremental feature
selection), as well as by incorporating the features of physicochemical and biochemical properties, sequence conservation,
residual disorder, secondary structure, and solvent accessibility. The overall success rate achieved by the new method on an
independent dataset was around 73%, which was about 28–40% higher than those by the existing method on the same
benchmark dataset. Furthermore, it was revealed by an in-depth analysis that the features of evolution, codon diversity,
electrostatic charge, and disorder played more important roles than the others in predicting protein domains, quite
consistent with experimental observations. It is anticipated that the new method may become a high-throughput tool in
annotating protein domains, or may, at the very least, play a complementary role to the existing domain prediction
methods, and that the findings about the key features with high impacts to the domain prediction might provide useful
insights or clues for further experimental investigations in this area. Finally, it has not escaped our notice that the current
approach can also be utilized to study protein signal peptides, B-cell epitopes, HIV protease cleavage sites, among many
other important topics in protein science and biomedicine.
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Introduction

Protein domains are structural, evolutionary and functional

units of proteins. Prediction of protein domains from the sequence

information can facilitate the prediction of protein tertiary

structure [1,2], the annotation of protein functions [2,3], the

protein structure determination [4], protein engineering [5] as well

as mutagenesis [6,7]. Particularly, the functional domains are

actually the cores of proteins that play the major role for their

functions. That is why in determining the 3D (three dimensional)

structure of a protein by experiments (see, e.g., [8,9,10,11]) or by

computational modeling (see, e.g., [7,12,13,14,15]) the first

priority was always focused on its functional domain. This is

because the knowledge of protein functional domains is important

for both basic research and drug development. Recently, the

functional domain information of proteins has been widely used to

formulate protein samples through the conception of pseudo

amino acid composition [16,17] for predicting various important

attributes of proteins, such as membrane proteins and their types

[18], GPCRs and their types [19,20], proteases and their types

[21], protein quaternary structural attribute [22,23], protein

structural classification [24], and protein subcellular localization

[25,26,27]. Meanwhile, the protein domain information was also

used to help analyzing protein-protein binding interactions [28,29]

and predicting the network of substrate-enzyme-product triads

[30].

With the avalanche of protein sequences generated in the

postgenomic age, many efforts have been made in hopes to predict

the domains of proteins from their primary sequences alone. They

can be roughly divided into three categories: (i) template-based

method [31,32,33], (ii) ab-initio method [34,35], and (iii) hybrid

method by combining the aforementioned two [36,37,38]. Most

template-based approaches attempted to find homologous se-

quences in the existing domain databases and then infer the

domains of the query protein from these sequences. The obvious

drawback of the template-based method was that it would work

only when a domain was conserved and had already been

deposited in a database. In other words, such an approach would

fail to work if the query protein did not have significant sequence

similarity to any of the domain-known proteins. In contrast to the
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template-based method, the ab-initio method could make predic-

tions basically only based on the primary sequence information

alone, and hence for those query proteins without significant

sequence similarity to any of the domain-known proteins, the ab-

initio method would be a good choice. The concreted techniques

involved in the ab-initio methods are the machine learning

algorithms [35,39], artificial neural networks [40], and support

vector machines [41,42], along with the high quality domain

databases such as CATH [43], SCOP [44] and DALI [45].

However, since it needed to scan the entire sequence of a protein

usually involving several hundreds of amino acids, and also relied

on the inputs containing weak domain information, the ab-initio

method needed much more computational time and also often

suffered from low prediction accuracy. The third method, or the

hybrid method [36,37,46], took the strategy by integrating the

template-based method and the ab-initio method. In the mean

time, many softwares and web-server tools were developed for

predicting protein domains, such as FIEFDom [47], DoMpro

[40], DROP [42], DomCut [48] and Globplot [49]. Most of these

tools aimed at predicting domain linker or domain boundary, and

then followed by inferring the domain region.

The present study was initiated in an attempt to address the

problem from such a keypoint by first identifying each of the

constituent amino acid residue in a query protein belonging to the

domain region or not. The techniques involved were RF (random

forest), mRMR (maximum relevance minimum redundancy), and

IFS (incremental feature selection). The amino acid features

incorporated were the sequence conservation, residual disorder,

secondary structure propensity, and solvent accessibility.

As summarized in a review [17] and demonstrated by a series of

recent publications [50,51,52,53,54,55,56], to establish a really

useful statistical predictor for a protein system, we need to consider

the following procedures: (i) construct or select a valid benchmark

dataset to train and test the predictor; (ii) formulate the protein

samples with an effective mathematical expression that can truly

reflect their intrinsic correlation with the target to be predicted; (iii)

introduce or develop a powerful algorithm (or engine) to operate

the prediction; (iv) properly perform cross-validation tests to

objectively evaluate the anticipated accuracy of the predictor.

Below, let us describe how to deal with these steps.

Materials and Methods

1. Benchmark Dataset
A total of 517,100 protein sequences were retrieved from

UniProt/Swiss-Prot database (version 2010_06) [57]. In order to

construct a high-quality benchmark dataset, protein sequences

were screened strictly according to the following criteria. (i) To

reduce redundancy and homology bias, the cutoff threshold was

set at 25% as suggested in [58], meaning that those sequence

samples were removed by means of the program CD-HIT [59]

that had §25% pairwise sequence identity to any other in the

dataset. (ii) Of the remaining 45,942 protein samples obtained via

the above winnowing procedure, only 9,409 were kept that had

clear experimental domain annotations. (iii) Of the samples

obtained via the above step, 110 proteins were removed because

their disorder feature could not be calculated. Finally, a total of

9,299 protein sequences were obtained for the benchmark dataset

S used in this study.

Furthermore, on the basis of the benchmark dataset S, two

working datasets, i.e., a learning (training) dataset SL and an

independent testing dataset S
T

, were constructed. In order to fully

use the data in S and meanwhile guarantee that SL and ST be

completely independent of each other, the following condition was

imposed:

SL|ST~S and SL\ST~1 ð1Þ

where |, \, and 1 represent the symbols for ‘‘union’’,

‘‘intersection’’, and ‘‘empty set’’ in the set theory, respectively.

Constrained by the condition of Eq.1, 8,000 protein sequences

were randomly picked for the learning dataset SL and the

remaining 1,299 sequences for the testing dataset S
T

. See the

Online Supporting Information S1 for the codes of the proteins

included in the two datasets, S
L

and S
T

, respectively.

Three different sliding windows [60] were used to generate the

positive and negative datasets for this study: size-13, size-15, and

size-17. For the size-13 window, we extracted all the 13-residue

segments along a protein chain. The segments thus obtained can

be denoted as seg(13) and classified into the following two groups:

seq(13)~
positive,

if the center residue at the subsite

7 is within the domain region

negaticve, otherwise

8<
: ð2Þ

During the operation of sliding the window along a protein

chain (cf. Figure 4 of [61], not all segments thus generated contain

13 amino acid residues. For those with less than 13 residues such

as the ones generated at the positions close to the N-terminal or C-

terminal, we complement their subsites with the nominal amino

acid ‘‘X’’ to make them contain 13 residues as well. Thus, we

obtained 1,694,782 positive samples and 4,093,531 negative

samples from the learning dataset SL. Subsequently, for each of

the two sets of 13-residue samples, the program CD-HIT [59] was

used to remove those that had §40% pairwise sequence identity

to any other in a same set. Finally, we obtained 121,013 positive

samples and 242,026 negative samples; i.e.,

S
z
13 contains 121,013 positive segments of seq 13ð Þ

S{
13 contains 242,206 negative segments of seq 13ð Þ

(
ð3Þ

where Sz
13 represents the positive learning dataset derived from SL

using the size-13 sliding window according to Eq.2, while S{
13 the

corresponding negative dataset derived from SL.

By following the same procedure but using size-15 and size-17

sliding windows, respectively, we obtained

S
z
15 contains 88,056 positive segments of seq(15)

S
{
15 contains 176,112 negative segments of seq(15)

(
ð4Þ

and

Sz
17 contains 89,044 positive segments of seq(17)

S{
17 contains 178,088 negative segments of seq(17)

(
ð5Þ

Now, the similar operation was made with the sliding windows

on the 1,299 sequences in the testing dataset ST, and we obtained

250,208 positive samples and 573,791 negative samples, respec-

tively; i.e.,

Protein Domain Prediction
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Sz
T contains 250,208 positive segments

S{
T contains 573,791 negative segments

(
ð6Þ

where Sz
T represents the positive learning dataset derived from

ST, while S{
T the corresponding negative dataset.

2. Feature Construction and Computational Method
2.1 The features of PSSM conservation scores. Biology is

a natural science with historic dimension. All biological species

have developed starting out from a very limited number of

ancestral species. The evolution in protein sequences involves

changes of single residues, insertions and deletions of several

residues [13], gene doubling, and gene fusion. In the course of

time such changes accumulate, so that many similarities between

initial and resultant amino acid sequences are eliminated, but the

corresponding proteins may still share many common attributes,

such as containing to a same domain and possessing basically the

same function. In view of this, evolutionary conservation will play

important roles in biological analysis: a more conserved residue

within a protein sequence may indicate that it is more important

for the protein function and thus under stronger selective pressure.

To incorporate this kind of evolutionary effects, we used PSSM

(position-specific scoring matrix) [62] generated by Position

Specific Iterative BLAST (PSI BLAST) [63] to measure the

conservation status for a specific residue. A 20-dimensional vector

was used to denote the probabilities of conservation against

mutations to 20 different amino acids for a specific residue. For a

given sequence with L, its PSSM would correspond to a L|20
matrix, as formulated by equation 12 of [54]. Similar PSSM

approaches have been successfully used to enhance the prediction

quality for various protein attributes (see, e.g.,

[21,26,27,50,54,55,56,64,65,66,67,68,69].

2.2 The features of amino acid factors. Since each of the

20 amino acids has specific but different properties, the

composition of these properties of different residues within a

protein may have impacts on its structure and function. AAIndex

[70] is a database containing various physicochemical and

biochemical properties of amino acids. Atchley et al. [71]

performed multivariate statistical analyses on AAIndex and

transformed AAIndex to five multidimensional and highly

interpretable numeric patterns of attribute covariation that could

reflect (i) polarity, (ii) secondary structure, (iii) molecular volume,

(iv) codon diversity, and (v) electrostatic charge. Such five

numerical pattern scores, denoted as AAFactor (amino acid

factors), were used in this study to represent the respective

properties of each amino acid in a given protein.

Figure 1. A plot to show the change of the MCC values versus the feature numbers with different window sizes. The IFS curves were
drawn based on the data in Online Supporting Information S3. The MCC value reached the peak when the number of feature = 360 and the window
size = 13. The 360 features thus obtained were used to form the optimal feature set for the protein domain predictor. Purple line is for the case of
size-17 window, green for size-15 window, and brown for size-17 window. See the text for further explanation.
doi:10.1371/journal.pone.0039308.g001
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2.3 The features of disorder score. Protein segments

lacking fixed three-dimensional structures under physiological

conditions play important roles in biological functions [72,73,74].

The disordered regions of proteins allow for more modification

sites and interaction partners and always contain PTM (post

translational modification) sites, sorting signals, and protein

ligands. Therefore they are quite important for protein structure

and function [72,75,76]. In this study, the program VSL2 [77],

which can accurately predict both long and short disordered

regions in proteins, was used to calculate the disorder score that

denotes the disorder status of each amino acid in a given protein

sequence.

Table 1. The predicted results obtained with different window size.

Window
size Dataset Sensitivityc <sen Specificityc <spe Accuracyc <acc MCCc

13 SLa 0.577 0.768 0.704 0.342

STb 0.578 0.794 0.728 0.367

15 SLa 0.570 0.766 0.701 0.334

STb 0.571 0.793 0.726 0.360

17 SLa 0.569 0.767 0.701 0.333

S
Tb 0.574 0.793 0.726 0.362

a5-fold crossover test based on the learning dataset SL (cf. Eq.1).
bUsing the rule trained by S

L to predict the query proteins in the independent dataset S
T (cf. Eq.1).

cSee Eq.14 for more explanation.
doi:10.1371/journal.pone.0039308.t001

Figure 2. A 2-dimensional histogram to characterize the final optimal features set. The impact on the domain prediction from (A) the five
different feature types, and (B) each of the 13 subsites. See the text for further explanation.
doi:10.1371/journal.pone.0039308.g002
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2.4 The features of secondary structure and solvent

accessibility. As is well known, the function of a protein is

closely correlated with its structure, and the post-translational

modification of specific residues may be affected by the solvent

accessibility of the relevant residues. Therefore, it would be useful

during the process of encoding the constituent amino acids by also

taking into account the features such as the secondary structure

propensity and solvent accessibility. These kinds of features could

be predicted by the software SSpro4 [78]. The second structural

propensity predicted by SSpro4 for each amino acid was ‘‘helix’’,

‘‘strand’’, or ‘‘other’’, encoded with ‘‘100’’, ‘‘010’’ and ‘‘001’’,

respectively; the solvent accessibility as ‘buried’ or ‘exposed’,

encoded with ‘‘10’’ and ‘‘01’’, respectively.

2.5 Feature space and feature vector. Each of the residues

in a given protein segment was formulated in terms of 31 features,

of which 20 from the PSSM scores, 1 from the disorder score, 5

from the AAFactor, 3 from the secondary structural propensities,

and 2 from the solvent accessibility states. Thus, each of the

segment samples generated by the size-13 sliding window would

contain 31|13~403 features; that by the size-15 sliding window,

31|15~465; and that by the size-17 sliding window,

31|17~527. According to the general form of pseudo amino

acid composition (cf. equation 6 of [17], each of these segments

can be formulated by the following feature vector:

seq(j)~ y1 y2 � � � yu � � � yV½ �T ð7Þ

where yu(u~1,2,:::) represents the u-th feature score, T the

transpose operator, and

V

403, when j~13

465, when j~15

527, when j~17

8><
>: ð8Þ

For those segments that contain the nominal residue ‘‘X’’, the

corresponding subsite was substituted with zero.

2.6 The mRMR method. In this study, the mRMR

(minimal-redundancy-maximal-relevance) criterion [79] was used

to rank the importance of the features. The mRMR method could

rank the features according to their relevance to the target

concerned and the redundancy among the features themselves.

The ranked feature with a smaller index indicates that it has a

better trade-off between the maximum relevance and minimum

redundancy. To quantify both the relevance and redundancy, the

following mutual information (MI) is defined to estimate how one

vector is related to another:

Figure 3. A 2-dimensional histogram to characterize the PSSM features in the final optimal features set. (A) The impact on the domain
prediction from the mutation to each of the 20 amino acid types. (B) The evolutional conservation status for each of the 13 subsites. See the text for
further explanation.
doi:10.1371/journal.pone.0039308.g003
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I(x,y)~

ðð
p(x,y)log

p(x,y)

p(x)p(y)
dxdy ð9Þ

where x, y are two vectors, p(x,y) is the joint probabilistic density,

p(x) and p(y) are the marginal probabilistic densities. Suppose G

denotes the entire space containing all the feature components, Gs

denotes the already-selected feature set containing m features, and

Gt denotes the to-be-selected feature set containing n features. The

relevance D between the feature f in G and the target c can be

calculated by

D~I(f ,c) ð10Þ

The redundancy R between the feature f in Gt and all the features

in Gs can be calculated by

R~
1

m

X
fi[Gs

I(f ,fi) ð11Þ

To get the feature fj in Gt with the maximum relevance and

minimum redundancy, let us combine Eq.10 with Eq.11, as

formulated by

max
fj[Gt

I(fj ,c){
1

m

X
fi[Gs

I(fj ,fi)

2
4

3
5 (j~1,2, � � � ,n) ð12Þ

The mRMR feature evaluation would continue N rounds when

given a feature set with N(~mzn) features. After these

evaluations, a feature set S can be obtained by the mRMR

method as formulated below

S~ f1

0
,f2

0
, � � � ,fh

0
, � � � ,f 0N

n o
ð13Þ

where each feature in S has a subscript index indicating at which

round the feature is selected. The better the feature is, the earlier it

has been selected.

The mRMR program can be downloaded from the web-site at

http://penglab.janelia.org/proj/mRMR/.

2.7 The RF (random forest) method. The RF approach is

a popular machine-learning algorithm that has been recently

successfully used in dealing with various biological prediction

problems (see, e.g., [38,52,80,81,82,83]). Developed by Loe

Breiman [84], RF is an ensemble predictor consisting of multiple

decision trees. In Weka 3.6.4 [85], the classifier named with

‘‘RandomForest’’ has implemented the predictor. In the current

Figure 4. A 2-dimensional histogram to characterize the amino acid factor types in the final optimal features set. The impact on the
domain prediction from (A) the five different amino acid types, and (B) each of the 13 subsites. See the text for further explanation.
doi:10.1371/journal.pone.0039308.g004
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study, RandomForest was adopted as the prediction engine and

operated with the default parameters. During the process of

classifying a queried sample with its feature vector, RandomForest

first grew 10 decision trees according to the following procedures.

(i) Suppose the number of training cases is N, take N samples at

random – but with replacement, from the original data. These

samples are to form the training set for growing the tree. Here the

so-called ‘‘with replacement’’ is a mathematical term meaning that

a sample selected at random from the original dataset is returned

to the original dataset before a second one is selected at random.

In other words, whenever a sample is selected, the original dataset

contains all the same samples. Thus, an exactly same sample may

be selected more than once, and there is no change at all in the

size of the original dataset at any stage. (ii) If each case consists of

M input features, choose a number m = [log2M+1] which is much

less than M. At each node, m features are selected randomly out of

the M features and the most optimized split on these m features is

employed to split the node. The value of m does not change during

the growth of the tree. (iii) Each tree is fully grown and not pruned.

Then the input vector is predicted by each of 10 decision tree and

10 predicted classes provided by them are obtained. Finally, the

class with the most votes will be selected as the output class of

RandomForest.

The Weka program package can be downloaded from the web-

site at http://www.cs.waikato.ac.nz/ml/weka/index_downloading.

html

2.8 The cross-validation method. In statistical prediction,

the following three cross-validation methods are often used to

examine a predictor for its effectiveness in practical application:

independent dataset test, subsampling test, and jackknife test [86].

However, as elucidated in [58] and demonstrated by Eqs.28–32 of

[17], among the three cross-validation methods, the jackknife test

is deemed the least arbitrary (most objective) that can always yield

a unique result for a given benchmark dataset, and hence has been

increasingly used and widely recognized by investigators to

examine the accuracy of various predictors (see, e.g.,

[20,26,27,87,88,89,90,91]). However, to reduce the computational

time, we adopted the 5-fold cross-validation in this study as done

by many investigators with SVM as the prediction engine (see, e.g.,

[92,93,94]). During the process of 5-fold cross-validation, the

benchmark dataset was first equally divided into 5 subsets.

Subsequently, each of the subsets was in turn used as the testing

dataset and the remaining four subsets as the training or learning

dataset. To evaluate the performance of the predictor, the

prediction accuracy, specificity, sensitivity and MCC (Matthews’s

correlation coefficient) were calculated below:

Figure 5. A 2-dimensional histogram to characterize the solvent accessibility types in the final optimal features set. The impact on the
protein domain prediction from (A) the two different types of the solvent accessibility, and (B) each of the 13 subsites. See the text for further
explanation.
doi:10.1371/journal.pone.0039308.g005
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<sen~
TP

TPzFN

<spe~
TN

TNzFP

<aac~
TPzTN

TPzFPzTNzFN

MCC~
(TP)(TN)-(FP)(FN)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½TPzFP�½TPzFN�½TNzFP�½TNzFN�
p

8>>>>>>>>>>><
>>>>>>>>>>>:

ð14Þ

where <sen reflects the sensitivity, i.e., the rate of positive samples

that are correctly predicted as positive; <spe reflects the specificity,

i.e., the rate of negative samples that are correctly predicted as

negative; <acc reflects the accuracy, i.e., the rate of correctly

predicted events; MCC is the Matthew’s correlation coefficient;

TP represents the true positive; TN, the true negative; FP, the false

positive; and FN, the false negative.

2.9 The IFS (incremental feature selection)

approach. Based on the ranked features according to their

importance evaluated by the mRMR approach, we used the IFS

[95,96,97] approach to determine the optimal number of features.

During the IFS procedure, features in the ranked feature set were

added with a stepwise of l from higher to lower rank. A new

feature set was formed when l features had been added. Thus

N=l½ � feature sets would be composed for N ranked features. The i-

th feature set is:

Si~fSl ,S2l , � � � ,Silg (1ƒiƒ½N=l�) ð15Þ

where N denotes the total number of features in the original

dataset and l (step) is a positive integer. In this study l~5. For each

of the [N/l] feature sets, an RF classifier was constructed and

examined using the 5-fold cross-validation on the benchmark

dataset. By doing so we obtained an IFS table with one column for

the index i and the other four columns for the prediction accuracy,

sensitivity, specificity and MCC, respectively. Thus, we could

obtain the optimal feature set (Soptimal), with which the predictor

would yield the best prediction performance.

2.10 The final optimal feature set. The MCC curve was

fluctuating with the increase of feature numbers. Therefore, it was

necessary to carefully examine its variation against the increasing

feature number. In this study the feature-increasing gap was set at

5 to winnow out the optimal features. In other words, we

compared two neighbor MCC values at a time with a stepwise of

five features, if the latter MCC value is greater than the former

one, then the corresponding five features were reserved to join the

Figure 6. A 2-dimensional histogram to characterize the secondary structure types in the final optimal features set. The impact on the
domain prediction from (A) the three different secondary structure types, and (B) each of the 13 subsites. See the text for further explanation. See the
text for further explanation.
doi:10.1371/journal.pone.0039308.g006
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final optimal feature set; otherwise, discarded. The final optimal

feature set thus established consisted of 195 features and would be

used for further analysis.

We installed Weka into our Linux machine. Its ‘‘Run

Environment and Configuration’’ was: Hardware 2 Intel(R)

Xeon(R); CPU E5335@2.00 GHz; 16 G RAM; OS CentOS

release 4.9 (Final) x86_64.

Figure 7. Illustration to show the predicted results obtained before and after applying the sequence-scanning refinement
operation. A residue assigned to the domain region was coded with ‘‘1’’; otherwise, ‘‘2’’. The 3D structure of A1A5Q6 was retrieved from ModBase.
See the text for further explanation.
doi:10.1371/journal.pone.0039308.g007
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Results and Discussion

1. The mRMR Result
Listed in the Online Supporting Information S2 are two kinds of

outcomes obtained by running the mRMR software: one is called

the ‘‘MaxRel feature list’’ that ranked all the features according to

their relevance to the class of samples; the other one is the

‘‘mRMR feature list’’ that ranked the features according to the

criteria of maximum relevance and minimum redundancy. In the

mRMR feature list, the smaller the index of a feature was, the

more important the feature would be for the protein domain

prediction. Accordingly, the mRMR feature list could be used to

establish the optimal feature set in the IFS procedure.

2. IFS and Final Optimal Feature Set
In Section 2.9 of Materials and Methods, by setting 403 for N

and 5 for the feature-increasing gap, 80 individual predictors

corresponding to 80 feature subsets were established for predicting

the protein domain sites in the sequence samples generated by the

size-13 sliding window. Listed in the Online Supporting Informa-

tion S3 are the rates of prediction accuracy, specificity, sensitivity

and MCC (cf. 14) obtained by each of the 80 predictors. Shown in

Fig. 1 is the IFS curve plotted based on the data in Online

Supporting Information S3. The same calculations were also

carried out for the size-15 and size-17 windows, and the

corresponding results were also plotted in Fig. 1, from which

we can see that the predictor based on the size-13 window

outperformed the other two, and that the maximal MCC was

0.342 when 360 features were included. These 360 features were

deemed to form the optimal feature set of our classifier. With such

a classifier, the prediction sensitivity, specificity and accuracy were

0.577, 0.768 and 0.704 respectively (Table 1). The optimal 360

features were given in the Online Supporting Information S4.

After taking the IFS procedure (cf. In Sections 2.9 and 2.10 of

Materials and Methods), we obtained the 195 final optimal

features as given in the Online Supporting Information S5.

Hereafter, all the analyses will be based on such 195 final

optimal features.

The CPU time of the above calculation for size-13, 15 and 17

windows were about 4 hours, 5 hours and 6 hours, respectively.

3. Feature Analysis
The distribution of the number of each type of features in the

final optimal feature set was investigated and shown in Fig. 2A. Of

the 195 optimal features, 147 were from PSSM conservation

scores, 21 from the amino acid factors, 4 from the disorder scores,

7 from the solvent accessibilities, and 16 from the secondary

structural propensities. All these five kinds of features made

contributions to the prediction of protein domain sites. It was

revealed by the site-specific distribution of the optimal feature set

(see Fig. 2B) that sites 1–2, site 10 and site 13 played most

important roles in determining the domain sites. In addition, the

features of site 4 and site 5 also had considerable impacts on the

prediction of protein domain sites.

4. PSSM Conservation Score Feature Analysis
As mentioned above, among the 195 optimal features, 147

belonged to the PSSM conservation features and hence had the

highest proportion. It can be clearly seen from Fig. 3A that each

of the 20 different amino acid types would have different PSSM

conservation impact in determining the protein domain site. In

this regard, the amino acid N (asparagine) or D (aspartic acid)

would have the highest impact, successively followed by G

(glycine), R (arginine), and so forth. Interestingly, it has been

reported that D, G and R were over-represented in protein

interaction domains [98]. Besides, G was believed to be

instrumental in defining the core domain and inter-domain

regions of a protein [39]. Meanwhile, as shown in Fig. 3B, for

the samples generated by the size-13 window (cf. Eq.2), the

conservation status at the subsite 10 played the most important

role in predicting the protein domain site, followed by the subsites

1, 2, 4, and 7. Furthermore, of the top ten features in the final

optimal feature list, five were from the PSSM conservation

features. The first one was the conservation status against residue

M (methionine) at subsite 1 (index 3, ‘‘AA1_pssm_13’’). The

other four were the conservation status against residue A at

subsite 12 (index 4, ‘‘AA12_pssm_1’’), the conservation status

against residue G at subsite 6 and site 4 (index 6 and index 7,

‘‘AA6_pssm_8’’ and AA4_pssm_8), and the conservation status

Table 2. A comparison between the predicted results with and without the scanning refinement.

Window size Scanning refinementa Sensitivityb <sen Specificityb<spe Accuracyb <acc MCCb

13 No 0.578 0.794 0.728 0.367

Yes 0.642 0.808 0.758 0.441

15 No 0.571 0.793 0.726 0.360

Yes 0.634 0.806 0.754 0.431

17 No 0.574 0.793 0.726 0.362

Yes 0.645 0.804 0.756 0.438

aSee section 9 of Results and Discussion for more explanation about the scanning procedure.
bSee Eq.14 for more explanation.
doi:10.1371/journal.pone.0039308.t002

Table 3. Comparison of the current method with the existing
methods on the same testing dataset S

T (cf. Eq.1).

Method
Sensitivity
<sen

Specificity
<spe

Accuracy
<acc MCC

Our method 0.643 0.808 0.757 0.441

DoMpro [40] 0.924 0.182 0.406 0.138

Globplot [49] 0.868 0.325 0.485 0.199

Domcut [48]a 0.979 0.110 0.367 0.149

Domcut [48]b 0.856 0.325 0.482 0.186

aUsing the default cutoff threshold of 20.09.
bUsing the optimal cutoff threshold,
doi:10.1371/journal.pone.0039308.t003

Protein Domain Prediction

PLoS ONE | www.plosone.org 10 June 2012 | Volume 7 | Issue 6 | e39308



against residue T (threonine) at subsite 2 (index 8,

‘‘AA2_pssm_17’’)

5. Amino Acid Factor Analysis
Illustrated in Fig. 4 are the impacts of different amino acid

factors and their subsite locations to the protein domain

prediction. It can be seen from Fig. 4A that the codon diversity

was the most important feature to the protein domain site

prediction, as supported by [98,99]. Besides, it was reported that

‘‘codon harmonization’’ would put some non-preferred codons

into the positions corresponding to the predicted protein domain

boundaries [100]. Furthermore, the electrostatic charge has

proved to be essential for the localization and activation of many

proteins containing polycationic domains in their amino acid

sequence [101]. Meanwhile, it has also been revealed that

binding of oppositely charged proteins via electrostatic interac-

tions can induce domain formation [102]. As shown in Fig. 4B,

the amino acid residues at the subsite 2 and site 13 would have

the highest impact to the protein domain sites prediction.

Interestingly, the electrostatic feature at the subsite 13 had an

index of 2 in our final optimal feature set, indicating that it was

one of the most important features for the protein domain site

prediction.

6. Disorder Analysis
Within the final optimal feature set, four of all the 13 disorder

features were selected, indicating that the disorder feature might

play a pivotal role in protein domain site prediction. Such four

disorder features were from subsites 1, 5, 10 and 13. Particularly,

the disorder feature of subsite 5 had the index of 1 in the final

optimal feature set, suggesting that it was the most important

feature in the protein domain site prediction. Also, the disorder

feature of subsite 13 has an index of 9 in the final optimal feature

site. These findings are fully consistent with the observations that

the regions of substantial structural flexibility in a protein often

correspond to domain boundaries where the structure is usually

exposed and less constrained [39].

7. Solvent Accessibility Features Analysis
Shown in Fig. 5 are the solvent accessibility features in the

optimal feature set. It can be seen from Fig. 5A that the number

of buried solvent accessibility features was much more than that of

the exposed, indicating that the protein domains were skewed

toward the buried areas. Such findings are consistent with the

report the buried protein regions can be accessible to water when

they are in a free subunit or in one domain state and can form a

complex or an aggregate with other subunits or domains [103].

Moreover, it can be seen from Fig. 5B that the solvent

accessibility features at the subsites 2, 3, 8, 9, and 11–13 have

relatively more impacts on the domain site prediction.

8. Secondary Structure Features Analysis
The feature and site-specific distribution of the secondary

structure in the optimal feature set was given in Fig. 6, from which

we can see that the features of ‘‘strand’’ and ‘‘other’’ did affect the

domain site prediction (panel A), while the secondary structure

features at subsites 1, 5, 6, 8 and 13 had relatively more impact on

the domain site determination (panel B).

9. Scan the Entire Protein Sequence to Refine the Domain
Region Prediction

As mentioned above, each of the amino acid residues in a

protein sequence was identified whether it belonged to a domain

region or non-domain region (cf. Eq.2). If a residue was identified

as belonging to a domain region, it was coded with ‘‘1’’; otherwise,

‘‘2’’, as illustrated in Fig. 7. However, it is inevitable that some

domain residues might be mispredicted as non-domain residues

resulting in some short strand of ‘‘2’’ inserted in a long strand of

‘‘1’’ and vice versa. To filter out this kind of false positives and false

negatives, a special scanning algorithm was developed to refine the

entire predicted results according to the following criteria. (i) Any

negative code ‘‘2’’ should be modified to a positive code ‘‘1’’ if it

followed a strand of more than four continuous ‘‘1’’ codes but was

followed by less than four continuous ‘‘2’’ codes. (ii) Any positive

code ‘‘1’’ should be modified to a negative code ‘‘2’’ if it followed a

strand of more than four continuous ‘‘2’’ codes but was followed

by less than three continuous ‘‘1’’ codes. After such a scanning

procedure, it can be seen from Fig. 7 that many sporadic ‘‘2’’

codes in the long ‘‘1’’ regions have disappeared, and that many

sporadic ‘‘1’’ codes in the long ‘‘2’’ regions have disappeared too.

Meanwhile, the prediction quality was further improved as

indicated in Table 2. Finally, the regions with the long continuous

‘‘1’’ codes thus obtained were assigned corresponding to the

domain regions as indicated in Online Supporting Information S6.

10. In Comparison with the Existing Methods
To evaluate our method, let us compare its performance with

three existing methods in this area, including DoMpro [40],

Globplot [49] and Domcut [48] based on the same testing dataset.

Those methods such as FIEFDom [47] were not included because

they were aimed at predicting domain boundaries rather than

domains themselves. In other word, this kind of methods was

based on such an assumption that nearly the whole protein was

domain region except two or three domain boundaries. As a

consequence, their sensitivity <sen would be very close to 1, but the

specificity <spe would be very low with quite poor overall success

rates. The prediction result by the DoMpro [40] on a query

protein sequence was formulated by a series of ‘‘N’’ and ‘‘T’’ codes

to indicate that the corresponding residue being outside and inside

the domain region, respectively. The predicted outcomes by the

Globplot method [49] were the domain regions directly. As for the

method Domcut [48], a score was assigned to each of the

constituent residues in a query protein. The residues with a score

below the cutoff threshold (default 20.09) were regarded as the

inter-domain linker regions. For facilitating comparison, the results

by all these methods on the same independent dataset S
T

(cf.

Eq.1) are also listed in Table 3, from which we can see that our

method was about 58–70% higher than the other methods in

specificity, 28–40% higher in accuracy, and 24–31% higher in

MCC, but about 20% lower in sensitivity. These results indicate

that the current method will play an important complementary

role to the existing methods in identifying the domains of proteins.

11. Useful Insights for Guiding Experiments or Being
Validated by Experiments

The selected features at different sites may provide clues or

insights for researchers to find or validate new protein domains, as

can be viewed from the following four aspects. (i) PSSM feature. It

was found through analyzing the PSSM conservation score that

the mutations to amino acid residues N and D had the most

impact on identifying the protein domain sites. Besides, the

mutation to residues G and R also had more impacts than the

other amino acids in this regard, fully consistent with the report

[98] that D, G and R were over-represented in protein interaction

domains, and the report [39] that amino acid G was instrumental

in defining the core domain and interdomain regions of a protein.
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(ii) Codon diversity feature. It was revealed in this study that the

codon diversity played pivotal role in identifying the protein

domain sites, as evidenced by a series of experiments [98,99,100].

(iii) Electrostatic charge feature. It is interesting to note that

electrostatic charge has proved to be essential for the localization

and activation of many proteins containing polycationic domains

in their amino acid sequence [101], and that binding of oppositely

charged proteins via electrostatic interactions can induce domain

formation [102]. All these observations are quite consistent with

the findings in this study that the electrostatic feature of site 13 has

an index of 2 in our final optimal feature set meaning that it is one

of the most important features for the protein domain sites

prediction. (iv) Disorder feature. It was found that in the final

optimal feature set derived from this study, four of all the 13

disorder features were selected, and that disorder feature of site 5

had the index of 1, implying it was the most important feature to

the protein domain site prediction. Interestingly, it has been

reported that disorder regions often correspond to the domain

boundaries [39]. Accordingly, the remainders in the optimal

feature set are certainly worth being further investigated by future

experiments.

It is anticipated that the strategy and approaches developed in

this study may also be extended to investigate protein signal

peptides (see, e.g., [60,61,104,105]), B-cell epitopes [106,107],

HIV protease cleavage sites [108,109,110,111], enzyme specificity

[112,113], among many other important topics in protein science

and biomedicine.
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