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Abstract
In this paper, we introduce a continuation method for the spatially discretized models,
while conserving the size and shape of the cells and lattices. This proposed method is
realized using the shift operators and nonlocal operators of convolution types. Through
this method and using the shift operator, the nonlinear spatially discretized model on
the uniform and nonuniform lattices can be systematically converted into a spatially
continuous model; this renders both models point-wisely equivalent. Moreover, by
the convolution with suitable kernels, we mollify the shift operator and approximate
the spatially discretized models using the nonlocal evolution equations, rendering
suitable for the application in both experimental and mathematical analyses. We also
demonstrate that this approximation is supported by the singular limit analysis, and that
the information of the lattice and cells is expressed in the shift and nonlocal operators.
The continuous models designed using our method can successfully replicate the
patterns corresponding to those of the original spatially discretized models obtained
from the numerical simulations. Furthermore, from the observations of the isotropy of
the Delta–Notch signaling system in a developing real fly brain, we propose a radially
symmetric kernel for averaging the cell shape using our continuation method. We also
apply our method for cell division and proliferation to spatially discretized models
of the differentiation wave and describe the discrete models on the sphere surface.
Finally, we demonstrate an application of our method in the linear stability analysis
of the planar cell polarity model.
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1 Introduction

The development of multicellular organisms is regulated by intercellular communica-
tion and signaling pathways of various types. These include diffusible proteins acting
as ligands and cell membrane proteins communicating with the neighboring cells.
In the last fifty years, approaches comprising mathematical models and numerical
simulations have been extensively used to understand the mechanisms underlying the
biological phenomena. It is a common practice to divide a region of interest either into
square or hexagonal elements representing cells, as shown in Fig. 1; this allows for the
discrete spatial independent variables to be used. We also assume that the unknown
dependent variables of themodel are uniform on the lattices.With these preconditions,
we model the phenomena on the lattices mathematically. In this paper, we label the
mathematical models with the discrete spatial independent variable as discrete mod-
els, and the ones with the continuous spatial independent variable as the continuous
models. Modeling the phenomena on the divided lattices often demonstrates good
reproducibility and presents good agreement with experimental results.

One of the examples in which the cellular interaction is conserved in various organ-
isms is the Delta–Notch signaling. The intercellular communication in this signaling
is based on the informational exchange between neighboring cells (Collier et al. 1996;
Sato et al. 2013; Yasugi et al. 2008). The function of the Delta–Notch signaling is
known as lateral inhibition. During neural development of the fly embryo, binding
of the Delta ligand to the Notch receptor suppresses the expression of achaete-scute
complex (AS-C) proneural genes. On the contrary, AS-C genes induce Delta expres-
sion. Consequently, signal-sending cells demonstrate a high level of the AS-C genes,
while signal-receiving cells express low level of the AS-C genes. During embryoge-
nesis, neuroepithelial cells (NEs) that express high Delta and AS-C differentiate into
neural progenitor cells. In contrast, the surrounding cells express low levels of AS-C
genes and differentiate into non-neuronal cells. In accordance with these interactions
between the neighboring cells, the expression patterns of Delta and Notch activation
show a salt-and-pepper like pattern that distinguish the neuronal cells from the non-
neuronal ones, as shown in Fig. 2. Information regarding discreteness, such as the
size and shape of each cell, affects the entire pattern in the developmental process,
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Fig. 1 Schematic figures of the square (a) and hexagonal (b) lattices with indexes
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Fig. 2 Schematic figures of
interaction of Delta–Notch
signaling and a salt-and-pepper
pattern

Notch mediated lateral inhibition

Salt-and-pepper pattern

Delta

therefore, modeling in the framework of the discrete model is compatible with the
phenomenon described (Collier et al. 1996; Lehotzky and Zupanc 2019; Sato et al.
2016). A discrete model shows good reproducibility of the experimental results for
the differentiation propagation in the developing fly brain (Sato et al. 2016; Tanaka
et al. 2018). Using the described type of discrete model for the Delta–Notch interac-
tion, the salt-and-pepper pattern appearance and regulated differentiation propagation
in the fly brain have been explained (Collier et al. 1996; Jörg et al. 2019; Sato et al.
2016; Tanaka et al. 2018). It is well known that the function of Delta–Notch signaling
is diverse and Notch activation shows several different patterns. For example, Notch
activation oscillates in the segmentation in vertebrates and progresses unidirectionally
in the fly optic lobe development Kageyama et al. (2012).

Another good example of a biological system that utilizes discrete modeling is the
planar cell polarity (PCP) (Adler 2002; Goodrich and Strutt 2011). The intercellular
proteins and membrane in the cells of the fly wing interact with each other, among the
neighboring cells, and they are localized asymmetrically. Owing to this asymmetric
localization, the direction of the epithelial hair in the wing of a fly is determined
Ayukawa et al. (2014). It is reported that the discrete model proposed by this paper
can reproduce the biological experiments of the PCP.

The analytical study of the discrete models was further conducted to specify the
function of the intercellular interactions and the discreteness in the dynamics. The
analytical results for the discrete type of reaction diffusion systems have been reported
in Bates et al. (2001), Chow (2003). The results related to the traveling wave solutions
in the system of the discrete models are reported in Guo et al. (2019), Hupkes and
Sandstede (2010), Straatman and Hupkes (2019).

Although the discrete models are useful in describing the abovementioned behavior
and dynamics phenomenologically, the analysis of discrete models is rather difficult
in general, and the technique of analyzing a discrete model is poor compared to the
analysis of the continuous models. For example, as the discrete models usually com-
prise numerous unknown variables, it is usually difficult to compute the eigenvalues
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984 S.-I. Ei et al.

in case of higher-dimensional space. Thus, the methods of analysis for the partial
differential equation are being reconstructed, such that they are applicable to the dis-
crete models (Chow 2003). Moreover, discrete models are not compatible with the
description of regional expansion caused by cell division and the three-dimensional
information. In order to overcome the difficulties mentioned, the limit of the cell and
lattice size is often set to zero, and the differential operator is derived. There are some
examples of the continuation. The discrete models to prion dynamics and coagulation-
fragmentation processes were investigated mathematically through the continuation
method using the piece-wise constant functions (Crampin et al. 1999; Laurençot and
Mischler 2002). In these papers, the continuous models were derived on the lattices
with sufficiently small length. By taking the limit of the lattice size, the convergence
is rigorously shown, and the integro-differential equations were derived.

However, the method taking the limit of the lattice size to zero may cause a prob-
lem because the patterns caused by the spatially discretized structures, such as lattice
and cell membrane, sometimes disappear in the continuous models. In this paper, we
questioned if it is possible to convert a discrete model into a continuous model while
retaining the size and shape of cells and lattices. In the light of this question, we
propose a novel continuation method for the spatially discretized models, while con-
serving the size and shape of cells and lattices. In our proposedmethod, we perform the
continuation part of the process by introducing the shift operators, instead of deriving
the differential operators. Thus, the nonlinear discrete models can be systematically
converted into continuous models with spatially discretized structures. Moreover, by
reducing the shift operators using the integral operators of the convolution type with
suitable kernels, we propose a nonlocal evolution equation that can approximate the
solution of the spatially discrete model, for the application to the biological exper-
iments and mathematical analysis. The approximation of nonlinear discrete models
by nonlocal evolution equations in the one-dimensional periodic region is assured
by singular limit analysis. In the continuous models, the information of the size and
shape of cells and lattice was reflected in the part of shift operator and the kernel in the
convolutions. Furthermore, we confirmed the isotropy of the Delta–Notch signaling
system for the irregularly shaped cell in the fly brain. According to the biological
results, we propose a radially symmetric kernel in the nonlocal evolution equation for
discrete models and prove the effectiveness of the kernel by replicating the spatially
discretized patterns in the numerical simulations. As a result of the description using
nonlocal evolution equation,wemodel the cell division and proliferation in the discrete
model for the wave of the differentiation and extend the model to the sphere surface.
Moreover, we show that linear stability analysis can be performed by the continuation
method.

This paper is organized as follows: In Sect. 2, we first introduce the concept of
our continuation method by modifying the general discrete model. Our continuation
method is characterized by the combination of the shift operator and the Friedrichs
mollifiers as the convolution kernel based on the lattice shape. In Sect. 2.2 we state
the result of the singular limit analysis of the discrete models and nonlocal evolution
equations in the general form of the spatial interactions. In Sect. 2.3 we explain that our
method can be extended to the discretemodels on nonuniform lattice. In Sect. 2.5.3, we
introduce the radially symmetric kernel for the averaged shape of the cells, based on
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the results of the real biological experiments for Delta–Notch signaling in the fly brain.
In Sect. 3, we show the results of numerical simulations in biological applications of
the continuation method: the proneural wave in the fly brain and planar cell polarity
in the fly wing. Our results indicate that the continuation method using shift operators
and integral operators can be applicable for diverse multicellular systems.

2 Continuationmethod with shift and convolution operator for
discrete models

2.1 Scalar equation in one-dimensional space

In this section, we explain the concept of the continuation method, while retaining the
shape and size of cells and lattices.

First, we describe the continuation method applied on a typical discrete model
containing the intercellular interaction terms and the reaction term. In this paper, we
do not distinguish between the spatial and intercellular interactions. Suppose N cells of
the uniform length l > 0 are packed in the one-dimensional space, then the following
discrete model is considered:

ui,t = f (ui−1, ui , ui+1) + g(ui ), t > 0, i = 1, . . . , N , (1)

where ui = ui (t) denotes the concentration or density of some substances on the i th
cell ci at time t > 0, f : R3 → R is the function corresponding to the intercellular
interactions, and g : R → R is the function for the reactions.

Setting the one-dimensional space as

T := [0, Nl],

we impose the periodic boundary condition u0(t) = uN (t), and u1(t) = uN+1(t).
The linear intercellular interaction can be defined as:

f (u−1, u0, u1) :=
1∑

i=−1

aiui = a−1u−1 + a0u0 + a1u1, (2)

where ai , (i = −1, 0, 1) are constants. The typical examples of the function f are
diffusion and lateral inhibition such as the Delta–Notch interaction given by

fΔ(ui−1, ui , ui+1) = ui−1 − 2ui + ui+1

l2
, (3)

flat(ui−1, ui+1) = −ui−1 − ui+1

2
, (4)

where the denominator of flat is the total number of neighboring cells referred from
Collier et al. (1996), and the sign of the lateral inhibition flat can be changed in
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the system. If the dynamics of ui is more influenced by the other cells than by the
neighboring cells, f becomes the nonlocal interactions.

As introduced in Doumic et al. (2009), Laurençot and Mischler (2002), we will
utilize the piece-wise constant functions for our continuation method. For equation
(1) with i = 1, . . . , N on each cell ci , we define the characteristic function as

χci (x) =
{
1 if x ∈ ci ,
0 otherwise,

(5)

and also we define

u(x, t) :=
N∑

i=1

ui (t)χci (x)

at position x ∈ T and at time t > 0. For the continuous method of the discrete model,
we set the following assumption:

For any N there exists a unique global solution u(x, t) ∈ C([0, T ], L1(T))

of (1).
(A1)

As in Proposition 2 and “Appendix B”, the existence and uniqueness of the global
solution of (1) is shown for specified functions f and g. Changing the variable in the
i th equation (1) by multiplying the unknown function ui by the characteristic function
χci (x), and adding ui (t)χci (x) with respect to i = 1, · · · , N , we have

ut = f

(
N∑

i=1

ui−1(t)χci (x), u,

N∑

i=1

ui+1(t)χci (x)

)
+ g(u).

As we can compute

N∑

i=1

ui+ jχci (x) =
N∑

i=1

uiχci (x + jl) = u(x + jl, t) (6)

for j = 0,±1, · · · ,±N , we obtain

ut = f (u(x − l, t), u, u(x + l, t)) + g(u). (7)

As the spatially independent variable is continuous, the discrete model (1) is success-
fully converted into a continuous model. The equation of (7) is point-wisely equivalent
to the equation (1). Thus, if the initial conditions of equation (1) and (7) are the same,
the solutions are equivalent as described by the following remark:

Remark 1 Using the initial data of discrete model {ui (0)}Ni=1, and imposing the initial

data as u0(x) := u(x, 0) = ∑N
i=1 ui (0)χci (x), the solution of continuous model (7)

is equivalent to that of the discrete model (1).
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Furthermore, to apply the continuous model to the experiments and analyze conve-
niently, we approximate the shift operator using the convolution on the mollifier. We
define the shift operator as follows:

τlu(x) := u(x + l).

The shift operator is regarded as the convolution of the shifted Dirac Delta function
δl := τlδ = δ(x + l), and we can describe the model (7) as follows:

ut = f (u ∗ δ−l , u, u ∗ δl) + g(u).

Here we suppose that the Dirac Delta function is periodic with Nl, i.e., δ(x) =
δ(x + Nl), and we define the convolution k ∗ v with respect to x in T as

(k ∗ v)(x) :=
∫

T

k(x − y)v(y)dy,

where T can be replaced with a given region in this paper. Setting the Friedrichs
mollifier with a small parameter 0 < ε � 1 as

ρε(x) := 1

ε
ρ
(1

ε
x
)
, ρ(x) :=

⎧
⎪⎨

⎪⎩

C0 exp

(
− 1

1 − |x |2
)

, |x | < 1,

0, |x | ≥ 1

with a constant for the normalization of integration C0 > 0, we assume that ρε is also
periodic with Nl. We use the symbol ρε for the mollifier in higher-dimensional case.
Approximating the Dirac Delta function by the mollifier ρε(x), we have

uε
t = f (uε ∗ ρε,−l , uε, uε ∗ ρε,l) + g(uε), (8)

where the shifted mollifier is given by ρε,l := ρε(x + l), and we denote the unknown
variable by uε(x, t) as the solution of this equation depends on ε. If the intercellular
interaction f is linear, we derive the typical nonlocal evolution equation by summa-
rizing the kernel of the convolution as follows:

f (uε ∗ ρε,−l , uε, uε ∗ ρε,l) + g(uε)

= a−1u
ε ∗ ρε,−l + a0u

ε + a1u
ε ∗ ρε,l + g(uε)

= (a−1ρε,−l + a1ρε,l) ∗ uε + a0u
ε + g(uε)

= K ∗ uε + a0u
ε + g(uε),

where we put the kernel as K = a−1ρε,−l + a1ρε,l . Consequently, we have the fol-
lowing nonlocal evolution equation:

uε
t = K ∗ uε + a0u

ε + g(uε). (9)

123



988 S.-I. Ei et al.

Fig. 3 Profile of the kernel K of
fΔ. The parameters are
a−1 = a1 = 1, l = 1, and
ε = 0.1

x

u

x

uε

x

v

a b c

Fig. 4 Results of numerical simulations of heat equations in form of model (7), model (8) and the original
heat equation. Periodic boundary condition is imposed in T = [0, 10], and the parameters are l = 1.0,
dx = 1/200, f = fΔ, and ε = 0.1 in the mollifier, respectively. The black, gray, and dotted curves
correspond to the profile of solution at t = 0, t = 2.0 and t = 4.0. a ut = fΔ(u(x − l, t), u, u(x + l, t)),
b uε

t = fΔ(uε ∗ ρε,−l , uε, uε ∗ ρε,l ), c vt = vxx

Such type of a nonlocal evolution has been analyzed in numerous papers (Bates et al.
1997; Coville and Dupaigne 2007). Figure 3 shows the profile of the kernel K for fΔ.

Figure 4 shows the results of the numerical simulations for both continuous and
discrete heat equations fed with the spatially discretized initial data.

As in Fig. 4a, it is observed that the solution of the equation with shift operator is
not continuous until the solution attains the steady-state in the numerical simulation.
On the contrary, as in Fig. 4b, it is observed that the solution of the equation with
the mollifier becomes continuous before the solution attains the steady-state in the
numerics.

Remark 2 If f and g are linear, and if uε = u ∗ ρε, uε becomes the solution of (7).
This is owing to the linearity of the convolution operator, which can be described as
follows; using the convolution of the mollifier in the equation (7), we have

ut ∗ ρε = f (u(x − l, t) ∗ ρε, u ∗ ρε, u(x + l, t) ∗ ρε) + g(u ∗ ρε).

We compute as follows

uε
t = f (uε(x − l, t), uε, uε(x + l, t)) + g(uε)

thereby satisfying Eq. (7).
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A continuation method with nonlocal interactions 989

Furthermore, our proposed method is consistent with the continuation method
where the cell limit was set to 0 or lattice size was set to l, as we can derive the
differential operator by setting the limit l → +0 after applying our continuation
method.

Remark 3 If f is equal to fΔ, we see that

fΔ = u(x − l, t) − 2u + u(x + l, t)

l2
→ uxx

as l → +0.

Even if the intercellular interaction is nonlocal, which means it is affected by not
only the neighboring cells but also the other cells, our continuation method is appli-
cable to the discrete model, in a similar way. A discrete model in which intercellular
interactions are influenced by the cells other than neighboring cells, is given as follows:

⎧
⎨

⎩
ui,t = f

(
ui−[ N−1

2 ], · · · , ui , · · · , ui+[ N−1
2 ]
)

+ g(ui ), t > 0, i = 1, . . . , N ,

ui (0) = ui,0,

(PD)

where [·] is theGauss’s symbol, and f : R2[N−1/2]+1 → R is a function corresponding
to the interaction here. If f is linear, the function f is generally defined as

f (u−[ N−1
2 ], · · · , u0, · · · , u[ N−1

2 ]) =
[ N−1

2 ]∑

i=−[ N−1
2 ]

aiui , (10)

where {ai }[(N−1)/2]
i=−[(N−1)/2] are constants. Following the calculation in (6), we derive the

equivalent continuous model as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut = f

(
u

(
x −

[
N − 1

2

]
l, t
)
, · · · , u,

· · · , u
(
x +

[
N − 1

2

]
l, t

))
+ g(u), in T × {t > 0},

u(x, 0) = u0(x) =
N∑

i=1

ui (0)χci (x), on T.

(PS)

By describing the nonlocal interactions using the convolution of the mollifier ρε, the
kernel is provided by

K =
[ N−1

2 ]∑

j=−[ N−1
2 ], j �=0

a jτ jlρε, (11)
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and thus, the nonlocal evolution, which can approximate the solution of (PS), is given
as follows:

⎧
⎪⎪⎨

⎪⎪⎩

uε
t = K ∗ uε + a0u

ε + g(uε), in T × {t > 0},

uε(x, 0) = u0(x) =
N∑

i=1

ui (0)χci (x), on T.
(Pε)

2.2 Singular limit analysis

In this subsection, we will explain that the solution of (Pε) is sufficiently close to that
of (PS) in L2(T) by singular limit analysis. As the interaction f with the form in (PD)
includes the case of intercellular interaction in the discrete model, we deal with the
equations (PS) and (Pε) in this analysis. We firstly assume that f is the form of (10).
For the condition g, we assume that there exist positive constants g0, g2, g4 and a
nonnegative constant g1, g3 such that for u, v ∈ R,

g(u)u ≤ −g0|u|p+1 + g1|u|3 + g2|u|2, (A2)

|gu(u) + pg0|u|p−1| ≤ g3|u| + g4, (A3)

p ≥ 3 or g1 = g3 = 0 if 2 < p < 3. (A4)

A typical example of g is g(u) = u(1 − u2), where g0 = g2 = g4 = 1, g1 = g3 = 0
and p = 3.

First, we calculate the fundamental solution of the (PS) without the reaction term
g(u).

Proposition 1 The fundamental solution of ut =
[ N−1

2 ]∑

j=−[ N−1
2 ]

a ju(x+ jl, t) with initial

datum u0(x) =∑N
i=1 ui (0)χci (x) is given by

u(x, t) =
N∑

j=1

N∑

k=1

pke
λk tωk jχc j (x),

λk =
[ N−1

2 ]∑

h=−[ N−1
2 ]

ahω
hk, (12)
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where k = 1, . . . , N, ω = e
2π
N i , i is imaginary number and {pk}Nk=1 are constants

determined by the initial data.
Furthermore, if a j = a− j , ( j = 1, . . . , [ N−1

2 ]) the fundamental solution can be
written by

u(x, t) =
N∑

j=1

N∑

k=1

qke
λk t
(
cos
(2k jπ

N

)
+ sin

(2k jπ
N

))
χc j (x),

λk = a0 + 2

[ N−1
2 ]∑

h=1

ah cos
(2πhk

N

)
,

where {qk}Nk=1 are real constants determined by the initial data.

The proof is in “Appendix B”. Since the equation (PS) is equivalent to (PD), and the
associated matrix from f of the system (PD) is the cyclic, the eigenvalue and the
eigenvector can be calculated.

Next, we have the uniqueness and global existence of the solutions of (PS) and (Pε).

Proposition 2 Assume that f is given by (10), and sup j∈{−[(N−1)/2],...,[(N−1)/2]} |a j | <

∞. There exists a unique solution u ∈ C[(0,∞), L∞(T)] of (PS) with an initial datum
u0 ∈ L∞(T). Moreover,

sup
0≤t<∞

‖u(·, t)‖L∞(T) < C1 (13)

where C1 is a positive constant.

Proposition 3 Assume that K is givenby (11), and sup j∈{−[(N−1)/2],...,[(N−1)/2]} |a j | <

∞. There exists a unique solution uε ∈ C[(0,∞), L∞(T)]of (Pε)with an initial datum
u0 ∈ L∞(T). Moreover,

sup
0≤t<∞

‖uε(·, t)‖L∞(T) < C2 (14)

where C2 is a positive constant independent of ε.

The proves are in “Appendix B”. We note that each global solution of (PS) and (Pε) is
in L2(T) due to L∞(T) ⊂ L2(T). Thus, we have global boundedness in L2(T) as

sup
0≤t<∞

‖u(·, t)‖L2(T) < C3, sup
0≤t<∞

∥∥uε(·, t)∥∥L2(T)
< C4

from the estimations (13) and (14).
For the solution of the model (PS) and (Pε), we have the following error estimate.

Setting the error between the solution of (PS) and (Pε) as

U ε(x, t) := uε(x, t) − u(x, t),

we have the following convergence result.
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Theorem 1 Suppose the same assumptions of Propositions 2 and 3. Let u(x, t) and
uε(x, t) be solutions of (PS) and (Pε) with initial datum u(x, 0) = uε(x, 0) = u0(x) =∑N

i=1 ui (0)χci (x) ∈ L∞(T), respectively. Then

sup
0<t<T

‖U ε(·, t)‖L2(T) ≤
√
C6

C5

(
eC5T − 1

)
sup

|y|<ε,t>0
‖τyu − u‖L2(T),

where C5 and C6 are positive constants independent of ε. Thus, we have

‖U ε(·, t)‖L2(T) → 0

as ε → +0 for any 0 < t < T .

The calculation of the energy estimate is put in “Appendix B”. From this estimation,
the solution of the continuous model (8) converges to that of (7) in L2(T) space as ε

tends to 0. This implies the solution of nonlocal evolution equation can approximate
the solution of discrete model.

Corollary 1 Assume that f is global Lipschitz continuous, i.e., there exists a positive
constant L such that

∣∣∣ f
(
u−[ N−1

2 ], · · · , u0, · · · , u[ N−1
2 ]
)

− f
(
v−[ N−1

2 ], · · · , v0, · · · , v[ N−1
2 ]
)∣∣∣

≤ L

[ N−1
2 ]∑

j=−[ N−1
2 ]

|u j − v j |,
(15)

and f (0) = 0, (0 ∈ R
N ). Then Proposition 2, Proposition 3, and Theorem 1 hold.

Here, (Pε) has the term f (uε ∗ τ−[N−1/2]lρε, · · · , uε, · · · , uε ∗ τ[N−1/2]lρε) instead
of K ∗ uε − a0uε. The typical example of above f is in the model of the PCP (38). By
using the inequality (15), the proof is followed by that of Proposition 2, Proposition 3,
and Theorem 1.

2.3 Nonuniform lattice in one-dimensional space

In this subsection, we introduce that our continuation method is applicable to the dis-
crete models on nonuniform lattices by adding some conditions as a remark. Labeling
the i th cell as ci , (i = 1, . . . , N ) with the nonuniform length li > 0, we suppose N
cells are packed in the one-dimensional space. Let ui = ui (t) be the concentration
or density of some substances on ci at time t > 0. Imposing the periodic boundary
condition u0(t) = uN (t), and u1(t) = uN+1(t) with l0 = lN , and l1 = lN+1, we
consider the following discrete model in this subsection:

ui,t = f (ui−1, ui , ui+1) + g(ui ), t > 0, i = 1, . . . , N , (16)
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where the definitions of f and g are same as those in (1), and the initial data are given
by {ui (0)}Ni=1. For the length li , we define the following functions:

li (x) := li−1 + li − li−1

li

(
x −

i−1∑

j=1

l j
)
,

ri (x) := li + li+1 − li
li

(
x −

i−1∑

j=1

l j
)

for x ∈ ci . These functions map x to the division point in left and right neighboring
lattices comparing the position x in a lattice and left and right neighboring lattices,
respectively. We note that if li = l for all i = 1, . . . , N , we have li (x) = ri (x) = l
for any x ∈ ci . Using the characteristic function (5), we define the piecewise constant
function for the shift as follows

l(x) :=
N∑

i=1

li (x)χci (x), r(x) :=
N∑

i=1

ri (x)χci (x)

for x ∈
[
0,
∑N

i=1 li
]
in this subsection. Similarly to Sect. 2.1, we set

u(x, t) :=
N∑

i=1

ui (t)χci (x).

Changing the variable in the i th equation (16) by multiplying the unknown function
ui by the characteristic function χci (x), and adding ui (t)χci (x) with respect to i =
1, · · · , N , we have

ut = f

(
N∑

i=1

ui−1(t)χci (x), u,

N∑

i=1

ui+1(t)χci (x)

)
+ g(u).

As we can compute that

N∑

i=1

ui−1(t)χci (x) =
N∑

i=1

ui (t)χci (x − l(x)) = u(x − l(x), t),

N∑

i=1

ui+1(t)χci (x) =
N∑

i=1

ui (t)χci (x + r(x)) = u(x + r(x), t),

we obtain

ut = f (u(x − l(x), t), u, u(x + r(x), t)) + g(u), in
[
0,

N∑

i=1

li
]

× {t > 0}. (17)
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If the initial datum is given by u0(x) := u(x, 0) =∑N
i=1 ui (0)χci (x), the solution of

continuous model (16) is equivalent to that of the discrete model (17).
For the mathematical analysis, the function l(x) and r(x) can be rendered con-

tinuous by using mollifier. We see that l(x) and r(x) belong to L1
([

0,
∑N

i=1 li
])

.

Setting
lε(x) := (l ∗ ρε)(x), rε(x) := (r ∗ ρε)(x),

we propose an approximation model to (17) as

uε
t = f (uε(x − lε(x), t), uε, uε(x + rε(x), t)) + g(uε), in

[
0,

N∑

i=1

li
]

× {t > 0}.
(18)

Similarly to Sect. 2.1, we approximate the nonuniform shift operators by the con-
volutions. We assume (A1) for the function uε in (18). We can rewrite (18) in the
convolution form as

uε
t = f (uε ∗ δ−lε(x), uε, uε ∗ δrε(x)) + g(uε).

Recalling the function ρε,l = ρε(x + l) in (8), we have

uε,η
t = f (uε,η ∗ ρη,−lε(x), uε,η, uε,η ∗ ρη,rε(x)) + g(uε,η),

where 0 < η � 1 is a constant, and uε,η ∗ ρη,−lε(x) = ∫
∑N

i=1 li
0 uε,η(y, t)ρη(x − y −

lε(x))dy. If f is the linear function defined in (2), we obtain the nonlocal evolution
equation

uε,η
t = K (x, ·) ∗ uε,η + a0u

ε,η + g(uε,η), (19)

where the kernel is given by

K (x, y) := a−1ρη(y − lε(x)) + a1ρη(y + rε(x)).

With ε > 0 and η > 0 the kernel K (x, y) is differentiable. As introduced above,
the discrete models on nonuniform lattice can be rendered continuous models. The
nonlocal evolution equation (19) is expected to approximate the solutions of that of the
original discrete models on nonuniform lattices. The error estimations, the analysis
and the application to this proposed model is one of our future works.

2.4 System in one-dimensional space

In the case of system we can perform the continuation method similarly to Sect. 2.1.
We will explain the method by using the typical reaction diffusion system and Delta–
Notch signaling system which are often used for the mathematical modeling in the
successive sub-subsections.

123



A continuation method with nonlocal interactions 995

2.4.1 Reaction diffusion system

First, we explain the typical reaction diffusion system in the one-dimensional space
with periodic boundary conditions. Let ui = ui (t) and vi = vi (t) be the concentra-
tion of the diffusive substances on the uniform cells or lattices ci , (i = 1, . . . , N ),
respectively. The reaction diffusion system in the framework of the discrete model can
be described as follows:

{
ui,t = du fΔ(ui−1, ui , ui+1) + g1(ui , vi ),

vi,t = dv fΔ(vi−1, vi , vi+1) + g2(ui , vi ),
t > 0, i = 1, . . . , N , (20)

where du, dv > 0 are the diffusion coefficients, fΔ is defined by (3), and g1, g2 :
R
2 → R are the functions for reactions in this sub-subsection. For this equation,

setting the variables at position x ∈ T and at time t > 0 as

u(x, t) :=
N∑

i=1

ui (t)χci (x), v(x, t) :=
N∑

i=1

vi (t)χci (x),

we derive the reaction diffusion system performed our continuationmethod as follows:

{
ut = du fΔ(u(x − l, t), u(x, t), u(x + l, t)) + g1(u, v),

vt = dv fΔ(v(x − l, t), v(x, t), v(x + l, t)) + g2(u, v).
in T × {t > 0}. (21)

Similarly to the previous subsection, this above equation is point-wisely equivalent
to the equation (20). Indeed, if the initial conditions of (20) and (21) are same, the
solutions of (20) and (21) are equivalent.

Approximating the shift operator by the mollifier, and describing (20) like the
form of (9) , we have the following nonlocal evolution equation which is expected to
approximate the solution of the original discrete model (20):

⎧
⎪⎨

⎪⎩

uε
t = duK ∗ uε − 2duuε

l2
+ g1(u

ε, vε),

vε
t = dvK ∗ vε − 2dvv

ε

l2
+ g2(u

ε, vε),

in T × {t > 0},

where K = (ρε,−l + ρε,l)/l2.

2.4.2 Delta–Notch interaction system

Secondary, we consider the continuation method to the general Delta–Notch inter-
action system. Let Di = Di (t) and Ni = Ni (t) be the expression of Delta, and
Notch signal in the cell ci , (i = 1, . . . , N ), respectively. The simple description for
the Delta–Notch signaling in the framework of the discrete model is given by the

123



996 S.-I. Ei et al.

following system Collier et al. (1996):

{
Ni,t = f (Di−1, Di+1) + g1(Ni , Di ),

Di,t = g2(Ni , Di ),
t > 0, i = 1, . . . , M, (22)

where f is the function flat defined in (4) or the function depending flat, g1 and g2 are
the functions for reactions in this sub-subsection, and we replace the literature for the
cell number N with M ∈ N for the clear description in this sub-subsection. Similarly
to Sect. 2.1, the changing the variables in Eq. (22) as

N (x, t) :=
M∑

i=1

Ni (t)χci (x), D(x, t) :=
M∑

i=1

Di (t)χci (x)

yield the following equation

{
Nt = f (D(x − l, t), D(x + l, t)) + g1(N , D),

Dt = g2(N , D),
in T × {t > 0}. (23)

Indeed, if the initial conditions of (22) and (23) are the same, the solutions of (22) and
(23) are equivalent for any time t > 0. Regarding the shift operator as the convolution
with the Dirac Delta function, we approximate it by the convolution with the mollifier.
If f is linear such as flat, we have the following nonlocal evolution equation similarly
to (9): {

N ε
t = K ∗ Dε + g1(N

ε, Dε),

Dε
t = g2(N

ε, Dε),
in T × {t > 0},

where K = (ρε,−l+ρε,l)/2. Even if the number of the unknown variables is increased,
our method is applicable to make the discrete model continuous.

2.5 Two-dimensional space

In this subsection we will explain our continuous method for the discrete model in
the two-dimensional case. As the continuation method for the scalar equation can
be applied to the system similarly to one-dimensional case, we firstly deal with the
scalar discrete model in two-dimensional space. As considering the model in two-
dimensional case, the number of terms in the intercellular interaction is increased.
Accordingly, the number of the terms of shift or convolution withmollifier is increased
in the continuation method. The procedure of continuous method for the reaction term
is the same as the explanation of the previous subsections.

We set the square region, and impose the periodic boundary condition in this sub-
section.
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2.5.1 Square lattice

We perform the continuation method for the discrete model in the square lattice. This
mathematical model corresponds to the situation that square cells are packed in a
plane in the development of multicellular organs. Dividing the square region into N 2

square parts of lattices, we label each lattice as ci, j , (i, j = 1, . . . , N ), and denote
the horizontal and vertical length of a lattice by lx > 0 and ly > 0, respectively. Thus,
the region is described by

T
2 := [0, Nlx ] × [0, Nly].

One divided region corresponds to one cell or lattice as shown in Fig. 1.
For the simplicity, we suppose that region is a regular square. Then the scalar

discrete model with intercellular interaction can be described as follows:

ui, j,t = f (ui−1, j , ui+1, j , ui, j , ui, j−1, ui, j+1)+g(ui, j ), t > 0, i, j = 1, . . . , N ,

(24)
where ui, j = ui, j (t) is denoted by the concentration or density of some substances on
ci, j at time t > 0, f : R5 → R and g : R → R are intercellular and reaction functions,
respectively, in this sub-subsection. If f is a linear function, it can be generally written
by

f (u−2, u−1, u0, u1, u2) =
2∑

i=−2

aiui

with {ai }2i=−2⊂ R. The typical examples of f are diffusion and lateral inhibition as
follows:

fΔ(ui−1, j , ui+1, j , ui, j , ui, j−1, ui, j+1) = ui+1, j − 2ui, j + ui−1, j

l2x
+ ui, j+1 − 2ui, j + ui, j−1

l2y
,

fΔ×(ui−1, j−1, ui+1, j−1, ui, j , ui−1, j−1, ui+1, j+1)

= ui+1, j+1 − 2ui, j + ui−1, j−1

l2x
+ ui+1, j+1 − 2ui, j + ui−1, j−1

l2y
,

flat(ui−1, j , ui+1, j , ui, j−1, ui, j+1) = −ui+1, j − ui−1, j − ui, j+1 − ui, j−1

4
,

where fΔ× is referred from Chow (2003). For this discrete model we prepare the
following characteristic function at position (x, y) ∈ T

2:

χci, j (x, y) =
{
1 if (x, y) ∈ ci, j ,
0 otherwise.

For the Eq. (24) for i, j = 1, . . . , N , we change the variables similarly to Sect. 2.1 by
using the characteristic function. Here setting the variable on T

2 as

u(x, y, t) :=
N∑

i, j=1

ui, j (t)χci, j (x, y), (25)
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Fig. 5 The profile of the kernel of the intercellular interaction (26) with a j = 1, ( j = −2,−1, 1, 2) and
(29) with a j = 1, ( j = 1, . . . , 6) on the square a and hexagonal b lattices, respectively, and ε = 0.7

we have

ut = f (u(x − lx , y, t), u(x + lx , y, t), u(x, y, t), u(x, y − ly, t), u(x, y + ly, t)) + g(u)

from same calculation as that on one-dimensional case.We put the specific calculation
in “Appendix C”. The discrete model is successfully converted into the continuous
model. Similarly to the case in one dimension, approximating the shift operator by the
convolution with the mollifier yields the nonlocal evolution equation:

uε
t = f ((τlx ,0ρε) ∗ uε, (τ−lx ,0ρε) ∗ uε, uε, (τ0,lyρε) ∗ uε, (τ0,−lyρε) ∗ uε) + g(uε),

where we define the shift operator τl,m as

τl,mu = u(x − l, y − m).

If f is linear, the description with the kernel is given as follows

uε
t = K ∗ uε + a0u

ε + g(uε),

where

K = a−2(τlx ,0ρε) + a−1(τ−lx ,0ρε) + a1(τ0,lyρε) + a2(τ0,−lyρε). (26)

As mentioned above, our method enables us to derive the continuous model and
nonlocal evolution equation for the original discrete model. The profile of the kernel
for fΔ on the square lattice is shown in Fig. 5a.

2.5.2 Hexagonal lattice

In this sub-subsection, we explain the continuation method on hexagonal lattice. Due
to the hexagonal lattice, the direction of the shift operator is different from that in the
square lattice. Dividing the region into the regular hexagons, we label each mesh as
c j , j = 1, . . . , N as in Fig. 1b. In this sub-subsection we use the index of j for the
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label of each cell instead of i . We write the neighboring cells around the cell c j as
cΛk

j
, k = 1, . . . , 6, i.e., k

j (k = 1, cdots, 6) is the index of neighboring cells for the

j th cell.
The typical discrete model on the hexagonal lattice can be described as follows:

u j,t = f (uΛ1
j
, uΛ2

j
, uΛ3

j
, uΛ4

j
, uΛ5

j
, uΛ6

j
, u j ) + g(u j ), t > 0, j = 1, . . . , N ,

where f : R7 → R and g : R → R are intercellular and reaction functions, respec-
tively, here. The linear intercellular interaction f on the cell ci is generally given
by

f (uΛ1
j
, uΛ2

j
, uΛ3

j
, uΛ4

j
, uΛ5

j
, uΛ6

j
, u j ) =

6∑

k=1

akuΛk
j
+ a0u j .

Similar to the previous sub-subsection, the typical examples of f are diffusion and
Delta–Notch interaction as follows:

fΔ(uΛ1
j
, uΛ2

j
, uΛ3

j
, uΛ4

j
, uΛ5

j
, uΛ6

j
, u j ) =

uΛ1
j
+ uΛ2

j
+ uΛ3

j
+ uΛ4

j
+ uΛ5

j
+ uΛ6

j
− 6u j

l2
,

flat(uΛ1
j
, uΛ2

j
, uΛ3

j
, uΛ4

j
, uΛ5

j
, uΛ6

j
) =

−uΛ1
j
− uΛ2

j
− uΛ3

j
− uΛ4

j
− uΛ5

j
− uΛ6

j

6
.

Utilizing the characteristic function χc j (x, y), we define the variable at position
(x, y) ∈ T

2 at time t > 0 as

u(x, y, t) :=
N∑

j=1

u j (t)χc j (x, y). (27)

As the derivation is similar to those in previous sections, we put detailed calculations
in “Appendix C”. Changing the variable through the characteristic function as in the
previous Sect. 2.5.1, we obtain the continuous model:

ut = f
(
u(x, y + l, t), u

(
x +

√
3

2
l, y + 1

2
l, t
)
, u
(
x +

√
3

2
l, y − 1

2
l, t
)
,

u(x, y − l, t), u
(
x −

√
3

2
l, y − 1

2
l, t
)
, u
(
x −

√
3

2
l, y + 1

2
l, t
)
, u(x, y, t)

)
+ g(u).

We define the shift operator as

τΛk u = u
(
x + cos

(π

2
− π(k − 1)

3

)
l,

y + sin
(π

2
− π(k − 1)

3

)
l
)
, k = 1, . . . , 6.

(28)
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Approximating the shift operator by the convolution with the mollifier, we can derive
the kernel corresponding to the intercellular interaction on the hexagonal lattice.

uε
t = K ∗ uε + a0u

ε + g(uε),

where

K = K (x, y) =
6∑

k=1

ak(τΛkρε) (29)

Figure 5b shows the profile of the kernel for the diffusion fΔ on the hexagonal lattice.

2.5.3 Isotropy of Delta–Notch signaling and radially symmetric kernel

In the previous sub-subsections we explained the continuation method for the uniform
lattice with the uniform shape and size. However, the shape of the cells during devel-
opment is not always uniform. Assuming the uniform lattice for the mathematical
modeling for the phenomena might be artificial. Then we propose a kernel of our con-
tinuation method conserving the lattice size implicitly without assuming the uniform
lattice based on the biological experiments.

As explained in Sect. 1, the fly brain is often used for the study of neurogenesis
mediated by the Delta–Notch signaling system. The shape of the NEs and neuroblasts
(NBs), neural stem-like cells, in the fly brain looks various. Activation of Notch sig-
naling is induced by binding of the Notch receptor with the Delta ligand expressed
in adjacent cells at the cell surface. Therefore, activation of Notch signaling might be
affected by the shape of the cell membrane. However, as various stochastic noise and
other signaling pathway, other than Delta–Notch signaling are involved during devel-
opment (Tanaka et al. 2018), we conjecture that the shape of the activated region of
Notchmay become isotropic and averaged.We asked howNotch signaling is activated
when Delta is artificially expressed in a small number of cells. In this condition, the
Notch activity was visualized by using the NRE-dVenus transgenic construct (Hous-
den et al. 2012). As shown in Fig. 6, Notch signaling was activated in a group of cells
immediately adjacent to the Delta-expressing cells through trans-activation forming
a concentric distribution pattern. The inactivation of Notch signaling within the Delta
expressing cells is most likely due to the effect of cis-inhibition (del Álamo et al.
2011; Sprinzak et al. 2010). This result suggests that the shape of cells do not affect
the spatial activation pattern of Notch in vivo.

Based on this experimental results, we propose the following shape for the kernel

K (x, y) = 1

2πl
ρε

(√
x2 + y2 − l

)
. (30)

The profile of this kernel is shown in Fig. 7. The donut-like pattern of Notch activation
is consistent with the concentric shape of the kernel used in (30).

By using this shape of kernel, the nonlocal operator becomes radially symmetric.
This radially symmetric kernel is also applicable to describe the signaling system with
projections of cells such as pigment cells in the skin of fishes Watanabe and Kondo
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Fig. 6 Notch activity as visualized by NRE-dVenus (white) is elevated in cells adjacent to the clones
expressing UAS-Delta under the control of AyGal4 (magenta) due to trans-activation, but is repressed in
cells expressingUAS-Delta due to cis-inhibition (arrows). Thewave front of the proneural wave is visualized
by L’sc (blue). Scale bar, 20 μm

Fig. 7 Profile of the radially
symmetric kenrel (30) with
ε = 0.7

(2015). As a result, the analysis of the continuous model from the discrete model
becomes more available for the mathematical analysis.

3 Applications

In this section we will apply our continuation method for some discrete models of
previous studies, and perform the numerical simulations to investigate how patterns
are generated.

3.1 Continuousmodel of the proneural wave

The developing fly brain looks like a hemisphere. During early stages of development,
undifferentiated NEs proliferate and these NEs differentiate into NBs later stages of
development. The transition fromNEs toNBs propagates from themedial to the lateral
directions. Since the transition is visualized by the transient expression ofL’sc,which is
one of the AS-C complexmember and acts as a proneural factor, the propagation of the
differentiation in the fly brain is called the proneural wave (PW) (Yasugi et al. 2008).
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Fig. 8 Thepropagationof the proneuralwave.aSchematic depictionof the developingflybrain.bSchematic
depiction of the proneural wave propagation. c A confocal image of the proneural wave propagation. NEs
(labeled with PatJ, Blue), PW (labeled with L’sc, green), and NBs (labeled with Dpn, magenta) are shown.
Scale bar, 20 μm

In Fig. 8, NEs, NBs, and the PW are visualized by the staining for PatJ (blue), Deadpan
(magenta), and L’sc (green), respectively. The propagation of the PW is regulated by
the interaction of EGF and Delta–Notch pathways (Yasugi et al. 2010). In Sato et al.
(2016), a discrete model with four factors, EGF, Notch, Delta, and AS-C has been
proposed to investigate how Delta–Notch signaling controls the PW propagation. For
the simplicity themathematical model for the PWwas proposed by dividing the region
to uniform square or hexagonal lattice, and each lattice is labeled i, j th cells as ci, j
in Sato et al. (2016), Tanaka et al. (2018). The dynamics of Notch, Delta, and AS-C
are given by the discrete model, and the dynamics of EGF is given by the continuous
model at time t > 0 as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂E

∂t
= deΔE − keE + ae A(A0 − A),

dNi, j

dt
= −knNi, j + dt

∑

l,m∈Λi, j

Dl,m − dcNi, j Di, j ,

dDi, j

dt
= −kd Di, j + ad Ai, j (A0 − Ai, j ),

d Ai, j

dt
= ea(A0 − Ai, j )max{Ei, j − Ni, j , 0},

in Ω × {t > 0}, (31)

where the calculation region is set as Ω = [0, Lx ] × [0, Ly], Lx , Ly > 0, E =
E(x, y, t) is denoted by the composite variable for the EGF ligand concentration and
EGF signaling at position x and time t > 0, Ni, j = Ni, j (t), and Di, j = Di, j (t)
are variables for the Notch signal activity and Delta expression in the i th and j th
cells at time t > 0, respectively, Ai, j = Ai, j (t) is a variable for the level of the
differentiation reflecting the expression of AS-C in the i th and j th cells at time t , and
de, ke, ae, kn, dt , dc, kd , ad and ea are positive constants. The variables without index
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is the unknown variables which are extended the whole region by the characteristic
function, and Ei, j is the average value of EGF in the i, j th cell ci, j . AsNotch signaling
in the ci, j cell is activated by Delta in the neighboring cells which surround the ci, j
cell, the sum of the expression of Delta in the neighboring cells Dl,m(t) is imposed
in the second equation. As considering the discrete model, the concentration of Delta,
Notch and AS-C is uniform in each cell ci, j . The information of the cell membrane
is not included in this model. It has been reported that this discrete model replicates
the mode of the PW with the suitable parameter from the numerical simulations (Sato
et al. 2016; Tanaka et al. 2018). Moreover, as increasing the strength of the lateral
inhibition in the parameter, (31) could reproduce the nonuniform propagation, called
the salt-and-pepper patterns as introduced in Sect. 1, in the numerical simulation,
thereby indicating the existence of the salt-and-pepper pattern in the fly brain.

To apply the analytical theory, for example the theory of the travelingwave solution,
or reduction method, we perform the continuation method to this model (31). For this
model, we assume the following:

(A5) There are spatial distributions of Delta, Notch and AS-C in the cells.
(A6) The trigger of the differentiation at each point in the cells is determined by the

value of EGF instead of the value of the integration of EGF in a cell.

From the assumption (A5), using the characteristic function, we change the variable
as follows:

D(x, y, t) :=
N∑

i, j=1

Di, j (t)χci, j (x, y), N (x, y, t) :=
N∑

i, j=1

Ni, j (t)χci, j (x, y),

A(x, y, t) :=
N∑

i, j=1

Ai, j (t)χci, j (x, y).

We propose the following the continuous model:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂E

∂t
= deΔE − keE + ae A(A0 − A),

∂N

∂t
= −knN + dt K ∗ D − dcN D,

∂D

∂t
= −kd D + ad A(A0 − A),

∂A

∂t
= ea(A0 − A)max{E − N , 0},

in Ω × {t > 0}. (32)

where the profile of the kernel K = K (x, y) is determined by the profile of the lattice.
For the simple description, we impose the local term of the EGF in the max function
of the fourth equation based on the assumption (A6).

We perform the numerical simulation to investigate whether the continuation
method for the model (31) is effective or not. First, we perform the numerical sim-
ulations by using the kernel corresponding to Delta–Notch interaction on the square
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a

b

Fig. 9 The results of the numerical simulations for the state of the differentiation A in the continuous model
(32) with the kernel corresponding to the square lattice. The parameters are de = 2.0, ke = 1.0, kn =
3.0, dt = 2.0, dc = 0.5, kd = 1.5, ad = 1.0, A0 = 1.0, ea = 10.0, ε = 0.2, l = 1 and K =∑4

j=1 ρε(x−
l ∗eiπ j/2) is used. The zero flux boundary, the Dirichlet boundary and the periodic boundary conditions are
imposed in {x = 0}, {x = Lx } and {y = 0} ∪ {y = Ly}, respectively. The high and low expression levels
of A are shown in red and blue as indicated in the color bar, which is applied in the following Figs. 10, 11,
12, 13 and 14. a PW with ae = 5.0, b Salt-and-pepper pattern with ae = 1.0

and hexagonal lattices. Figure 9 shows the numerical results of (32) with the ker-
nel corresponding to square lattice. The uniform propagation of the differentiation
corresponding to the PW is replicated with suitable parameters as in Fig. 9a. As the
parameter corresponding to the strength of activation of EGF ae is decreased, the
strength of the lateral inhibition by Delta–Notch becomes relatively larger. In this
situation, the continuous model with the kernel reproduces the nonuniform propaga-
tion of the differentiation of AS-C corresponding to the salt-and-pepper pattern as in
Fig. 9b. In this numerics, the square salt-and-pepper pattern does not depend on the
numerical mesh in the code of numerical simulation. This one square region reflects
the size and shape of one cell. We put the numerical results of the original discrete
model for the PW reported in Sato et al. (2016), Tanaka et al. (2018) in “Appendix A”.

Secondary, the numerical results of the continuous model with the kernel cor-
responding to Delta–Notch interaction on hexagonal lattice are shown in Fig. 10.
Similarly to Fig. 9, with the large value of strength of the activation for the EGF ae
the continuous model with the kernel corresponding to the hexagonal mesh has repli-
cated the mode of the PW. As decreasing the value of ae, the stripe propagation of the
differentiation is reproduced. Furthermore, by decreasing the value of ae more, the
nonuniform propagation of the differentiation corresponding to the salt-and-pepper
pattern has been reproduced. We can observe that each differentiated region exhibits
the hexagonal shape. Even though the prepared mesh in the code of the numerical
simulation is square, we can replicate the hexagonal patterns in the continuous model.
This numerical results suggest that we can directly introduce the information of the
spatial discreteness into the continuous model, and the solution of the continuous
model with the suitable kernel can reproduce the solution of discrete model.

Next, we perform the numerics with the radially symmetric kernel (30). As shown
in Fig. 11, the mode of uniform PW and stripe propagation have been reproduced
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a

b

c

Fig. 10 The results of the numerical simulations for the state of the differentiation A in the continuousmodel
(32) with the kernel corresponding to the hexagonal lattice. The parameters are same as that in Fig. (9) and
K (x, y) =∑6

k=1(τΛk ρε) is used. a PW with ae = 5.0, b Stripe pattern with ae = 2.1, c Salt-and-pepper
pattern with ae = 1.0

depending on the value of ae. Moreover, as in Fig. 11c, the continuous model has
replicated the propagation of the salt-and-pepper pattern even by using the radially
symmetric kernel (30). As shown in Fig. 11c, the profile of the differentiated region
is spotted and can be interpreted that it indicates the shape of the averaged cells.
Although we also use square mesh in the numerical simulation code in these numerics,
the continuous model with radially symmetric kernel can reproduce the uniform and
nonuniform propagations. The right side of Fig. 11 shows the section of the numerics
of (b) in y = Ly/2 at t = 20.0. The blue curve corresponds to the profile of Delta,
and we can observe that the Delta is expressed at the wave front. These numerical
results are consistent with the observation that Delta expression is localized to the cell
membrane in the real fly brain. In the view of mathematical modeling, it is explained
that the term of the activation from the AS-C in the front ad A(A0 − A) is imposed in
the third equation of (32). We succeeded in reproducing the realistic pattern through
our continuation method.

As mentioned above, the results of our numerics suggest that we can analyze the
solution observed in the discrete model in the framework of the continuous model
equipping the spatially discretized initial data. In the successive subsections, we per-
form the numerical simulations of discrete model of the PW on growing domains and
expansions of the model on the sphere by using our continuation method to investigate
the realistic situation of the developing fly brain.

123



1006 S.-I. Ei et al.

a

b

c

Fig. 11 The results of the numerical simulations for the state of the differentiation A in the continuous
model (32) with the kernel corresponding to the averaged cell (30). The parameters are same as that in Fig.
9, except for kn = 10.0, dc = 5.0, and dt = 4π and (30) is used as the kernel. Left: a PW with ae = 3.0,
b Stripe pattern with ae = 0.7, c Salt-and-pepper pattern with ae = 0.4. Right: Section of numerical
simulation of b at t = 20.0

3.2 Modeling of cell division on the discrete model

Owing to our continuation method by the convolution with the kernel, we are able to
model the cell division and proliferation in the discrete model. In this subsection, we
explain this application by using the model of the PW.

During the process of the PW, the nonuniform cell division occurs on the surface.
The fly brain develops via an early NE expansion phase followed by a differentiation
phase from NEs to NBs (Egger et al. 2007; Hofbauer and Campos-Ortega 1990).
When we try to add the effect of cell division to the discrete model, it is often artificial
because we must decide the timing, direction, and number of cell division. However,
we can introduce this effect naturally in our continuation method by expressing it as
the domain growth. We put the explanations of the basic idea for the domain growth
in “Appendix D”. Using the method of the domain growth, we add the effect of cell
division to (31) as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂E

∂t
= de

Γy

∂

∂ y

(
1

Γy

∂E

∂ y

)
− keE + ae A(A0 − A) − ηE,

∂N

∂t
= −knN + dt K̃∗D − dcN D − ηN ,

∂D

∂t
= −kd D + ad A(A0 − A) − ηD,

∂A

∂t
= ea(A0 − A)max{E − N , 0} − ηA,

∂Γy

∂t
= ηΓy,

in (0, L(0)) × {t > 0},

(33)

where K (x) = ρε(x−l)+ρε(x+l), K̃ is the kernel with changed variable of K , Γy is
a derivative bijection function, and η is determined below. The detail of K̃ and Γy are
explained in “Appendix D”. Since AS-C can be regarded as the level of differentiation,
we suppose that the cell is the NE if the value of A(x, t) is close to 0, and the cell is
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Fig. 12 The results of the numerical simulations for the state of the differentiation A in the continuous
model on growing domain (33). The parameters are same as that in Fig. 11, except for dt = 4.0, ae = 0.1
and L(0) = 20.0. a No division with η(y, t, A) ≡ 0. b Nonuniform division using η(y, t, A) defined (34)
with A∗ = 0.5 and η0 = 0.01

the NB if the value of A(x, t) is close to 1. To express the nonuniform cell division of
the PW, η = η(y, t, A) is given by the monotone decreasing function with respect to
A, because NE is divided on the surface of fly brain. Here, we assume that the point
satisfying A(t, x) ≥ A∗ is not divided on the surface. Now, we set

η(y, t, A) =
⎧
⎨

⎩
η0

(
1 − A(y, t)

A∗

)
, i f A(y, t) ≤ A∗,

0, otherwise,
(34)

where η0 is a constant.
Figure 12 shows the numerical results of (33) in the cases of fixed domain and the

nonuniform cell division, respectively. In the beginning of the numerical simulations,
we observed the similar patterns in the both (a) and (b). However, the NBs newly
appear between the valleys of regions of NBs in Fig. 12b as the time passes. This
numerical result can be explained in the view of mathematical modeling as follows.
The differentiation of A at each point is inhibited by N in the max function of the
fourth equation in (33). N in a cell is activated by D which is activated at the wave
fronts of the regions corresponding to the adjacent cells. Therefore, when the region
corresponding to the NEs is close to the wave front, the differentiation is inhibited.
Conversely, farther from the wave front the region corresponding to the NEs is, the
weaker the strength of the lateral inhibition of Notch becomes. As the EGF diffuses to
the region, the differentiation of NBs occurs in the valleys of the regions corresponding
to NBs. At present, we consider the continuous model of the PW in one-dimensional
space. In the future, wewill try to calculate in two-dimensional space and on the sphere
surface in order to apply the experiment. Furthermore, in Kawamori et al. (2011), it
is reported that the wave front of the PW is dented in the clone of fly brain due to
the fast NE’s division. Thus, we want to understand the reasons why the profile of
the wave front is affected by the speed of the NE’s division from the viewpoint of the
mathematical model.
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3.3 Description of discrete model on sphere surface

For another example of applications of our continuationmethod tomathematical mod-
eling, we explain the description of the discrete model on sphere surface. We show
that we can deal with the discrete model on the sphere surface by using the radially
symmetric kernel (30).

Various pattern formations often occur in the region of sphere surface in the devel-
opment of multicellular organisms. In the case of the PW investigated in the previous
subsections, the fly brain is the hemisphere-like shape, and the PW sweeps across the
surface. It is natural to construct the discrete model for the PW on the sphere surface,
but the mathematical studies of the PW have been discussed on the 2D plane due
to the technical difficulties of the discreteness in the numerical simulations on the
sphere. Here, our continuation method can overcome these difficulties and enables
us to deal with the model on the sphere surface as the continuous model equation.
In practice, by applying the continuation method with the radially symmetric kernel
with a radius r > 0 in Sect. 2.5.3, we can compute the continuous model (32) on the
sphere surface by the spectrum method. We put the explanations of the basic idea for
the spectrum method on sphere surface in “Appendix E”. Using the spectrum method,
we can compute the following model of the PW on the sphere surface numerically:

⎧
⎪⎨

⎪⎩

∂E

∂t
= deΔrS2E − keE + ae A(A0 − A),

∂N

∂t
= −knN + dt K ∗rS2 D − dcN D,

in rS2 × {t > 0}, (35)

where the equation of D and A are same as the equation (31), and rS2 is a sphere with
radius r > 0 and K : [0, 2r ] → R is defined as

K (x) := ρε(x − l), x ∈ [0, 2r ].

The Laplace-Beltrami operator ΔrS2 on the general sphere with the radius r > 0 is
given by

ΔrS2 = 1

r2
ΔS2 ,

where the definition of the Laplace–Beltrami operator is in “Appendix E”. The con-
volution operator on the sphere ∗rS2 is computed as

K ∗rS2 u(x) :=
∫

rS2
K (|x − y|)u(y)dΩr (y),

= r2
∫

S2
Kr (|x − y|)ur (y)dΩ(y),

= Kr ∗S2 ur (x),
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where
Kr (| · |) := K (r | · |), ur (x) := u(r x) (x ∈ S

2), (36)

dΩr is denoted by the standard measure on rS2, and ∗S2 is the convolution on the
unit sphere. According to this calculation, we can rewrite the equation (35) on the unit
sphere as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Er

∂t
= de

r2
ΔS2Er − keEr + ae Ar (A0 − Ar ),

∂Nr

∂t
= −knNr + dtr2Kr ∗S2 Dr − dcNr Dr ,

∂Dr

∂t
= −kd Dr + ad Ar (A0 − Ar ),

∂Ar

∂t
= ea(A0 − Ar )max{Er − Nr − kin Jr , 0},

in S
2 × {t > 0}, (37)

where kin is a positive constant, J = J (x, t) reproduces the profile of the JAK/STAT
signaling, which cancels the biological noise in the fly brain reported in Tanaka et al.
(2018), and the notation of unknown variables are based on (36). When we calculate
the equation (37) by the spectrummethod, the spatial noise arises from finite spherical
harmonic expansion. Therefore, we need the effect of JAK/STAT as the role of the
noise reduction (Tanaka et al. 2018). For simplicity, we assume that the value of J (x, t)
is spatially uniform. Furthermore, as the spatial interaction of the equation (37) are
the diffusion term in first equation and the convolution term in second equation, we
calculate numerically the evolution of E and N by the spectrum method and compute
the evolution of D and A by the Euler method.

In numerical simulation of Fig. 13 at which parameters are the same as those of
Fig. 11, we obtain numerical results of the propagation of AS-C similar to the case
of the 2D plane when r = 10.0. We can interpret the reason of this result as follows.
When the radius of the sphere r is relatively large compared to the cell size, the
curvature of the cell surface becomes small. From this, the cell on the sphere surface
can be regarded as the same state as the case of the plane. Therefore, we obtain similar
numerical results to those of Fig. 11.

We observe the PW is accelerated as the wave directs from the equator to the north
pole as in Fig. 14. We think that this arises from the diffusion of the EGF ligand.
Because the space become narrower as the wavefront approaches the pole, the EGF
ligand accumulates and induce faster NB differentiation. It is not clear whether the
speed of the PW progression is accelerated when the PW reaches close to the pole
in vivo. This will be one of the interesting questions to be solved in the future by
performing live imaging of the PW and quantitatively measured the speed of the wave
progression.

3.4 Application to themodel of planar cellular polarity

In Ayukawa et al. (2014), a discrete model for planar cellular polarity (in short, PCP)
of epithelial hair in the fly wing has been proposed by focusing on the interactions of
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Fig. 13 The results of the numerical simulations for the state of the differentiation A in the continuousmodel
on the sphere surface (37). The parameters are same as that in Fig. 11, and r = 10.0 and kin J ≡ 1.0×10−3.
a PW with ae = 2.0. b Stripe pattern with ae = 0.7. c Salt-and-Pepper pattern with ae = 0.4

Fig. 14 The velocity of PW for each position, when dt = 0 and other parameters are the same as that in
Fig. 11. φ represents the latitude

transmembrane proteins, distal complexes and proximal complexes. The intercellular
protein and the cytoplasmic component are asymmetry localized by the intercellular
interactions. Due to the asymmetric localization of the proteins, the direction of an
epithelial hair in a cell is determined. If the transmembrane receptor, Frizzled (Fz) is
localized in a cell, the other transmembrane protein, Strabismus (Stbm), is localized
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in the opposite side of the cell membrane in the same cell. Each membrane protein
interacts distal and proximal complexes in a cell, which causes the localization of the
polarization of Fz and Stbm in the neighboring cells. Fz and Stbm in the neighboring
cells are localized near sides. Localization of these proteins between adjacent cells
leads to the local alignment of PCP among small group of cells.

A simple mathematical model succeeded in describing the mechanism of the PCP
Ayukawa et al. (2014). In the modeling of Ayukawa et al. (2014), the region corre-
sponding to the fly wing is divided into hexagonal lattices and each lattice is labeled
as ci , i = 1, . . . , N . By denoting the unknown variable for the direction of Fz in the
i th cell ci by θi = θi (t) the following discrete model is proposed by the authors of
Ayukawa et al. (2014):

θi,t =
6∑

j=1

sin(θ
Λ

j
i
− θi ), (38)

where the number of the term in the linear combination with sin function depends
on the spatial dimension and arrangement of the lattice. We perform our continuation
method to this discrete model for PCP. Setting as

θ(x, y, t) =
N∑

i=1

θi (t)χci (x, y),

we have the following continuousmodel by the changing the variables as in Sect. 2.5.2,

θt =
6∑

j=1

sin(τΛ j θ − θ), (39)

where the shift operator is defined by (28). This model is equivalent to (38) if the
initial data is equal. The form of the shift operator is changed depending on the shape
of the set lattice.

We performed numerical simulations with the discretized initial datum on square
lattice.

As in Fig. 15, we observe that the continuation model (39) with the discretized
initial data can replicate the patterns in the discrete model (38). In this simulation,
the color corresponding to the direction of an epithelial hair gets gradually uniform.
This solution corresponds to that all epithelial hair grow in the same direction. On the
other hand, as in Fig. 16, the solution corresponding to a swirl of the epithelial hairs
is obtained in the steady-state as the number of cells is increased. This generation of
the pole of θ is consistent to the report by Ayukawa et al. (2014).

In the discrete model, the number of the unknown variables is required for the
same number of the cells. Accordingly, it is sometimes hard to compute the analytic
calculations, for example, eigenvalue problem in the linear instability around the equi-
librium solution. However, our method can reduce the discrete model with multiple
components into scalar continuous model, and it gives us simpler calculations. We
perform the linear instability of the model (38) by using the continuous model (39) in
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a b c

Fig. 15 Thenumerical results of the continuousmodel for PCPwith the discretized initial data corresponding
to the discrete model on square lattice. The periodic boundary condition is imposed. The direction of θi in
each cell ci is indicated by the color as in the color circle in right hand side. The mesh size of the numerics
is dx = 0.02, l = 1, and the number of cell is equal to 100. a t = 0.00, b t = 5.00, c t = 20.0

a b c

Fig. 16 Thenumerical results of the continuousmodel for PCPwith the discretized initial data corresponding
to the discrete model on square lattice. The mesh size of the numerics is dx = 0.04, l = 1, and the number
of cell is equal to 400. a t = 0.00, b t = 10.00, c t = 50.0

one-dimensional space. Suppose that the number of cells is N , and that the length is
l. Setting the region as T = [0, Nl], we impose the periodic boundary condition. The
model of PCP in one-dimensional space is given by the following form:

θt = sin(θ(x − l, t) − θ) + sin(θ(x + l, t) − θ), in T × {t > 0}. (40)

For this interval T, we found that one equilibrium solution is given by θ∗(x) =∑N
j=1 α jχc j (x), where α j = 2π

N j . It is confirmed that

sin(θ∗(x − l) − θ∗) + sin(θ∗(x + l) − θ∗)

= sin

⎛

⎝
N∑

j=1

χc j (x)(α j−1 − α j )

⎞

⎠+ sin

⎛

⎝
N∑

j=1

χc j (x)(α j+1 − α j )

⎞

⎠

= sin

⎛

⎝−2π

N

N∑

j=1

χc j (x)

⎞

⎠+ sin

⎛

⎝2π

N

N∑

j=1

χc j (x)

⎞

⎠
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= sin
(

− 2π

N

)
+ sin

(2π
N

)
= 0.

Additionally, the constant solution θ∗(x) = α, α ∈ [0, 2π ] is also equilibriumsolution
of (40). The linear stability analysis around the equilibrium solutions is explained as
follows. Letting the range of the linear operator be in R, and setting the perturbation
as θ(x, t) = θ∗ + ε(x, t) and substituting the model (40) by it, we have

εt = sin

⎛

⎝
N∑

j=1

χc j (x)(α j−1 − α j ) + ε(x − l, t) − ε

⎞

⎠

+ sin

⎛

⎝
N∑

j=1

χc j (x)(α j+1 − α j ) + ε(x + l, t) − ε

⎞

⎠

= sin

(
−2π

N
+ ε(x − l, t) − ε

)
+ sin

(
2π

N
+ ε(x + l, t) − ε

)
.

Linearizing this problem around equilibrium solutions, we have the following eigen-
value problem:

λϕ = cos
(2π
N

)(
ϕ(x − l, t) + ϕ(x + l, t) − 2ϕ

)
, (41)

where ϕ = ϕ(x) is the eigenfunction associated by the eigenvalue λ. Plugging the nth
term of the Fourier series expansion

ϕn = an exp

(
−2nπ i

Nl
x

)
, an := 1

Nl

∫ Nl

0
ϕ(x) exp

(
2nπ i

Nl
x

)
dx

to (41), where i is imaginary number, we obtain that

λϕn = cos
(2π
N

)(
exp

(
2nπ i

N

)
+ exp

(
−2nπ i

N

)
− 2
)
ϕn

= 2 cos
(2π
N

)(
cos

(
2nπ

N

)
− 1
)
ϕn .

We have the eigenvalues λn = 2 cos
(
2π
N

)(
cos
( 2nπ

N

) − 1
)
. The calculation of the

eigenvalue of fΔ in the matrix form is also written in “Appendix B”, and each result
is consistent. From this calculation, if the number of cell N is bigger than 3, we see
that equilibrium solutions is linearly stable. By the same calculus, it is shown that
the constant solution θ∗ is also linearly stable. Even in the two-dimensional case,
our above method enables us to compute the linear stability analysis if we have the
equilibrium solutions.
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4 Discussion

In this paper, we proposed a continuation method for discrete models, using shift and
convolution operators while conserving the size and shape of cells and lattices. The
proposed method enables the conversion of nonlinear discrete models into continuous
models in a systematic manner, retaining the discreteness information. As the contin-
uous model applied to our method with the shift operator is point-wisely equivalent to
the original discrete model, the solutions are equal if the initial data are the same. The
framework of the continuous model provides a few advantages, as per the analysis
results. As in Sect. 3.4, we reproduced the pattern for the PCP in epithelial hair corre-
sponding to that of the discrete model. Furthermore, we constructed the equilibrium
solutions and performed the linear stability analysis in the continuous PCP model,
using the Fourier series expansion. In Sect. 2.3, we showed that our continuation
method can be applied to the discrete models on nonuniform lattices. Although the
framework of discretemodel is technically difficult to express the dynamics on nonuni-
form lattices, The proposed method enables us to treat the spatial non-uniformity on
the continuous models mathematically. In the future, we will extend our work to the
analyses and applications to this continuous models from the discrete models on the
nonuniform lattices.

As a next step, we reduced the continuous model with the shift operators to the
nonlocal evolution equation, using the approximation of the shift operator by convo-
lution of a mollifier. We have also conducted the singular limit analysis of the discrete
model and the nonlocal evolution equation in a one-dimensional interval with periodic
boundary condition, showing that every solution is sufficiently close in L2(T) space.
This suggests that nonlocal evolution with suitable kernels is capable of approximat-
ing the solution of discrete models, if the initial data are the same. Using the nonlocal
evolution equation with the kernel of mollifiers, we have succeeded in replicating the
pattern observed in the original discrete PWmodel. When the intercellular interaction
was linear, the profile of kernel was determined by the lattice shape as shown in (26)
and (29). Using these kernels in the continuous model for the PW, we reproduced the
square and hexagonal shapes of the salt-and-pepper patterns.

Furthermore, we experimentally confirmed the isotropy of the Delta–Notch signal-
ing system in the real fly brain. Based on the biological experiment, we proposed a
radially symmetric kernel for the domain comprising averaged cell shapes. Even with
the radially symmetric kernel for the Delta–Notch signaling interaction, we could
reproduce the various propagation patterns of the PW. The radially symmetric kernel
can also be applied to the discrete models on nonuniform lattices if the molecular
and cellular system is not affected by the shape of cells and lattice as explained in
Sect. 2.5.3. For application to the biological experiments, using a kernel with a small
width, such as the Friedrichs mollifier, yields results that are more compatible with
experiments than the combination of the shift operators. However, the shift operator
can be more convenient for the analysis. In Ei et al. (submitted), by arranging the
Dirac Delta function radially as the kernel in the continuation method, the reduction
method of the continuous model for PW into 1 or 2 variable system, and its numerical
simulations are addressed. Nonlocal evolution equation with certain kernel is some-
times difficult to analyze. However, nonlocal evolution equation provides us with a
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unifying concept to mathematical modeling and analysis as it is capable of includ-
ing partial differential equations such as the reaction diffusion systems and discrete
models. Moreover, various analytical and numerical methods for partial differential
equations are applicable to nonlocal evolution equations as explained in Sects. 3.2, 3.3
and 3.4. In future, we also intend to extend our work to other domains and include
higher dimensions of singular limit analysis.

In Sect. 3.2, 3.3 and 3.4, we applied the continuous model on the PW progression
and the PCP formation.We demonstrated that the continuous model can easily include
the effect of NE cell proliferation and can expand the simulation result from the 2D
plane to the 3D spherical surface. In fly brain development, the final numbers of NBs
and neurons are dependent on the NE proliferation. Using biological experiments, it
has been shown that NE expansion is regulated by several signaling pathways. The
PI3K/Akt/TOR pathway promotes NE proliferation in a diet-dependent manner in the
early stages of development (Franco and Carmena 2019; Lanet et al. 2013). The Hippo
pathway inhibits the overgrowth of NEs and inactivation of Hippo signaling inhibits
NB differentiation (Kawamori et al. 2011; Reddy et al. 2010; Richter et al. 2011). By
combining biological experiments on these signaling pathways with numerical calcu-
lation, it will be possible to understand the in vivo situation of the PW progression
in more detail. In this paper, we presented two biological examples, for which our
numerical method is applicable. Here, we emphasize that the numerical method is
also useful for other biological systems because our method is based on fundamental
and conserved intercellular interactions. The continuation method and numerical cal-
culation with continuous models will facilitate our understanding of a wide variety of
biological processes, both quantitatively and qualitatively.
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Appendix A

Numerical results of the discrete model of PW

In this appendix we will show the numerical results of the original discrete model of
PW (31). The results is shown in Fig. 17.
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a b c

Fig. 17 The results of the numerical simulations for the state of the differentiation Ai, j in the discrete
model (31) on the square lattice {ci, j }. The parameters are de = 0.5, ke = 1.0, ae = 1.0, kn = 2.0, dt =
2.0, dc = 0.1, kd = 1.5, ad = 1.0, A0 = 1.0, and ea = 10.0

The propagation of the salt-and-pepper pattern, and stripe pattern are observed in
the numerical simulations. We see that the profile of Ai, j are uniform in each cell ci, j .

Appendix B

Energy estimate

We estimate error between the solutions of (PS) and (Pε) with (11) in the singular limit
analysis with linear function f given by (10). We assume the initial condition of (PS)
and (Pε) is the same, and given by u(x, 0) = uε(x, 0) = u0(x) =∑N

i=1 ui (0)χci (x) ∈
L∞(T).

First, we compute the fundamental solution of (PS) without g(u). As the equation
(PS) and the equation (PD) is equivalent, we solve the equation (PD). The system (PD)
is described by

Vt = AV + F(V ), (42)

where V = (u1(t), . . . , uN (t)), F : RN → R
N and

A =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a0 a1 · · · a[ N−1
2 ] a−[ N−1

2 ] · · · a−1

a−1 a0 a1 · · · ...
...

. . .
. . .

. . .
...

...
. . .

. . .
. . .

...
...

. . .
. . .

. . .
...

... · · · a−1 a0 a1
a1 · · · a[ N−1

2 ] a−[ N−1
2 ] · · · a−1 a0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (i f N is odd),
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A =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a0 a1 · · · a[ N−1
2 ] 0 a−[ N−1

2 ] · · · a−1

a−1 a0 a1 · · · .
.
.

.

.

.
. . .

. . .
. . .

.

.

.

.

.

.
. . .

. . .
. . .

.

.

.

.

.

.
. . .

. . .
. . .

.

.

.

.

.

.
. . .

. . .
. . .

.

.

.

.

.

. · · · a−1 a0 a1
a1 · · · a[ N−1

2 ] 0 a−[ N−1
2 ] · · · a−1 a0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (i f N is even).

Since the matrix A is cyclic, we obtain the eigenvalue (12) i.e.,

λk =
[ N−1

2 ]∑

j=−[ N−1
2 ]

a jω
jk .

Associated eigenvector Vk of which components are {vn}Nn=1 with eigenvalue λk is
computed by vn = ωnk, (k = 1, . . . , N ). Thus, the fundamental solution of (42) is
given by

V (t) =
N∑

k=1

pke
λk t Vk =

N∑

k=1

pke
λk t

⎛

⎜⎜⎜⎝

ωk

ω2k

...

ωNk

⎞

⎟⎟⎟⎠ ,

where {pk}Nk=1 are constants satisfying

⎛

⎜⎜⎜⎜⎜⎜⎝

p1
p2
...
...

pN

⎞

⎟⎟⎟⎟⎟⎟⎠
= 1

N

⎛

⎜⎜⎜⎜⎜⎜⎝

ω ω−2 · · · ω−N

ω−2 ω−4 · · · ω−2N

...
...

. . .
...

...
...

...

ω−N ω−2N · · · ω−N2

⎞

⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎝

u1(0)
u2(0)

...

...

uN (0)

⎞

⎟⎟⎟⎟⎟⎟⎠
.

Therefore, we obtain the exact solution as

u(x, t) =
N∑

j=1

u j (t)χc j (x) =
N∑

j=1

N∑

k=1

pke
λk tω jkχc j (x).

Setting a vector Ṽk as {ṽn} = ω−nk and λ̃k = ∑[(N−1)/2]
j=−[(N−1)/2] a jω

− jk , we find that

AṼk = λ̃k Ṽk . Thus, if a j = a− j , ( j = 1, . . . , [ N−1
2 ]), we obtain that λk = a0 +
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1018 S.-I. Ei et al.

2
∑[(N−1)/2]

j=1 a j cos
(
2π jk
N

)
, A(Vk + Ṽk) = λkVk + λ̃k Ṽk = λk(Vk + Ṽk), and A(Vk −

Ṽk) = λkVk − λ̃k Ṽk = λk(Vk − Ṽk). From this calculation, setting a vector Wk as
{wn} = cos(2πnk/N ) + sin(2πnk/N ). Then AWk = λkWk . Thus the fundamenal
solution of (42) is given by

V (t) =
N∑

k=1

qke
λk tWk,

where {qk}Nk=1 are constants satisfying

⎛

⎜⎜⎜⎜⎜⎜⎝

q1
q2
...
...

qN

⎞

⎟⎟⎟⎟⎟⎟⎠
= 1

N
(W1,W2, . . . ,WN )t

⎛

⎜⎜⎜⎜⎜⎜⎝

u1(0)
u2(0)

...

...

uN (0)

⎞

⎟⎟⎟⎟⎟⎟⎠
,

where thematrix (W1,W2, . . . ,WN )t is the transposeof thematrix (W1,W2, . . . ,WN ).
Next, we show the existence the global solution of (PS) and (Pε) under the above

assumptions, respectively.

Proof of Proposition 2 The existence and uniqueness of the mild solution for (PS) in
C([0, T ], L∞(T)) is guaranteed by the fixed point theorem. We show the global exis-
tence in L∞(T) by the argument of the maximum principle. For a contradiction, we
assume that there exists a positive finite constant T > 0 such that

lim sup
τ↗T

max
0≤t≤τ

‖u(·, t)‖L∞(T) = ∞

Then we take a sequence {Tn}n∈N , Tn ↗ T as n → ∞ such that

Rn := max
0≤t≤Tn

‖u(·, t)‖L∞(T) → ∞

as n → ∞. Indeed, for any R there exists a positive constant n0 ∈ N such that for all
n ≥ n0, we see that Rn > R, and for any 0 < t < Tn , there exist jn ∈ N such that
‖u(·, t)‖L∞(T) = |u jn (t)|. We define the points (xn, tn) ∈ T × (0, Tn) as satisfying
|u(xn, tn)| = |u jn (tn)| = Rn . As Rn → ∞, we can choose

∂

∂t
(u2)(xn, tn) ≥ 0.

Multiplying the principal equation of (PS) by u, then

0 ≤ 1

2

∂

∂t
(u2)(xn, tn) =

[
N−1
2

]

∑

j=−
[
N−1
2

]
a j u(xn + jl, tn)u(xn, tn) + g(u(xn, tn))u(xn, tn),
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≤

⎛

⎜⎜⎝

[
N−1
2

]

∑

j=−
[
N−1
2

]
|a j | + g2

⎞

⎟⎟⎠ |u(xn, tn)|2 − g0|u(xn, tn)|p+1 + g1|u(xn, tn)|3,

=

⎛

⎜⎜⎝

[
N−1
2

]

∑

j=−
[
N−1
2

]
|a j | + g2

⎞

⎟⎟⎠ R2
n − g0R

p+1
n + g1R

3
n → −∞, (n → ∞),

from (A2) and considering the degree of polynomial of Rn . This yields a contradiction.
��

Similar to the proof of Proposition 2, we show the global existence of the equation
(Pε).

Proof of Proposition 3 The existence and uniqueness of the mild solution for (Pε) in
C([0, T ], L∞(T)) is guaranteed by the fixed point theorem. By the same argument as
the proof of Proposition 2, we obtain the L∞(T) estimate for the solution of (Pε). For
a contradiction, we assume that there exists a positive finite constant T > 0 such that

lim sup
τ↗T

max
0≤t≤τ

∥∥uε(·, t)∥∥L∞(T)
= ∞

Then we take a sequence {Tn}n∈N , Tn ↗ T as n → ∞ such that

Rn := max
0≤t≤Tn

∥∥uε(·, t)∥∥L∞(T)
→ ∞

as n → ∞. Indeed, for any R there exists a positive constant n0 ∈ N such that
for all n ≥ n0, we have Rn > R, and for any 0 < t < Tn , we define the points
satisfying |uε(xn, tn)| = Rn by (xn, tn) ∈ T × (0, Tn). In the case that the candidates
of the maximum point is on the discontinuous point, employing the larger value at the
point by taking the left-sided and right-sided limits, we define the point as (xn, tn). As
Rn → ∞, we can choose

∂

∂t
[(uε)2](xn, tn) ≥ 0.

Moreover, for any {a j }Nj=1, andpositive constants p, g0, g1 and g2, there exist sufficient
large constant r , we see that

‖K‖L1(T) r
2 + g(r)r ≤

⎛

⎜⎜⎝

[
N−1
2

]

∑

j=−
[
N−1
2

]
|a j | + g2

⎞

⎟⎟⎠ |r |2 − g0|r |p+1 + g1|r |3 < 0
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1020 S.-I. Ei et al.

from (A2) and considering the degree of polynomial of r . Thus, there exists a positive
constant n1 ∈ N such that for n ≥ n1

0 ≤ 1

2

∂

∂t
[(uε)2](xn, tn)

≤

⎛

⎜⎜⎝

[
N−1
2

]

∑

j=−
[
N−1
2

]
|a j | + g2

⎞

⎟⎟⎠ |uε(xn, tn)|2 − g0|uε(xn, tn)|p+1 + g1|uε(xn, tn)|3 < 0,

replacing r with uε(xn, tn). This yields a contradiction. ��
Now we show the singular limit analysis between the solutions of (PS) and (Pε).

Proof (Proof of Theorem 1) Taking the difference between the solutions of (PS) and
(Pε), we have

U ε
t =

[ N−1
2 ]∑

j=−[ N−1
2 ]

a j

∫

T

u(x + jl, t) − (ρε, jl ∗ uε)dx + g(u) − g(uε).

Multiplying the above equation by U ε and integrating it with respect to x , we obtain
that

1

2

d

dt

∥∥U ε
∥∥2
L2(T)

=
[ N−1

2 ]∑

j=−[ N−1
2 ]

a j

∫

T

{
u(x + jl, t) − (ρε, jl ∗ uε)

}
U εdx +

∫

T

(g(u) − g(uε))U εdx

≤
[ N−1

2 ]∑

j=−[ N−1
2 ]

|a j |
∫

T

{
u(x + jl, t) − (ρε, jl ∗ uε)

}
U εdx

+
∫

T

(−g0 p|u + θuε|p−1 + g3|u + θuε| + g4)(U
ε)2dx

≤
[ N−1

2 ]∑

j=−[ N−1
2 ]

|a j |
∫

T

{
u(x + jl, t) − (ρε, jl ∗ uε)

}
U εdx + C7

∥∥U ε
∥∥2
L2(T)

from (A3) and where θ ∈ (0, 1), and C7 = (g3 supt>0 ‖u + θuε‖L∞(T) + g4). Here
the intercellular interaction can be computed as follows:

∫

T

((uε ∗ ρε, jl) − u(y + jl, t))U εdy

=
∫

T

((uε ∗ ρε)(y + jl, t) − u(y + jl, t))U εdy

≤ 1

2

∫

T

((uε ∗ ρε)(y + jl, t) − u(y + jl, t))2dy + 1

2

∥∥U ε
∥∥2
L2(T)
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= 1

2

∫

T

((uε ∗ ρε)(y, t) − u(y, t))2dy + 1

2

∥∥U ε
∥∥2
L2(T)

≤
∫

T

(U ε ∗ ρε)
2dy +

∫

T

(u ∗ ρε − u)2dy + 1

2

∥∥U ε
∥∥2
L2(T)

.

for j = −[ N−1
2 ], . . . ,−1, 0, 1, . . . , [ N−1

2 ]. Using the Hölder inequality and the prop-
erty of the mollifier, we estimate that

∫

T

(u ∗ ρε − u)2dy =
∫

T

{ ∫

T

(
u(y − z, t) − u(y, t)

)
ρε(z)dz

}2
dy

≤
∫

T

ρε(z)dz
∫

T

∫

T

(
τzu − u

)2
ρε(z)dzdy

=
∫

B(0,ε)
‖τzu − u‖2L2(T)

ρε(z)dz

≤ sup
|z|<ε,t>0

‖τzu − u‖2L2(T)
.

Therefore, we obtain that

∫

T

(U ε ∗ ρε)
2dy +

∫

T

(u ∗ ρε − u)2dy ≤ ∥∥U ε
∥∥2
L2(T)

+ sup
|z|<ε,t>0

‖τzu − u‖2L2(T)
.

Combining the above calculations, we have

1

2

d

dt

∥∥U ε
∥∥2
L2(T)

≤
[ N−1

2 ]∑

j=−[ N−1
2 ]

|a j |
(
3

2

∥∥U ε
∥∥2
L2(T)

+ sup
|z|<ε,t>0

‖τzu − u‖2L2(T)

)
+ C7

∥∥U ε
∥∥2
L2(T)

.

Utilizing the classical Gronwall lemma yields that

∥∥U ε
∥∥2
L2(T)

≤ C8

C7
sup

|y|<ε,t>0
‖τyu − u‖2L2(T)

(
eC7T − 1

)
,

where

C8 = 3

[ N−1
2 ]∑

j=−[ N−1
2 ]

|a j | + 2C7, C9 = 2

[ N−1
2 ]∑

j=−[ N−1
2 ]

|a j |.

��
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Appendix C

Derivation on square and hexagonal lattices

In this appendix we put the detailed calculations for the derivations of the continuous
models in square and hexagonal lattices. For (25), we can calculate as

N∑

i, j=1

ui−p, j−qχci, j (x, y) = u(x − plx , y − qly, t), (p, q ∈ {1, . . . , N }).

Thus, we have

ut = f

⎛

⎝
N∑

i, j=1

ui−1, jχci, j (x, y),
N∑

i, j=1

ui+1, jχci, j (x, y), u,

N∑

i, j=1

ui, j−1χci, j (x, y),
N∑

i, j=1

ui, j+1χci, j (x, y)

⎞

⎠+ g(u)

= f (u(x − lx , y, t), u(x + lx , y, t), u(x, y, t), u(x, y − ly, t), u(x, y + ly, t)) + g(u).

The discrete model is successfully converted into the continuous model. Similarly to
the case in one dimension, approximating the shift operator by the convolution with
the mollifier yields the nonlocal evolution equation:

uε
t = f ((τlx ,0ρε) ∗ uε, (τ−lx ,0ρε) ∗ uε, uε, (τ0,lyρε) ∗ uε, (τ0,−lyρε) ∗ uε) + g(uε),

where we define the shift operator τl,m as

τl,mu = u(x − l, y − m).

If f is linear, the description with the kernel is given as follows

uε
t = f ((τlx ,0ρε) ∗ uε, (τ−lx ,0ρε) ∗ uε, uε, (τ0,lyρε) ∗ uε, (τ0,−lyρε) ∗ uε) + g(uε)

= K ∗ uε + a0u
ε + g(uε),

where

K = a−2(τlx ,0ρε) + a−1(τ−lx ,0ρε) + a1(τ0,lyρε) + a2(τ0,−lyρε).

In the case of hexagonal lattice, the derivation is given as follows. Here for simple
description, introducing the complex variable x = x + yi ∈ C, we identify the
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two-dimensional Euclid space R2 with the complex plane C. Then we compute that

N∑

j=1

uΛk
j
(t)χc j (x, y) = u

(
x + lei(

π
2 − (k−1)π

3 ), t
)

= u
(
x + cos

(π

2
− π(k − 1)

3

)
l, y + sin

(π

2
− π(k − 1)

3

)
l, t
)
.

Changing the variable through the characteristic function (27), we obtain the contin-
uous model:

ut = f
(
u(x + lei

π
2 , t), u(x + lei(

π
2 − π

3 ), t), u(x + lei(
π
2 − 2π

3 ), t),

u(x + lei(
π
2 − 3π

3 ), t), u(x + lei(
π
2 − 4π

3 ), t), u(x + lei(
π
2 − 5π

3 ), t), u
)

+ g(u)

= f
(
u(x, y + l, t), u

(
x +

√
3

2
l, y + 1

2
l, t
)
, u
(
x +

√
3

2
l, y − 1

2
l, t
)
,

u(x, y − l, t), u
(
x −

√
3

2
l, y − 1

2
l, t
)
, u
(
x −

√
3

2
l, y + 1

2
l, t
)
, u(x, y, t)

)
+ g(u).

Using the shift operator (28) and approximating the shift operator by the convolu-
tion with the mollifier, we can derive the kernel corresponding to the intercellular
interaction on the hexagonal lattice.

uε
t = f

(
(τΛ1ρε) ∗ uε, (τΛ2ρε) ∗ uε, (τΛ3ρε) ∗ uε,

(τΛ4ρε) ∗ uε, (τΛ5ρε) ∗ uε, (τΛ6ρε) ∗ uε, uε
)

+ g(uε)

=
( 6∑

k=1

ak(τΛkρε)
)

∗ uε + a0u
ε + g(uε)

= K ∗ uε + a0u
ε + g(uε),

where
K = K (x, y) =

6∑

k=1

ak(τΛkρε).

Appendix D

Reaction, diffusion and nonlocal interaction on growing domain

We explain the notion of the mathematical model on a growing domain by using a
reaction diffusion equation with nonlocal interactions. Based on the previous reports
(Crampin et al. 1999, 2002), general scalar reaction diffusion equation with convolu-
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tion term on a growing domain in one-dimensional space is given by

∂u

∂t
+ ∇(a · u) = Δu + K ∗ u + f (u), in (0, L(t)) × {t > 0}, (43)

where u = u(t, x) is an unknown function, f : R → R is a nonlinear function,
a = a(x, t) is the velocity field of the flow and satisfies

dx

dt
= a(x, t), x ∈ (0, L(t)).

Now, we assume that there exists the continuous derivative bijection function Γ :
(0, L(0)) → (0, L(t)) for all t > 0. Then, x ∈ (0, L(t)) is described by

x = Γ (y, t), y ∈ (0, L(0)). (44)

Using (44), we take the change of variables from x ∈ (0, L(t)) to y ∈ (0, L(0))

∂u

∂t
+ ηu = 1

Γy

∂

∂ y

(
1

Γy

∂u

∂ y

)
+ K̃∗u + f (u), in (0, L(0)), (45)

where η := ax , and K̃ is the integral operator satisfing

K̃∗u(y, t) :=
∫ L(0)

0
Γy(s, t)K (Γ (y, t) − Γ (s, t))u(s, t)ds.

To calculate Γy , we deduce the time evolutional equation of Γy . Setting the velocity
field as

a = ∂Γ

∂t

∣∣∣∣
y
(y, t),

then we can compute that

∂Γy

∂t
= η(y, t)Γy (46)

by using the chain rule. Moreover, we impose the following initial and boundary
condition

Γ (y, 0) = y, (y ∈ (0, L(0))), Γ (0, t) = 0, (t > 0). (47)

From (46) and (47), we can calculate (45) numerically, if we define the function η.
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Appendix E

Spectrummethod on sphere surface

We explain the basic idea of spectrum method for the numerical calculation on the
unit sphere. Set S2 := {x = (x1, x2, x3) ∈ R

3 | |x | = 1}, and let x ∈ S
2 be a point

on the sphere parameterized by the (λ, θ) ∈ (−1, 1) × (0, 2π) as

x =
⎛

⎝
x1
x2
x3

⎞

⎠ =
⎛

⎝

√
1 − λ2 cos θ√
1 − λ2 sin θ

λ

⎞

⎠ .

Moreover, denoting the Euclidian distance in R
3 and the standard measure on S

2 by
| · | and dμ, respectively. To explain the spectrum method, we consider the following
equation:

∂u

∂t
= ΔS2u + K ∗S2 u + f (u), in S

2 × {t > 0}, (48)

where u = u(x, t) is an unknown function, f : R → R is a nonlinear function, the
Laplace-Beltrami operator on the unit sphere ΔS2 is described by

ΔS2u = 1

1 − λ2

∂2u

∂θ2
+ ∂

∂λ

{
(1 − λ2)

∂u

∂λ

}
,

and the ∗S2 denotes the convolution operator with respective to the spatial variable as

K ∗S2 u(x, t) :=
∫

S2
K (|x − y|)u(y, t)dμ(y),

and we suppose that the kernel K : [0, 2] → R satisfies K (
√
2(1 − ·)) ∈ L1(−1, 1).

To calculate the diffusion term and the convolution term on the sphere surface,
we introduce the spherical harmonics. The spherical harmonics Ym

n = Ym
n (λ, θ)(n =

0, 1, 2 · · · , |m| ≤ n) are given by

Ym
n (λ, θ) := C |m|

n√
2π

eimθ P |m|
n (λ),

Pm
n (λ) := 1

2nn! (1 − λ2)m/2 dm+n

dλm+n

[
(λ2 − 1)n

]
, (m ≥ 0),

Cm
n :=

√(
n + 1

2

)
(n − m)!
(n + m)! , (m ≥ 0),

where Pm
n (λ) is the associated Legendre polynomials, and Cm

n satisfies Cm
n =(||Pm

n ||L2(−1,1)
)−1/2. The spherical harmonics have the following properties :

Proposition 4 (Atkinson and Han 2012)
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(1) {Ym
n } is complete orthonormal system on L2(S2).

(2) ΔS2Y
m
n = −n(n + 1)Ym

n .

(3) K ∗S2 Ym
n = 2πβnYm

n , where βn = ∫ 1−1 K (
√
2(1 − s))P0

n (s)ds.

By this proposition, we can expand u and f (u) by spherical harmonics

u(x, t) =
∞∑

n=0

n∑

m=−n

umn (t)Ym
n (x) �

N∑

n=0

n∑

m=−n

umn (t)Ym
n (x),

f (u)(x, t) =
∞∑

n=0

n∑

m=−n

f mn (t)Ym
n (x) �

N∑

n=0

n∑

m=−n

f mn (t)Ym
n (x),

where N is a sufficiently large natural number, umn (t) = 〈
u(t),Ym

n

〉
L2(S2)

, f mn (t) =〈
f (u)(t),Ym

n

〉
L2(S2)

. Therefore, calculating (48) yields that

dumn
dt

= {−n(n + 1) + βn}umn + f mn , (n = 0, 1, 2 · · · , N , |m| ≤ n)

for the every time step, since f mn depends on u.
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