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ABSTRACT: Transesterification of ethyl-10-undecenoate (de-
rived from castor oil) with 1,4-cyclohexanedimethanol over a
recyclable Cu-deposited V2O5 catalyst afforded 1,ω-diene, the
corresponding cyclohexane-1,4-diylbis(methylene) bis(undec-10-
enoate), a promising monomer for the synthesis of biobased
polyesters, in an efficient manner. Deposition of Cu plays an
important role in proceeding the reaction with high selectivity, and
both the activity and the selectivity are preserved for five recycled
runs by the addition of the substrates. The present catalyst was
effective for transesterification with other alcohols, especially
primary alcohols, demonstrating a possibility of using this catalyst for efficient conversion of plant oil to various fine chemicals.

■ INTRODUCTION

Subjects on efficient conversion of plant oil attract consid-
erable attention to establish the circular economy as well as to
reduce concerns of global warming as alternative feedstocks of
fossil fuels.1−5 Plant oils, generally obtained as fatty acids
(FAs) and their esters (FAEs) by chemical modifications, have
been considered as a useful renewable feedstock for the
synthesis of biofuels,6−10 biobased aliphatic polyest-
ers,1,3−5,12−15 and fine chemicals (such as surfactants, cosmetic
ingredients, and plasticizers).1,3−5,16,17 There have been many
reports concerning the transesterification of FAs and FAEs for
the synthesis of biofuels6,18−28 and their catalysis study for
efficient conversion of fine chemicals,17,29−37 and many
catalysis studies applied for organic synthesis38−40 have also
been known.
As described above, the development of plant oil-derived

biobased aliphatic polyesters, which display tunable mechanical
properties and biodegradability by precise polymerization
techniques, attracts considerable attention. There have been
two major pathways for the synthesis, (i) condensation
polymerization and (ii) acyclic diene metathesis (ADMET)
polymerization and subsequent hydrogenation, and the latter
pathway requires transesterification of unsaturated long-chain
aliphatic carboxylic acid esters with diols for the synthesis of
monomers, 1,ω-diene, through the diester linkage (Scheme 1).
These monomers, especially derived from methyl (or ethyl)
10-undecenoate, were prepared in the presence of excess 1,1′-
carbonyl diimidazole,32 p-toluene sulfonic acid or Sc-
(CF3SO3)3,

33 NaOMe,34 or NEt3 and 4,4-dimethylaminopyr-
idine;35 these monomers can also be prepared by treatment of

the acid chloride with diols in the presence of NEt3.
36,37

Development of a simple catalytic transesterification method
should be thus required for the efficient conversion of the
unsaturated fatty acid esters not only to monomers for the
ADMET polymerization but also to fine chemicals.
We, therefore, herein report that a Cu-deposited V2O5

catalyst could be a promising candidate for the purpose,
especially for selective transesterification of ethyl-10-undece-
noate (derived from castor oil) with various alcohols, as
exemplified with 1,4-cyclohexanedimethanol (Scheme 2). The
catalyst could be recycled several times by simply adding
substrates without decreasing both the activity and selectivity,
and various alcohols could also be used by adopting this
catalysis.

■ RESULTS AND DISCUSSION

Transesterification of Ethyl-10-undecenoate (1) with
1,4-Cyclohexanedimethanol (2) by a Metal-Oxide
Catalyst. Table 1 summarizes the results of transesterifications
of ethyl-10-undecenoate (1) with 1,4-cyclohexanedimethanol
(2) in the presence of various metal oxides (preparation of the
oxides, see the Experimental Section). These reactions were
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conducted at 100 °C without a solvent under rather excess 1
for conversion of 2 (1:2 = 4.0:1.0, molar ratio), and the
conversions of substrates (1,2) and the reaction products,
corresponding monoester (4, Scheme 2) and the diester (3),
were analyzed quantitatively by GC in the presence of an
internal standard (n-dodecane). The experimental details
including typical GC chromatograms and their identifications
(synthesis of standards and the nuclear magnetic resonance
(NMR) spectra etc.) are shown in the Supporting Information.
It turned out that V2O5 (nanosized vanadium pentoxide)

prepared by thermal decomposition of vanadyl oxalate in
air,41,42 converted 2 to afford the diester 3 in a moderate yield
(run 16), whereas the other metal oxides showed low yields
(0.4−4.7%); the selectivity in the reaction by ZnO was rather
high (85%, based on 2, run 2) compared to that by V2O5
(68%). As introduced in Table 2 (runs 16, 18), the reaction
with V2O5 proceeded with a high conversion of 2 even after 3
h (81%) to afford a mixture of the diester (3) and the
monoester (4), and further reaction increased the yield of 3
without decreasing the selectivity. It has been known that
certain Lewis acids [such as ZrCl4(THF)2, ZrCl4(THF)2,
etc.]38 are effective for transesterification of carboxylic acids,38

and V2O5 has a Lewis acid site as well as a Brönsted acid
site.41,42 It thus seems likely that V2O5 may play a role as a
Lewis acid catalyst.
A series of metal-doped or metal-deposited V2O5 catalysts

were thus prepared (details in the preparation procedure are
described in the Experimental Section) to improve both the
activity and selectivity. Table 2 summarizes the results in the

Scheme 1. Synthesis of Polyesters from Plant Oils (Unsaturated Long-Chain Aliphatic Esters) via (i) Isomerization
Alkoxycarbonylation and Polycondensation or (ii) Acyclic Diene Metathesis (ADMET) Polymerization and Subsequent
Hydrogenation11

Scheme 2. Catalytic Transesterification of Ethyl-10-undecenoate with 1,4-Cyclohexanedimethanol in the Presence of a Cu-
Deposited V2O5 Catalyst

Table 1. Transesterification of Ethyl-10-undecenoate (1)
with 1,4-Cyclohexanedimethanol (2): Effect of Metal-Oxide
Catalystsa

conversionb (%) yieldb,c (%)

run catalyst 1 2 3 4 3 + 4

1 La2O3 6 3 0.1 0.3 0.4
2 ZnO 10 16 0.6 13 13.6
3 CuO 6 3 0.1 1.3 1.4
4 SiO2 23 22 0.1 2.5 2.6
5 NiO 2 3 trace 1.1 1.1
6 CeO2 15 5 0.2 3.3 3.5
7 Al2O3 10 5 trace 1.2 1.2
8 Co3O4 25 18 0.1 3.9 4
9 ZrO2 8 3 trace 1.7 1.7
10 Fe2O3 25 14 0.1 3.7 3.8
11 TiO2 26 32 0.3 4.0 4.3
12 MnO2 16 22 trace 1.2 1.2
13 Ta2O5 18 12 0.3 4.4 4.7
14 Nb2O5 16 35 0.3 3.1 3.4
15 SnO2 22 15 0.2 3.3 3.5
16 V2O5 40 94 56 8.2 64.2
17 WO3 20 22 0.1 3.0 3.1

aReaction conditions: 50 mg of catalyst, ethyl-10-undecenoate (1, 4.0
mmol, 849 mg), 1,4-cyclohexanedimethanol (2, 1.0 mmol, 144 mg),
100 °C, 23 h. bQuantitative analysis by GC using internal standards.
cYields on the basis of 1,4-cyclohexanedimethanol (2).
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presence of various metal-doped or metal-deposited catalysts
(3.5 mol % on V2O5). It turned out that improvements in the
yields (3 and 4) were observed when the reactions were
conducted in the presence of Nb−V2O5, Mo−V2O5, and Cu−
V2O5 catalysts after 23 h (runs 24, 28, 40), whereas the
catalysts doped on Mn and Fe3+ initially showed improvement
in the selectivity after 3 h (runs 31 and 33), but the yields
(total 3 and 4) became low after 23 h (49 and 39%,
respectively). No (significant) improvements in both the
activity and the selectivity were observed by adding Ti, Zr, Ni,
Co, Sn, Zn, and Ce. It should be noted that the reaction by

Cu-deposited V2O5 catalyst afforded the diester (3) in a high
yield (85%) with high selectivity (92% on the basis of 2, 96%
on the basis of 1). It seems that the reaction proceeds with a
rather low selectivity (after 3 h, run 39) at the initial stage, but
further reaction afforded esters with high selectivity (run 40).
Table 3 summarizes the time course in the transesterification

of 1 with 2 in the presence of the Cu−V2O5 catalyst (less
catalyst loading from Table 2), and the results in the presence
of the V2O5 catalyst are also placed for comparison. Figure 1
also shows the plots of the yields and the selectivities over the
time course. It turned out that Cu−V2O5 showed improvement

Table 2. Transesterification of Ethyl-10-undecenoate (1) with 1,4-Cyclohexanedimethanol (2) by Metal-Doped/Deposited
V2O5 Catalysts: Effect of Metal Deposition on V2O5

a

conversionb (%) yieldb,c (%) select. Ad select. Be

run catalyst time 1 2 3 4 3 + 4 (%) (%)

18 V2O5 3 27 81 28 26 55 68 76
16 V2O5 23 40 94 56 8 64 68 75
19 Ti−V2O5 3 14 50 5 29 34 68 68
20 Ti−V2O5 23 36 99 44 9 53 53 67
21 Zr−V2O5 3 20 72 10 34 44 61 67
22 Zr−V2O5 23 40 99 56 7 63 64 74
23 Nb−V2O5 3 18 62 10 33 43 69 73
24 Nb−V2O5 23 40 99 57 14 71 72 80
25 Ni−V2O5 3 8 30 1 13 14 47 46
26 Ni−V2O5 23 28 86 19 30 48 56 60
27 Mo−V2O5 3 14 50 5 28 33 65 67
28 Mo−V2O5 23 41 98 65 13 78 79 87
29 W−V2O5 3 21 70 15 41 56 80 82
30 W−V2O5 23 43 99 64 1 65 66 75
31 Mn−V2O5 3 11 39 4 27 31 79 80
32 Mn−V2O5 23 38 100 49 1 49 50 65
33 Fe3+−V2O5 3 6 17 2 14 16 91 80
34 Fe3+−V2O5 23 36 100 38 1 39 39 54
35 Fe2+−V2O5 23 41 100 62 10 72 72 82
36 Co−V2O5 3 8 31 2 21 23 75 77
37 Co−V2O5 23 29 92 20 25 45 49 57
39 Cu−V2O5 3 20 64 18 35 53 82 89
40 Cu−V2O5 23 46 99 85 7 91 92 96
41 Sn−V2O5 3 20 65 11 37 48 73 73
42 Sn−V2O5 23 36 99 41 10 51 51 63
43 Zn−V2O5 3 15 53 3 20 23 44 42
44 Zn−V2O5 23 27 91 14 23 37 41 48
45 Ce−V2O5 3 10 35 3 27 31 87 85

aReaction conditions: 50 mg of catalyst (V2O5 doped with 3.5 mol % metals except for Cu−V2O5, where 3.5 mol % Cu is deposited on V2O5),
ethyl-10-undecenoate (1, 4.0 mmol, 849 mg), 1,4-cyclohexanedimethanol (2, 1.0 mmol, 144 mg), 100 °C. bQuantitative analysis by GC using
internal standards. cYields on the basis of 1,4-cyclohexanedimethanol (2). dBased on alcohol (2). eBased on ester (1).

Table 3. Time-Course Dependence in Transesterification of Ethyl-10-undecenoate (1) with 1,4-Cyclohexanedimethanol (2) by
a Cu-Deposited V2O5 Catalyst

a

conv.2b yieldb,c (%) select. Ad select. Be

run catalyst time (%) 3 4 3 + 4 (3 + 4)d (3 + 4)e

46 V2O5 3 65 7 32 39 60 68
47 V2O5 6 87 14 27 41 48 54
48 V2O5 16 97 33 16 49 50 58
49 Cu−V2O5 3 42 10 27 37 90 91
50 Cu−V2O5 6 90 47 38 85 95 96
51 Cu−V2O5 16 96 73 17 91 95 97

aReaction conditions: 25 mg of catalyst (deposited with 3.5 mol % Cu on V2O5), ethyl-10-undecenoate (1, 4.0 mmol, 849 mg), 1,4-
cyclohexanedimethanol (2, 1.0 mmol, 144 mg), 100 °C. bQuantitative analysis by GC using internal standards. cYields on the basis of 1,4-
cyclohexanedimethanol (2). dBased on alcohol (2). eBased on ester (1).
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in the selectivity compared to V2O5 (runs 46−48 vs runs 49−
51), whereas the conversion of 2 after 3 h was low (run 46 vs
run 49). Further reaction over V2O5 afforded the products (3 +
4) with a slight decrease in the selectivity (run 48). In contrast,
as described above, the reaction by the Cu−V2O5 catalyst
initially proceeded with a rather low selectivity (90% on the
basis of 2, run 49), which is, however, apparently higher than
that by V2O5 (60%, run 46), and further reactions proceeded
with high selectivity affording esters in a high yield (91%, run
51) after 16 h; the conversion of 2 reached 90% after 6 h (run

50). It is thus clear that the deposition of Cu on V2O5 was
effective, especially in terms of selectivity.
On the basis of the results in Tables 2 and 3, Cu−V2O5

catalysts with different Cu contents were prepared to explore
the effect of Cu on both the activity and the selectivity. The
results conducted for 3, 6, and 16 h are summarized in Table 4.
To check the initial selectivity as well as to explore the catalyst
performance, the reactions were conducted with low catalyst
loading (10 mg) compared to those conducted in Tables 2 and
3 (25 or 50 mg). TON (turnover numbers) on the basis of the
molar amount of metals (Cu and V) was used to evaluate the
performance in this catalysis, although all of these metals do
not play a role as catalysts.
It turned out that conversion of the diol (2) in the reaction

after 3 h decreased upon addition of Cu (even with 0.5 mol %
deposition) with an increase of the selectivity of esters (3,4) on
the basis of 2; the selectivity decreased with further deposition
(>6.5 mol %, runs 57, 58). The reactions proceeded without
significant deactivations in all cases (runs 52−72), affording
the esters (3,4) in better selectivity (86−93% based on 2). In
terms of yields and selectivity, the Cu−V2O5 catalyst with 3.5
mol % Cu deposition thus showed better catalyst performances
(runs 55, 62, and 69). As also shown below (Table 5), the
catalyst with low Cu deposition (0.5 mol %) showed a lower
selectivity compared to that with 3.5 mol %.

Figure 1. Time course for transesterification of ethyl-10-undecenoate
(1) with 1,4-cyclohexanedimethanol (2) by a Cu-deposited V2O5
catalyst. Data are shown in Table 3.

Table 4. Transesterification of Ethyl-10-undecenoate (1) with 1,4-Cyclohexanedimethanol (2) by a Cu-Deposited V2O5
Catalyst: Effect of Cu Deposition on V2O5 and Reaction Temperaturesa

catalyst temp. time conv.2b yieldb,c (%) select. Ad select. Be TONf

run (mol %)-Cu (°C) (h) (%) 3 4 3 + 4 3 + 4 3 + 4

52 0 100 3 42 1 13 14 32 33 1.4
53 0.5 100 3 25 6 16 22 86 92 2.5
54 2.5 100 3 20 5 13 18 91 90 2.1
55 3.5 100 3 20 5 13 18 89 92 2.1
56 4.5 100 3 25 6 16 21 86 86 2.5
57 6.5 100 3 17 2 11 13 75 75 1.4
58 10 100 3 22 3 12 15 68 65 1.6
59 0 100 6 72 3 19 23 32 36 2.3
60 0.5 100 6 60 19 32 51 85 88 6.4
61 2.5 100 6 51 15 29 44 86 87 5.3
62 3.5 100 6 49 16 29 45 92 95 5.5
63 4.5 100 6 50 16 28 44 87 87 5.4
64 6.5 100 6 48 11 29 41 85 84 4.6
65 10 100 6 57 22 27 49 85 91 6.4
66 0 100 16 90 9 21 30 33 39 4.5
67 0.5 100 16 99 72 13 85 86 91 14
68 2.5 100 16 97 69 15 84 87 93 14
69 3.5 100 16 97 73 17 90 93 94 15
70 4.5 100 16 98 73 14 87 89 92 14
71 6.5 100 16 99 68 17 85 86 93 14
72 10 100 16 99 67 18 86 86 93 14
73 3.5 60 16 trace 0
74 3.5 80 16 29 8 19 27 93 98 3.2
75 3.5 100 16 97 72 17 89 92 96 15
69 3.5 100 16 97 73 17 90 93 94 15
76 3.5 120 16 >99 81 8 89 89 92 15

aReaction conditions: 10 mg of catalyst (deposited with 0−10 mol % Cu on V2O5), ethyl-10-undecenoate (1, 4.0 mmol), 1,4-
cyclohexanedimethanol (2, 1.0 mmol). bQuantitative analysis by GC using internal standards. cYields on the basis of 1,4-cyclohexanedimethanol
(2). dBased on alcohol (2). eBased on ester (1). fTON (turnovers) = (molar amount of 1 reacted for transesterification)/(molar amount of Cu and
V).
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As summarized in Table 4, the transesterification did not
proceed (or the activity was negligible) at 60 °C (run 73), and
the activity increased at high temperatures (80−120 °C, runs
69, 74−76). Since the selectivity decreased at 120 °C, the
reactions conducted at 100 °C seem preferred in this catalysis.
The results are reproducible under these conditions (runs 69,
75).
Recycled Experiments in Transesterification of Ethyl-

10-undecenoate (1) with 1,4-Cyclohexanedimethanol
(2) by a Cu-Deposited V2O5 Catalyst. To explore the
catalyst performance (long-lived, recyclable), ethyl-10-undece-
noate (1) and 1,4-cyclohexanedimethanol (2) were further
added to the reaction mixture in the presence of a Cu-
deposited V2O5 catalyst after 6 h, and the solution was stirred
for an additional 6 or 16 h. The results are summarized in
Table 5, and the results using V2O5 are also presented for
comparison.
Note that the reactions by the Cu−V2O5 catalyst exhibited

high 2 conversion after the additional 6 h even upon further
addition of substrates (1,2) without a decrease in the
selectivity (runs 81, 82), and further stirring for the additional

16 h afforded the esters (3,4) with high selectivity (98%, run
83). Moreover, the selectivity seems to improve in the
additional (recycled, re-feeded) runs (runs 82, 83), probably
because, as suggested from the results in Tables 2−4, the
reaction showed a rather low selectivity at the initial stage.
Interestingly, the reaction with increased addition of 2 (2.0
mmol in run 84 in place of 1.0 mmol in runs 82, 83) also
reached high conversion to afford the esters with high
selectivity.a These results thus suggest that the present catalyst
(Cu−V2O5) can be used in the recycled runs, although it
seems difficult to recover the catalyst quantitatively by simple
filtration in this reaction scale (slurry conditions with tiny
catalyst powder with a small amount).
A similar trend was observed when these reactions were

conducted under conditions with low catalyst loading (runs 62,
86). Interestingly, similar reactions using V2O5 (runs 77−79)
and Cu(0.5 mol %)-deposited V2O5 (runs 65, 85) catalysts also
showed improvements in the selectivity, whereas observed
selectivities were apparently lower than those by the Cu(3.5
mol %)-deposited V2O5 catalyst.

a As also observed in Table 4,

Table 5. Transesterification of Ethyl-10-undecenoate (1) with 1,4-Cyclohexanedimethanol (2) by a Cu-Deposited V2O5
Catalyst: Catalyst Recycling Experiments (1)a

substrates time conv.2b yieldb,c (%)d,e select.d TONe

run catalyst 1:2 (mmol) (h) (%) 3 4 3 + 4 3 + 4

77 V2O5 4.0:1.0 6 87 14 27 41 48 2
78 V2O5 4.0 + 4.0:1.0 + 1.0 6 + 6f 70 13 30 43 61 4.1
79 V2O5 4.0 + 4.0:1.0 + 1.0 6 + 16f 89 29 43 72 80 7.3
80 V2O5

g 4.0 + 2.0:1.0 + 1.0 6 + 16g 59 2 19 21 36 4.2
81 Cu−V2O5 4.0:1.0 6 90 47 38 85 94 4.8
82 Cu−V2O5 4.0 + 4.0:1.0 + 1.0 6 + 6f 92 50 40 90 97 10
83 Cu−V2O5 4.0 + 4.0:1.0 + 1.0 6 + 16f 98 84 12 96 98 13
84 Cu−V2O5 4.0 + 8.0:1.0 + 2.0 6 + 16h 96 74 18 91 95 18
60 Cu−V2O5

i 4.0:1.0 6 63 19 32 51 85 6.4
85 Cu−V2O5

i 4.0 + 2.0:1.0 + 1.0 6 + 16f 91 57 24 81 89 25
62 Cu−V2O5

j 4.0:1.0 6 49 16 29 45 92 5.5
86 Cu−V2O5

j 4.0 + 2.0:1.0 + 1.0 6 + 16f 89 54 30 84 94 25
aReaction conditions: 25 mg of catalyst (deposited with 3.5 mol % Cu on V2O5), ethyl-10-undecenoate (1, 4.0 mmol), 1,4-cyclohexanedimethanol
(2, 1.0 mmol), 100 °C. bQuantitative analysis by GC using internal standards. cYields on the basis of 1,4-cyclohexanedimethanol (2). dBased on
alcohol (2). eTON (turnovers) = (molar amount of 1 reacted for transesterification)/(molar amount of Cu and V). fAfter the reaction for 6 h, 1
(4.0 mmol) and 2 (1.0 mmol) were added, and the results were evaluated after an additional 16 h. gCatalyst (V2O5) (10 mg), 1 (2.0 mmol), and 2
(1.0 mmol) were added after 6 h, and the results were evaluated after an additional 16 h. hAfter the reaction for 6 h, 1 (8.0 mmol) and 2 (2.0
mmol) were added, and the results were evaluated after an additional 16 h. iCatalyst (10 mg; deposited with 0.5 mol % Cu on V2O5).

jCatalyst (10
mg; deposited with 3.5 mol % Cu on V2O5).

Table 6. Transesterification of Ethyl-10-undecenoate (1) with 1,4-Cyclohexanedimethanol (2) by a Cu-Deposited V2O5
Catalyst: Catalyst Recycling Experiments (2)a

yields, selectivity, and TON (total) yields, selectivity, and TON (independent run)

recycle conv.2b yieldb,c (%) select.d TONe conv.2b yieldb,c (%) select.d TONe

run runs (%) 3 4 3 + 4 3 + 4 (%) 3 4 3 + 4 3 + 4

87 fresh 97 73 17 90 93 15 97 73 17 90 93 15
88 1f 96 69 20 89 93 29 93 65 22 87 94 14
89 2f 94 57 30 87 93 39 88 31 48 79 90 10
90 3f 92 52 34 86 93 50 85 29 48 78 92 10
91 4f 92 53 33 86 93 65 81 50 25 75 92 11
92 5f 91 51 33 84 92 74 77 39 31 69 90 10

aReaction conditions: 10 mg of catalyst (deposited with 0−10 mol % Cu on V2O5), ethyl-10-undecenoate (1, 4.0 mmol), 1,4-
cyclohexanedimethanol (2, 1.0 mmol), 100 °C, 16 h. bQuantitative analysis by GC using internal standards. cYields on the basis of 1,4-
cyclohexanedimethanol (2). dBased on alcohol (2). eTON (turnovers) = (molar amount of 1 reacted for transesterification)/(molar amount of Cu
and V). fAfter the reaction, 1 (2.0 mmol) and 2 (1.0 mmol) were added into the reaction solution for the recycled runs.
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the Cu−V2O5 catalyst with 3.5 mol % Cu deposition thus
showed better catalyst performance.
On the basis of the results in Table 5, the catalyst reusability

was checked in this transesterification by the repeat addition of
substrates (1, 2.0 mmol; 2, 1.0 mmol) into the reaction
mixture after every 16 h (at 100 °C) without the addition of
the catalyst. The results after five repeated runs are
summarized in Table 6. The conversions, selectivities, and
the turnover numbers in the total and independent runs are
shown for evaluating catalyst performances in each recycled
run. Figure 2 also shows plots of TON, conversions, and
selectivity in each runs.

It turned out that the reactions proceeded without a
significant decrease in selectivity (90−94% in runs 88−91),
whereas the conversion of 2 seemed slightly decreasing over
recycled runs. TON value did not change after two recycled
runs (up to five recycled runs, runs 89−91). Reasons for
decreases in the activity (TON after 1st recycled run) and the
conversion of 2 could be considered as due to the remaining 2
in each runs (which increase the initial molar amount of 2), the
changes in the molar ratios (1 and 2), and decrease in the
catalyst (and substrate) concentration. Interestingly, no
significant decreases in the selectivity could suggest that Cu
could be remained on V2O5 to perform the high selectivity.a

Considering these points, we could conclude that the catalyst
performance remained up to five reaction runs, and a TON of
74 has thus been achieved in these catalysis runs.a

Transesterification of 1 with 2-phenyl ethanol was
conducted under the same conditions [molar ratio of

1:PhCH2CH2OH = 2.0:6.0 (mmol)], and the substrates
were further added to the reaction mixture to explore the
catalyst performance and reusability; the re-feeding of
substrates was conducted twice (Scheme 3). The selectivity
on the basis of the alcohol initially increased upon feeding but
did not change in the second feed [selectivity = 84% (1st run),
94% (2nd run), and 93% (3rd run), calculated on the basis of
molar amount of the ester vs conversion of alcohol] without a
decrease in the activity (TON), suggesting that the catalyst
performance was preserved in this catalysis. The results thus
suggest a wide substrate scope, as described below.

Substrate Scope in the Transesterification of Ethyl-
10-undecenoate (1) with Alcohols by a Cu-Deposited
V2O5 Catalyst. On the basis of the results described above,
transesterifications of 1 with various alcohols were thus
conducted under the same conditions (100 °C, 24 h), and
the results are summarized in Scheme 4.
The primary alcohols, cyclohexyl methanol, benzyl alcohol,

and 2-phenyl ethanol afforded the corresponding esters (5a−
c) in high selectivity, and similar trends were observed in the
reaction with n-hexanol, 2-methylthioethanol, 3-buten-1-ol, 10-
undecen-1-ol to afford the corresponding esters (5e−h),
whereas the reaction with 4-methoxybenzyl alcohol showed
low activity and selectivity. Although the reaction with 2-
ethylbutanol, (oxolan-2-yl)methanol also afforded esters with
high selectivities (5j,k), both the conversion and the selectivity
were low in the reaction with 2-(2-ethenoxyethoxy)ethanol
(for the synthesis of 5i), cyclohexanol (for 5l), hexan-3-ol (for
5m), and with 1-phenyl ethanol (for 5n) under these
conditions (further optimization of the conditions might be
required). As expected in the reaction of 1 with 2, the reaction
with 1,9-nonanediol afforded the diester (5o) in high yields.
These results thus demonstrate that the present catalyst
showed a wide substrate scope, especially for the reaction with
primary alcohols (with less steric bulk).

■ CONCLUDING REMARKS

We have shown that transesterification of ethyl-10-undece-
noate (1) with 1,4-cyclohexanedimethanol (2) in the presence
of a Cu-deposited V2O5 catalyst proceeded with high
selectivity to afford esters, and notable decreases in the activity
and selectivity were not observed in the five catalyst recycled
runs by addition of substrates into the reaction mixture.
Deposition of Cu on V2O5 plays a role in exhibiting the high
selectivity, and 3.5 mol % seems suitable in this catalysis. The
activity was affected by the reaction temperature (100 °C is the
most suitable), and the diester, cyclohexane-1,4-diylbis-

Figure 2. Plots of conversion of 1,4-cyclohexanedimethanol (2),
selectivity of esters (3,4), and TONs vs number of catalyst recycled
runs in transesterification of ethyl-10-undecenoate (1) with 2 by Cu-
deposited V2O5 catalysts. Data are shown in Table 6.

Scheme 3. Catalytic Transesterification of Ethyl-10-undecenoate with 2-Phenyl Ethanol in the Presence of a Cu-Deposited
V2O5 Catalyst
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(methylene) bis(undec-10-enoate) (3), was obtained from the
monoester, (4-(hydroxymethyl)cyclohexyl)methyl undec-10-
enoate (4), over longer reaction hours. The present catalyst
was effective for the reaction of 1 with various alcohols,
especially primary alcohols, suggesting a scope of efficient
conversion of plant oils to fine chemicals and monomers for
the synthesis of polyesters in this catalysis. We highly believe
that the present catalyst can also be used for various fatty acid
esters (FAEs), and we thus believe that the results could
introduce a promising possibility of development of the
catalysis process, including the design of more efficient
catalysts.

■ EXPERIMENTAL SECTION
General Procedures. All reactions were carried out in

oven-dried glassware. Commercially available chemicals were
used without further purification. Chemicals of reagent grades
such as ethyl-10-undecenoate >97.0% (GC) and 1,4-cyclo-
hexanedimethanol >99.0% (GC) were purchased from Tokyo
Chemical Industry, Co., Ltd., and dodecane (>99.0%), oxalic
acid >98% (Titration), ammonium vanadate (V) (special
grade reagent), copper(II) nitrate trihydrate >99.0% (Titra-
tion) were purchased from Fujifilm Wako Pure Chemical
Industries, Ltd., and were used as received. Analytical thin-
layer chromatography (TLC) was performed on a Merck TLC
silica gel 60 F254 plate, and visualization was accomplished with
phosphomolybdic acid stain.
All NMR spectra were acquired on a Bruker AV500

spectrometer (500.13 MHz for 1H, 125.77 MHz for 13C)

under an ambient temperature using CDCl3 as the solvent. All
chemical shifts were reported in parts per million (ppm) with
reference to SiMe4 at 0.00 ppm. The GC analysis was
performed on a Shimadzu gas chromatograph (GC-2014)
equipped with a flame ionization detector (FID) and DB-1MS
column (30 m × 0.250 mm × 0.25 μm) with N2 as the carrier
gas under the following thermal conditions. Injector temper-
ature and flame ionization detector temperature was set to 300
and 280 °C, respectively, the column temperature began with a
5 min hold at 110 °C, followed by a linear ramp of 20 °C
min−1 to 280 °C and held for 25 min at that temperature.
Atmospheric pressure chemical ionization (APCI) mass
spectrometry was carried out on a Bruker Micro TOF II-
SDT1.

Preparation of V2O5.
41 NH4VO3 (4.97 g, 42.4 mmol) and

oxalic acid (11.5 g, 128 mmol) were dissolved in 20 mL of
water, and the aqueous solution was stirred for 10 min to
obtain the blue vanadium (IV) oxalate solution. Then, the
vanadium oxalate solution was heated at 120 °C to evaporate
the water. The resulting blue solid was calcined at 300 °C for 4
h twice to obtain the V2O5.

Preparation of Other 3.5 mol % Different Metal-
Doped V2O5 Catalysts (3.5 mol % M−V2O5).

41 V2O5
catalysts doped with different metals (Ni, Ti, Fe2+, Fe3+, Co,
Zn, Mn, Zr, Nb, Mo, Sn, Ce, W) were prepared using the
impregnation method. In general, V2O5 catalyst doped with 3.5
mol % (with respect to V2O5) metal [NiCO3, Ti[OCH-
(CH3)2]4, Fe(C2O4)·2H2O, Fe(NH3)3(C2O4)3·3H2O, Co-
(CO2)2·2H2O, Zn(NO3)2·6H2O, Mn(CO3)2, Zr(H2N2O8),

Scheme 4. Substrate Scope in the Transesterification of Ethyl-10-undecenoate (1) with Other Alcohols in the Presence of a Cu
(3.5 mol %)-Deposited V2O5 catalyst

a,b,c,d,e,f

aReaction conditions: 10 mg of catalyst (3.5 mol % Cu-deposited V2O5), ethyl-10-undecenoate (1, 2.0 mmol), alcohol (4.0 mmol), 100 °C, 24 h.
Yields and selectivity on the basis of ethyl-10-undecenoate (1). bAlcohol 6.0 mmol. cAlcohol 8.0 mmol. d1 (4.0 mmol) and alcohol (1.0 mmol):
yield and selectivity on the basis of 1,9-nonanediol. eReaction 16 h. fTemperature at 150 °C.
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Nb(HC2O4)5·xH2O, (NH4)6Mo7O24·4H2O, Sn(C2O4),
Ce2(C2O4)3·9 H2O, (NH4)6H2W12O40·nH2O] was prepared
by dissolving a prescribed amount of metal precursor in the
blue vanadium(IV) oxalate solution. The vanadium(IV)
oxalate solution was prepared by dissolving oxalic acid (128
mmol, 11.5 g) and ammonium vanadate (42.4 mmol, 4.97 g)
in 20 mL of water, followed by 10 min stirring at room
temperature. The mixture was stirred at 120 °C until the
complete removal of water. The obtained solid was calcined at
300 °C for 4 h twice to obtain the metal-doped V2O5 catalysts.
Preparation of the Cu-Deposited V2O5 Catalyst (0.5,

2.5, 3.5, 4.5, 6.5, and 10 mol % Cu−V2O5). To prepare the
3.5 mol % Cu−V2O5 catalyst, 0.12 mmol of copper precursor
[Cu(NO3)2·3H2O (28.8 mg)] was dissolved in 20 mL of
water, and then 3.29 mmol V2O5 (300 mg) was added to this
solution. The mixture was stirred at 120 °C until the complete
evaporation of water. The obtained solid was calcined at 300
°C for 4 h, twice to obtain the Cu (3.5 mol %)−V2O5 catalyst.
The other Cu−V2O5 catalysts (0.5, 2.5, 4.5, 6.5, and 10 mol %
of Cu with respect to V2O5) were prepared by the same
procedure.
General Procedure for the Transesterification of

Ethyl-10-undecanoate. An oven-dried reaction tube equip-
ped with a magnetic stirring bar was charged with a prescribed
amount of catalyst (10 mg), ethyl-10-undecenoate (1, 4.00
mmol, 849 mg), and 1,4-cyclohexanedimethanol (2, 1.00
mmol, 144 mg). The reaction mixture was then heated under
solvent-free conditions at 100 °C for a prescribed time in an
Eyela Personal Synthesizer (ChemiStation). After completion
of the reaction, the mixture was cooled down to room
temperature, diluted with 5 mL of CHCl3, and the catalyst was
separated out by centrifugation. The centrifugate was analyzed
with a gas chromatogram using dodecane as an internal
standard to determine the conversion and the yield.
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