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The interplay of microRNAs and transcription
factors in autophagy regulation in nonalcoholic
fatty liver disease
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Abstract
The autophagy-lysosomal degradation system has an important role in maintaining liver homeostasis by removing
unnecessary intracellular components. Impaired autophagy has been linked to nonalcoholic fatty liver disease
(NAFLD), which includes hepatitis, steatosis, fibrosis, and cirrhosis. Thus, gaining an understanding of the mechanisms
that regulate autophagy and how autophagy contributes to the development and progression of NAFLD has become
the focus of recent studies. Autophagy regulation has been thought to be primarily regulated by cytoplasmic
processes; however, recent studies have shown that microRNAs (miRNAs) and transcription factors (TFs) also act as key
regulators of autophagy by targeting autophagy-related genes. In this review, we summarize the miRNAs and TFs that
regulate the autophagy pathway in NAFLD. We further focus on the transcriptional and posttranscriptional regulation
of autophagy and discuss the complex regulatory networks involving these regulators in autophagy. Finally, we
highlight the potential of targeting miRNAs and TFs involved in the regulation of autophagy for the treatment
of NAFLD.

Introduction
Autophagy is important for maintaining intracellular

protein homeostasis and for organelle quality control. In
the liver, autophagy helps maintain metabolic home-
ostasis and, consequently, lipid balance, insulin sensitivity,
and hepatocyte resistance to injuries, such as oxidative
stress and inflammation1–5. Accumulating evidence indi-
cates that autophagy is highly relevant to the pathogenesis
of nonalcoholic fatty liver disease (NAFLD), including
hepatitis and fibrosis, suggesting that modulating autop-
hagy is a potential strategy for the treatment of NAFLD.
However, the exact pathophysiological role of and the
regulatory mechanisms underlying autophagy in NAFLD
remain to be elucidated.

The regulatory network of transcriptional and post-
transcriptional factors has recently attracted attention
because of its roles in biological processes and in the
development of various diseases6–8. Autophagy was
initially considered a pathway exclusively regulated by
cytoplasmic processes; however, over the past decade, a
number of microRNAs (miRNAs) and transcription fac-
tors (TFs) have been found to control autophagy through
the regulation of autophagy-related genes9,10. Several
miRNAs and TFs that regulate autophagy pathways have
been reported to play roles in NAFLD, but the interplay
between miRNAs and TFs for the regulation of autophagy
is not fully understood. Here, we review the interplay
between miRNAs and TFs in regulating autophagy and
suggest potential target networks for treating NAFLD.

The autophagy process
As shown in Fig. 1, the induction of autophagy begins

with the Unc-51-like autophagy activating kinase 1
(ULK1) complex formed by the interaction of ULK1 with
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focal adhesion kinase family-interacting protein of
200 kDa (FIP200), autophagy-related protein (ATG)13,
and ATG10111–13. Under starved conditions, ULK1 is
autophosphorylated and activated; then, ULK1 phos-
phorylates ATG13 and FIP200 to induce autophagy14,15.
In contrast, under nutrient-rich conditions, the activated
mechanistic target of rapamycin (mTOR) inactivates
ULK1 and ATG13 through phosphorylation16. AMP-
activated protein kinase (AMPK) has also been reported
to activate autophagy through the inhibition of mTORC1
and to directly phosphorylate several ATG proteins,
including ULK1, Beclin1 (BECN1), and phosphatidylino-
sitol 3-kinase complex III (VPS34)17–19. In the early stages
of autophagy, activating molecule in Beclin1-regulated
autophagy protein 1 (AMBRA1), an autophagy regulatory
protein, interacts with the E3 ubiquitinase tumor necrosis
factor receptor-associated factor 6 and mediates K63-
linked polyubiquitination of ULK1, which enhances ULK1
kinase activity20,21.
Phagophores (i.e., isolation membranes) are nucleated

at the endoplasmic reticulum (ER)–mitochondria or the
ER–plasma membrane contact site. The ATG14L

complex is a key component for the nucleation stage. The
ATG14L complex consists of VPS34, VPS15, and BECN1,
and it is regulated by the kinase activities of ULK1 and 5′
adenosine monophosphate-activated protein kinase
(AMPK)19,22–25. Activated VPS34 generates phosphati-
dylinositol 3-phosphate and initiates the formation of the
preautophagosomal phagophore26–28. Another key pro-
tein, involved in the elongation of the phagophore, is
ATG9A/B, which is the only known autophagy-related
transmembrane protein that circulates between the trans-
Golgi network and the late endosome through vesicular
trafficking29. Upon autophagy induction, a portion of the
ATG9A pool transiently localizes to autophagic mem-
branes, and its intracellular cycling is positively regulated
by both ULK1 and VPS3430–32.
Two ubiquitin-like conjugation systems, ATG12 and C-

type lectin 3/gamma-aminobutyric acid receptor-
associated protein (LC3/GABARAP; ATG8 in yeast), are
involved in phagophore expansion33. In the first system,
ATG12 is covalently conjugated to ATG5, depending on
the E1-like enzyme ATG7 and the E2-like enzyme
ATG10. Then, the resulting ATG12-ATG5 compound

Fig. 1 Overview of the autophagy pathway. a When autophagy is induced by various stress factors, the Unc-51-like autophagy activating kinase
(ULK) complex is activated and initiates autophagy. b Activated ULK triggers phosphatidylinositol 3-kinase complex III (VPS34) to form the
phagophore at omegasomes. c The phagophore is elongated by two ubiquitin-like conjugation systems to form an autophagosome. The first system
involves conjugation of autophagy-related protein (ATG)12 to ATG5 in a reaction that requires the E1-like enzyme ATG7 and E2-like enzyme ATG10.
The second system involves the conjugation of C-type lectin 3 (LC3) to phosphatidylethanolamine (PE). d The mature autophagosome or
amphisome binds a lysosome, and the autophagic cargo is degraded by acidic hydrolases in the lysosome and is recycled in the cell as nutrients.
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conjugates with ATG16L1 to form the ATG12-ATG5-
ATG16L1 complex, which localizes to the outer mem-
brane of the forming autophagosome34,35. The second
system involves the conjugation of the LC3/GABARAP
family proteins to a lipid molecule. LC3/GABARAP is
processed at the C-terminal glycine by the cysteine pro-
tease ATG4. Then, LC3/GABARAP is activated by ATG7
and is conjugated by ATG3 to the amino group of
phosphatidylethanolamine36–38. Finally, the ATG16L1-
ATG5-ATG12 complex functions as a scaffold for LC3/
GABARAP lipidation39.
One of the most important molecules in the maturation

of the autophagosome and in the fusion with lysosomes is
the small GTPase protein RAB740. Fusion with lysosomes
is facilitated by membrane tethering factors such as the
homotypic fusion and protein sorting (HOPS) complex
and soluble N-ethylmaleimide-sensitive factor-activating
protein (SNAP) receptor (SNARE) proteins. The HOPS
complex interacts with syntaxin17 (STX17), which inter-
acts with SNAP29 and vesicle-associated membrane pro-
tein 8 (VAMP8) to promote autophagosome–lysosome
fusion41,42. UV resistance-associated gene (UVRAG) also
promotes the fusion of autophagosomes and lysosomes by
binding to VPS16, which is a subunit of the HOPS com-
plex23,43. ATG14 also directly binds to STX17-SNAP29 to
form a complex with VAMP8 on lysosomes, which further
promotes autophagosome–lysosome fusion44.

Roles of autophagy in NAFLD
NAFLD is caused by excessive hepatic fat accumulation

that is not caused by significant alcohol consumption45.
NAFLD is an umbrella term for diseases that includes
simple hepatic steatosis, nonalcoholic steatohepatitis
(NASH), and cirrhosis. Other than weight loss, there is
currently no effective therapy for NAFLD. Studies are
currently focused on understanding the molecular
mechanisms underlying NAFLD to identify new ther-
apeutic targets, and these studies have revealed a diverse
repertoire of potential targets.
In obesity, the disruption of autophagy in the liver and

in extrahepatic organs contributes to excessive lipid
accumulation in the liver. Singh et al. were the first to
suggest that autophagy might be a potential target for the
treatment of NAFLD. In their study, ATG5 knockdown or
pharmacological autophagy inhibition significantly
increased the cellular triglyceride content46. This group
suggested that autophagy has essential roles in lipolysis
(lipophagy), wherein intracellular lipid droplets are
degraded through a self-degradative pathway to alleviate
hepatic inflammation and injury. In mouse livers lacking
rubicon-like autophagy enhancer (RUBCNL)/Pacer,
which promotes autolysosome formation in the late stages
of autophagy, autophagic flux is impaired, resulting in
lipid accumulation and liver fibrosis47. In contrast,

enhancing autophagy by overexpressing Atg7 alleviated
hepatic steatosis in ob/ob mice and in high-fat diet
(HFD)-fed mice48.
Hepatic lipotoxicity is a result of excess accumulation of

harmful lipids through the dysregulation of the lipid
milieu or intracellular lipid composition. Importantly,
lipotoxicity is intimately associated with chronic inflam-
mation and hepatocyte death, which are characteristics of
NAFLD/NASH49. Lipotoxicity can also contribute to ER
stress, mitochondrial dysfunction, and impaired autop-
hagic flux (Fig. 2). For example, lipotoxicity-associated
elevation in cytosolic calcium levels interferes with the
fusion of autophagosomes and lysosomes, and treatment
with calcium channel blockers restores autophagic flux
and suppresses obesity-induced accumulation of protein
aggregates50. Intake of a HFD stimulates ER stress, which
can induce an inflammatory response. Suppressed
autophagy in the liver can further worsen ER stress and
inflammation. These findings indicate that a decrease in
hepatic autophagy correlates with hepatic inflammation in
NAFLD. In line with this finding, autophagy can protect
the liver from lipotoxicity in NAFLD. Sequestosome 1
(SQSTM1 or p62)-mediated ULK1 activation induces
autophagy and plays a hepatoprotective role through the
degradation of Kelch-like ECH-associated protein 1and
the activation of nuclear factor erythroid 2-related factor 2
under saturated fatty acid-induced lipotoxic conditions51.
Various studies have revealed some of the molecular

mechanisms involved in the regulation of autophagy in
NAFLD. Autophagy activity has been seen to decrease as
an effect of the reduced expression of autophagy-related
genes such as Atg7, Ulk1, and Atg948,52. Impaired autop-
hagic flux caused by a decrease in lysosomal activity has
been shown to be critical for the degradation of autop-
hagosomes. Autophagic degradation is impaired owing to
reduced lysosomal acidification and lysosomal proteolytic
activity, such as those facilitated by hepatic cathepsin B
and L53–55. Defects in autophagosome–lysosome fusion
also cause autophagy disruption in NAFLD. Changes in
intracellular lipid content can affect the overall activity of
intracellular proteolytic pathways by inhibiting
autophagosome–lysosome fusion56. Rubicon is a Beclin1-
binding negative regulator of autophagosome–lysosome
fusion. Rubicon is posttranscriptionally upregulated in
HepG2 cells treated with saturated fatty acids and in the
liver of HFD-fed mice54. In a recent chemokine study,
osteopontin, a chemokine-like phosphorylated glycopro-
tein, promoted NAFLD progression by impairing autop-
hagy57. Osteopontin secreted from fatty liver inhibits
autophagosome–lysosome fusion by binding the integrins
αVβ3 and αVβ5, and autophagic flux is recovered when
αVβ3 and αVβ5 are blocked using specific antibodies.
Another mechanism of autophagy regulation involves the
deregulation of nutrient sensing. A representative
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example is the regulation of autophagy by mTORC1
through the downregulation of the ULK1-ATG13-FIP200
and VPS34-ATG14-BECN1 complexes. In fatty liver dis-
ease, mTORC1 is aberrantly activated and inhibits
autophagy; it also contributes to the regulation of de novo
lipogenesis through the upregulation of TFs such as sterol
regulatory element-binding protein 158. In contrast,
AMPK negatively regulates mTORC1 and induces
autophagy through ULK1 or BECN1 phosphorylation59,60.
Most studies show that AMPK activity is reduced in the
fatty liver and that the activation of AMPK using genetic
or pharmacological approaches reprograms lipid meta-
bolism, thereby reducing hepatic steatosis61. The regula-
tion of autophagy through AMPK also contributes to a
reduction in hepatic steatosis to some extent.

MiRNAs that target autophagy-related genes in
NAFLD
miRNAs are noncoding RNAs consisting of approximately

22 nucleotides62. They play roles in the posttranscriptional
regulation of gene expression63. Approximately 60% of
mammalian genes are known to be regulated by miRNAs64.
Recent studies have reported that miRNAs also play roles in
the regulation of autophagy; specifically, they regulate the
expression of several key proteins in the various stages of the

autophagy pathway. Therefore, we summarize representative
miRNAs involved in the regulation of each stage of the
autophagy pathway and discuss these mechanisms in the
context of NAFLD (Fig. 3a).
In the initial stages of autophagy, the ULK1/2 complex

is directly controlled by mTORC1. A number of miRNAs
targeting mTORC1 have been reported in various cell and
tissue types. miR-7 induces autophagy through the
negative regulation of mTORC165. In contrast, miR-199a,
miR-338, miR-96, miR-100, miR-101, miR-128, miR-144,
miR-99, and miR-211 have been suggested as potential
positive regulators of autophagy through their direct
inhibition of mTORC166–72. Several miRNAs have been
reported to directly target the ULK1/2 complex. miR-885-
3p was found to directly target ULK2, whereas the acti-
vation of miR-106a/b and miR-20a was found to inhibit
autophagy through the downregulation of ULK1 expres-
sion73. In glucose-deficient melanoma cells, the miR-290/
295 cluster code inhibited ULK1 expression, thereby
inhibiting autophagy and endowing tumor cells with a
survival advantage74. miR-25 in breast cancer cells also
targets ULK1 and inhibits autophagy75. miRNAs also
regulate autophagosome nucleation stage autophagy
genes, such as VPS34, BECN1, and ATG14L. miR-30a/d,
miR-376a/b, miR-519a, miR-17-5p, miR-129-5p, miR-

Fig. 2 The role of autophagy in nonalcoholic fatty liver disease (NAFLD). Excessive nutrients induce the enlargement of adipose tissue, which
increases free fatty acids by promoting lipolysis and inflammatory adipokine secretion. This process leads to lipid accumulation and inflammatory
response in the liver, resulting in endoplasmic reticulum (ER) stress and mitochondrial dysfunction. Autophagy, which can inhibit inflammation and
promote the degradation of lipid droplets, has the potential as a novel therapeutic target in NAFLD.
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199a-5p, and miR-216a inhibit BECN1 expression76–81.
miR-338 inhibits the expression of VPS3482, and miR-195
inhibits ATG14-mediated autophagy83. Therefore, the
suppression of these miRNAs promotes autophagy. Atg9
is the only transmembrane protein associated with the
Golgi complex in the autophagy pathway, and it is tar-
geted by miR-34a in the negative regulation of autop-
hagy84. In addition, miR-130a, miR-30d, and miR-143
suppress ATG2 expression85–87.
The ubiquitin-like conjugation system for vesicle

expansion is composed of several proteins, such as ATG7,

ATG10A, ATG3, ATG12, ATG5, ATG16L1, and LC3.
miR-375, miR-17, and miR-290/295 target ATG7, result-
ing in decreased ATG7 expression, thereby attenuating
autophagy74,88,89. miR-30a, miR-181a, miR-374a, and
miR-30d are direct regulators of ATG582,85,90,91. More-
over, miR-30d, miR-23b, and miR-630 are potential reg-
ulators of ATG1278,85,92. miR-106b and 519a target
ATG16L1 expression in intestinal epithelial cells78,93.
LC3B levels and autophagy are diminished by miR-
20494,95. The miR-101 and miR376 family members miR-
376a and miR-376b can negatively control ATG4

Fig. 3 Schematic representation of core autophagy-related proteins and their regulation by miRNAs. a Summary of miRNAs that target key
proteins in different stages of autophagy. b miRNAs regulating autophagy-related genes in NAFLD. Blue indicates that the correlation between the
miRNA-targeted protein and autophagy is not clearly demonstrated in NAFLD.
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expression68,81,96. miR-519a has been shown to modulate
E2-like enzyme ATG10A levels; however, the role of this
interaction on autophagy has not yet been investigated78.
Several autophagy receptors have been discovered,

including SQSTM1/p62, neighbor of breast cancer type
1 susceptibility protein gene 1 protein (NBR1), calcium-
binding and coiled-coil domain-containing protein 2
(NDP52), optineurin (OPTN), and B-cell lymphoma 2/
adenovirus E1B 19 kDa protein-interacting protein 3-like
(NIX)97–101. Because these receptors are delivered to the
autophagosome along with cellular cargo, autophagy
receptor degradation is commonly used as a marker for
autophagic degradation102. Members of a family of miR-
NAs that share a common seed sequence, including miR-
17, miR-20, miR-93, and miR-106, were identified as
direct regulators of SQSTM1/p62103,104.
Several studies have shown that changes in miRNA

profiles are associated with a number of liver diseases. The
expression profiles and signatures of these miRNAs can be
used to distinguish between liver diseases with different
etiologies and stages, from NAFLD to hepatocellular car-
cinoma (HCC)105. Recently, autophagy-related miRNAs
were found to play important roles in NAFLD. We present
a summary of the current knowledge on the regulation of
autophagy by miRNAs and how miRNAs modify major
autophagic effector proteins in NAFLD in Fig. 3b. Several
studies have shown that autophagy regulation-related
miRNAs, such as miR-214-3p, miR-188, and miR-34a, are
expressed at high levels in NAFLD patients or in mouse
models52,106. In our previous study, we observed that miR-
214-3p has an inhibitory role in autophagy and is upregu-
lated in HFD-induced fatty liver52. Therefore, an anti-
mimic of miR-214-3p alleviated NAFLD by activating
autophagy and depended on the upregulation of Ulk1. miR-
188, known to target and suppress Atg12, was reported to
be upregulated in the liver of obese mice107. According to
Liu et al., the negative effects of miR-188 on the lipid and
glucose metabolism-mediated autophagy pathway can be
reversed by targeting Atg12. miR-34a is significantly upre-
gulated in the liver of tissue with NAFLD106. miR-34a, a
direct inhibitor of nicotinamide adenine dinucleotide-
dependent protein deacetylase sirtuin 1 (SIRT1), is a
potential biomarker of NAFLD108. Although the role of this
interaction in the regulation of autophagy has not been
observed, SIRT1 can have a direct role in autophagy reg-
ulation and affect the expression of autophagy-associated
genes, including MAP1LC3A (LC3II), ATG5, and
ATG7109,110. Stacchiotti et al. showed that therapeutic
melatonin plays a role in NAFLD through the down-
regulation of miR-34a-5p and the activation of autophagy;
however, they did not investigate the specific autophagy-
related genes that were directly regulated by miR-34a111.
miRNAs can also directly or indirectly activate autop-

hagy. miR-33 and miR-451 can activate autophagy, and

these miRNAs are expressed at low levels in NAFLD112–114.
The specific role of miR-33 in direct autophagy regulation
in NAFLD remains unknown. However, Ghareghani et al.
found that miR-33a and miR-33b activated autophagy by
enhancing the activation of AMPK in HFD-fed mice112.
miR-451 levels were reduced in the liver tissue of the obese
mice, and miR-451 was found to be a negative regulator of
migration inhibitory factor (MIF)115. Thus, Tang et al.
found that MIF was upregulated in mice fed an HFD
because the miR-451 level was reduced. Their results also
indicated that MIF was reduced by miR-451 mimic trans-
fection, which induced the inactivation of protein kinase B
(Akt) and activation of LC3II. The same results were
indicated upon MIF knockout. In contrast, increased Akt
and reduced LC3II expression were induced by miR-451
silencing. In addition, Hur et al.113 showed that the
downregulation of miR-451 in a NAFLD mouse model
inhibited the production of fatty acid-induced proin-
flammatory cytokines through the AMPK/AKT pathway.
Important miRNAs that can prevent or alleviate NAFLD
can be modulated through autophagy activation.

TFs that target autophagy-related genes in NAFLD
Currently, approximately 32 TFs involved in the reg-

ulation of autophagy-related genes have been reported;
the most representative TFs are transcription factor EB
(TFEB), cAMP response element-binding protein (CREB),
forkhead box O proteins (FOXOs), farnesoid X receptor
(FXR), and peroxisome proliferator-activated receptor
alpha (PPARα) (Fig. 4a). We present a summary of the
most representative TFs associated with autophagy-
related genes in NAFLD in Fig. 4b.
TFEB acts as a master regulator of lysosomal biogenesis,

autophagy, lysosomal exocytosis, lipid catabolism, energy
metabolism, and the immune response116. TFEB is a
member of the microphthalmia/transcription factor E
(MIT/TFE) family of TFs, and it recognizes and binds to
the E-box sequence (CANNTG)117. For efficient DNA
binding, TFEB dimerizes with itself or with other MIT/
TFE family members, such as IGHM Enhancer 3 (TFE3),
transcription factor EC (TFEC), and microphthalmia-
associated TF (MITF)118. TFEB regulates the expression
of key genes in autophagy, such as BECN1, WIPI1 (which
encodes WD repeat domain phosphoinositide-interacting
protein 1), GABARAP, ATG16 L, ATG5, and UVRAG119.
TFEB activity is regulated by phosphorylation (at S122,
S142, and S211) by mTORC1; phosphorylated TFEB is
sequestered into the cytoplasm, and the induction of
transcription of the target gene is suppressed120,121. In
contrast, when mTORC1 activity is inhibited during
nutrient deficiency, TFEB is dephosphorylated and rapidly
migrates to the nucleus, where it binds the promoter of
the target gene. Similarly, mTORC1 also inhibits the
nuclear localization of TFE3 and MITF, effectively
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inhibiting the transcriptional induction of autophagy
genes122. In HFD-fed mice that overexpress TFEB, lipid
accumulation in the liver was reduced, and metabolic
syndrome was attenuated during a 24-hour starvation
period123. In line with the role of TFEB in energy control,
modest restriction of calorie consumption and regular
exercise may be promising approaches for treating early-
stage NAFLD, whereas therapeutic agents that target
TFEB may be promising for preventing the development
of NAFLD into NASH.
FOXO1, which has an important role in both glucose and

lipid metabolism, promotes lipid droplet breakdown through
transcriptional activation of hepatic autophagy by inducing a
number of autophagy-related genes, including Atg5, Atg14,
Vps34, Atg12, and Gabarap1124,125. Under nutrient starva-
tion conditions, AMPK phosphorylates FOXO3 in the

nucleus, and FOXO3 inhibits the transcription of S-phase
kinase-associated protein 2 (SKP2), which is an SKP1, Cul-
lins, F-box protein (SCF) E3 ubiquitin ligase complex critical
for the degradation of coactivator-associated arginine
methyltransferase 1 (CARM1). Stabilized CARM1 promotes
histone H3 Arg17 demethylation and binds TFEB as a
coactivator, thereby promoting the expression of autophagy-
related genes126. In addition, spliced X-box binding protein 1
(sXBP1), the key TF that promotes the adaptive unfolded
protein response, regulates autophagy-related genes by
occupying the −743 to −523 site of the TFEB promoter in
the liver under fasting conditions127. However, evidence
showing that these mechanisms can be targeted for NAFLD
therapy is still insufficient.
The fasting transcriptional activator CREB upregulates

autophagy genes, including ATG7 and ULK1, by recruiting

Fig. 4 Transcription factors (TFs) that target autophagy-related genes in nonalcoholic fatty liver. a Summary of TFs targeting autophagy-
related genes in the different stages of autophagy progression. b Transcription factors directly involved in regulating autophagy-related genes
in NAFLD.
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CREB-regulated transcription coactivator 2 (CRTC2) in
hepatocytes. On the other hand, FXR transrepresses
autophagy-related genes by disrupting the CREP-CRTC2
complex, suggesting that the FXR-CREB axis is a key phy-
siological switch for regulating autophagy128. The
CREB–CRTC2 complex upregulates the expression of TFEB,
in addition to autophagy-related genes. Similar to the way
CRTC2 competes with FXR for binding CREB in proximal
autophagy-related genes, PPARα competes with FXR for
binding the DR1 response element in the promoters of these
genes, and thus, PPARα acts as a ligand-dependent
transactivator129,130.
SREBP-2, a major transcriptional regulator of choles-

terol metabolism, targets lipid metabolic processes, and it
also directly activates autophagy-related genes during
cellular sterol depletion in the liver131. Signal transducer
and activator of transcription 3 (STAT3) also regulates
autophagy-related genes. Interleukin (IL)-17A inhibits
autophagy by activating STAT3 in hepatic fibrosis; in
turn, STAT3 downregulates the expression of BECN1 and
VPS34, which are involved in the development of hepatic
fibrosis132. On the other hand, in methionine/choline-
deficient diet-induced NASH, autophagy-related proteins
such as BECN1 and SQSTM1/p62 are upregulated, but
autophagic flux is impaired by hypoxia-inducible factor-1
alpha (HIF-1α), which induces liver steatosis and inflam-
mation133. It has recently been reported that hepatocyte
nuclear factor 4 alpha (HNF4α), which is essential for
hepatocyte differentiation and has an important role in
liver function, also has an important role in autophagy.
Hnf4α expression was reduced in the fatty liver of mice
fed an HFD for a prolonged period and activated autop-
hagy by directly regulating Ulk1 expression in the liver52.

The interplay of miRNAs and TFs in autophagy
regulation in NAFLD
miRNAs and TFs often play coordinating roles in the

regulation of various cellular processes via a complex
signal transduction network in the liver134,135. For
example, in human HCC cells, miR-223 and FOXO3a
modulate doxorubicin-induced cytoprotective autophagy,
contributing to chemoresistance. However, miR-223
overexpression suppresses Foxo3a-modulated autophagy,
which enhances doxorubicin sensitivity in a mouse
xenograft model of HCC, suggesting that this miRNA/TF
axis is an important mechanism for drug resistance
development in HCC136,137. TFEB-mediated transactiva-
tion is also regulated by miR-30-5p, which suppresses
TFEB-dependent downstream gene expression by binding
to coordinated lysosomal expression and regulation ele-
ment, leading to the inhibition of lysosomal biogenesis
and autophagy in mouse liver138.
Accumulating evidence shows that miR-34a is involved

in NAFLD, and miR-34a expression is increased in NASH

patients and in obese or diabetic mice108,139,140. miR-34a
promotes hepatic steatosis through the suppression of
various TFs, such as HNF4α141, PPARα, and SIRT1, which
promote the expression of autophagy-related genes142–144.
These observations suggest that the miR-34a/TF axis may
inhibit NAFLD progression through transcriptional reg-
ulation of autophagy52,109,130,145. Interestingly, miR-34a is
directly activated by nuclear receptor liver X receptor-α, a
ligand-dependent TFr involved in hepatic cholesterol
metabolism. miR-34a also inhibits Atg4B and Rab8b, which
regulate autophagic flux, leading to the progression of
hepatic steatosis146,147. Considering the role of LXR in
cholesterol homeostasis and that increased hepatic free
cholesterol is associated with the development of NASH
from NAFL in obese mice, cross-talk between TFs, miR-
34a, and autophagy may be important for controlling
NASH development.
Recently, we reported certain miRNAs and TFs that

regulate autophagy in the development of HFD-induced
fatty liver. As shown in Fig. 5, we found that miR-214-3p
and HNF4α modulated Ulk1 expression and autophagy in
hepatocytes52. Our results indicate that autophagy in the
fatty liver was attenuated only when mice were fed a 45%
HFD for a prolonged period, which led to a significant
reduction in the expression of autophagy-related genes,
such as Ulk1. This downregulation of autophagy was
caused by increased miR-214-3p and decreased HNF4α
levels in hepatocytes. miR-214-3p negatively regulates
Ulk1 expression through direct binding of the 3´-UTR
sequence of Ulk1, and HNF4α induces autophagy by
directly binding Ulk1, promoting its transcription. Thus,
both miR-214-3p and HNF4α act as regulatory factors of
Ulk1 expression. Although the inhibition of miR-214-3p
in the fatty liver appears to restore HNF4α expression,
miR-214-3p does not directly regulate HNF4α, suggesting
that miR-214-3p and HNF4α independently regulate Ulk1
expression. The interplay between miR-214-3p and
HNF4α and their involvement in the regulation of
autophagy in the fatty liver are summarized in Fig. 5.
Taken together, we propose that miR-214-3p and HNF4α
are potential targets for NAFLD therapy.

Concluding remarks
Studies on the molecular regulation of autophagy

mainly focus on how autophagy-related proteins bind and
function in the cytoplasm. However, as described in this
review, there has been growing interest in understanding
the roles of miRNAs and TFs that influence the autophagy
pathway. Transcriptional regulation of autophagy may be
associated with posttranslational regulation to coordinate
the fine-tuning of autophagic flux, especially in cells under
chronic stress. In addition, the transcriptional induction
of autophagy-related genes may prevent the depletion of
the corresponding proteins under stress conditions, as the
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degradation of autophagy-related proteins is enhanced
under normal conditions. Thus, it is important to identify
novel co-regulatory networks of miRNAs and TFs that
contribute to autophagy, characterize these networks
within the context of autophagy-related proteins, and
determine how these networks are perturbed in NAFLD.
Given the studies that demonstrate the benefits of tar-
geting autophagy for treating NAFLD, transcriptional
regulation of autophagy is expected to have similar bene-
fits for the treatment of NAFLD. The effects of the cur-
rently available NAFLD drugs on autophagy are not yet
known; however, we believe that selective induction of
autophagy will be a useful therapeutic strategy for NAFLD.
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