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ABSTRACT High-throughput sequencing methods that multiplex a large number of individuals have provided a cost-effective approach
for discovering genome-wide genetic variation in large populations. These sequencing methods are increasingly being utilized in
population genetic studies across a diverse range of species. Two side-effects of these methods, however, are (1) sequencing errors and
(2) heterozygous genotypes called as homozygous due to only one allele at a particular locus being sequenced, which occurs when the
sequencing depth is insufficient. Both of these errors have a profound effect on the estimation of linkage disequilibrium (LD) and, if not
taken into account, lead to inaccurate estimates. We developed a new likelihood method, GUS-LD, to estimate pairwise linkage
disequilibrium using low coverage sequencing data that accounts for undercalled heterozygous genotypes and sequencing errors. Our
findings show that accurate estimates were obtained using GUS-LD, whereas underestimation of LD results if no adjustment is made for
the errors.
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LINKAGE disequilibrium (LD) is the term given to the
nonrandom association of alleles located at different loci

in a population. Quantifying the level of LD, or estimating the
pairwise LD between all loci in a population, is of interest to
many researchers as it has many important applications. For
example, in associationmapping studies, LD is used to identify
candidate regions of the genome associated with a particular
trait or disease, and can provide finer resolution in mapping
compared to linkage-based studies (Devlin and Risch 1995;
Jorde 1995; Xiong and Guo 1997; Mackay and Powell 2007).
LD is affected by many genetic and evolutionary forces, such
as recombination, admixture, migration, selection, and gene

flow among others (Terwilliger et al. 1998; Ardlie et al. 2002;
Gaut and Long 2003; Slatkin 2008). Consequently, LD pat-
terns can be used to quantify genetic diversity and make
inferences about the evolutionary history of natural popula-
tions (Nordborg and Tavaré 2002; Slatkin 2008; Zhu et al.
2015). In addition, the relationship between map distance
and the level of LD can be used to estimate the effective
population size (Sved 1971; Hill 1981; Hayes et al. 2003;
Waples 2006; Sved et al. 2013).

Today, many species are being sequenced using high-
throughput sequencing methods that multiplex a large num-
ber of individuals. Some of the most popular sequencing
methods are whole genome sequencing, and reduced repre-
sentation approaches such as genotyping-by-sequencing
(Elshire et al. 2011), whole-exome sequencing (Hodges et al.
2007), and restriction-site associated DNA (Baird et al. 2008).
These sequencing methods provide a low-cost approach to
performing genome-wide genotyping and discovery of single
nucleotide polymorphisms (SNPs) that does not require prior
genomic information. As a result, they have been applied in a
plethora of plant, aquaculture, and animal species, and have
become themethod of choice for many species, particularly for
nonmodel organisms (Andrews et al. 2016; Kim et al. 2016;

Copyright © 2018 Bilton et al.
doi: https://doi.org/10.1534/genetics.118.300831
Manuscript received February 16, 2018; accepted for publication March 22, 2018;
published Early Online March 26, 2018.
Available freely online through the author-supported open access option.
This is an open-access article distributed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which
permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.
Supplemental material available at Figshare: https://doi.org/10.25386/genetics.
6007730
1Corresponding author: AgResearch, Invermay Agricultural Centre, Private Bag 50034,
Mosgiel 9053, New Zealand. E-mail: timothy.bilton@agresearch.co.nz

Genetics, Vol. 209, 389–400 June 2018 389

http://orcid.org/0000-0001-5945-3766
http://orcid.org/0000-0003-4801-6207
http://orcid.org/0000-0002-4615-8917
http://orcid.org/0000-0001-5068-9166
http://orcid.org/0000-0002-9347-6379
https://doi.org/10.1534/genetics.118.300831
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.25386/genetics.6007730
https://doi.org/10.25386/genetics.6007730
mailto:timothy.bilton@agresearch.co.nz


Chung et al. 2017; Li and Wang 2017; Robledo et al. 2017).
Genetic data generated using high-throughput sequencing
methods are increasingly being used to compute pairwise LD
estimates (e.g., Hohenlohe et al. 2012; Wang et al. 2013;
Huang et al. 2014; Nimmakayala et al. 2014; Xu et al. 2014;
Fè et al. 2015; Zhang et al. 2015; Covarrubias-Pazaran et al.
2016; Van Wyngaarden et al. 2016; Gur et al. 2017; Sieber
et al. 2017; Faville et al. 2018).

A major disadvantage with high-throughput sequencing
methods is that one or both of the alleles at a particular locus
may bemissed for a given individual if the sequencing depth is
low. If neither allele is seen, amissing genotype resultswhile if
only one of the two parental alleles is seen (possibly multiple
times), a heterozygous genotype may be called as homozy-
gous (Dodds et al. 2015; Fragoso et al. 2016). The latter case
is also known as allelic dropout, and is particularly problem-
atic as genotype calls with this type of missingness behave
like genotyping errors, which have a profound impact on the
estimation of LD even when the error rates are low (Akey
et al. 2001). An additional complication of sequencing data
are the presence of sequencing errors, bases which have been
miscalled, which also impact on estimation of genetic quan-
tities such as recombination fractions (Bilton et al. 2018).

Oneway of removing genotyping errors resulting from low
sequencing depth is to set genotype calls with an associated
read depth below some threshold value to missing. However,
such filtering results in fewer individuals and SNPs for a given
sequencing cost (Dodds et al. 2015), and, for low coverage
data, may result in insufficient data to undertake the analysis.
LD is often estimated using haplotypes phased from genotype
data via various software packages and algorithms such as
BEAGLE (Browning and Browning 2007), fastPHASE (Scheet
and Stephens 2006), MaCH (Li et al. 2010), and FILLIN
(Swarts et al. 2014). However, all of these approaches require
that the chromosomal order of the loci is known in order to
infer haplotypes, which is not necessarily the case for reduced
representation sequencing data, particularly if SNPs are called
de novo. Furthermore, many species that are genotyped using
sequencing methods are highly polymorphic and have low LD
levels, where phasing in such species can be problematic
(Bukowicki et al. 2016). A few alternative approaches for es-
timating LD from high-throughput sequencing data have been
presented in the literature. Feder et al. (2012) proposed esti-
mating pairwise LD using reads that cover both loci while
estimating the allele frequencies using all the reads. This ap-
proach, however, is not applicable to short-read sequencing
data (e.g., genotyping-by-sequencing)wheremost of the reads
do not cover both sites. Alternatively, it restricts the analysis to
loci that are very close, which may not be that useful. Maruki
and Lynch (2014) presented a likelihood method for estimat-
ing the disequilibrium coefficient in situations where there is a
combination of reads that intersect both loci or only one of the
two loci. Their method accounts for sequencing errors but
requires that additional erroneous alleles are called in the
alignment process, whereas most variant callers by default
only allow for two alleles to be called at a SNP.

We present a newmethod for estimating pairwise LD using
low coverage sequencing data, without requiring haplotype
phasing, a known chromosomal order or filtering with regard
to read depth. In essence, our method is based on the likeli-
hood method by Hill (1974), which estimates LD using ge-
notypic data in random mating populations, but is extended
to account for errors resulting from undercalled heterozy-
gotes and sequencing errors. Our method removes bias in
LDestimation causedby these errors but results inmore variable
estimates at low depth. We also examine the effect genotyping
errors from low read depths and sequencing errors have on the
estimation of LD.

Materials and Methods

Estimation of pairwise LD

Let Aj and Bj denote the reference and alternate allele at locus
j, respectively, and let pAj and pBj denote the allele frequency
for the reference and alternate alleles at locus j, respectively.
The LD coefficient is defined as (Lewontin and Kojima 1960):

D ¼ pA1A2 2 pA1pA2; (1)

where pA1A2 is the probability of observing a haplotype con-
taining the reference allele at both loci. Since probabilities
are required to be non-negative, D must satisfy the con-
straints (Lewontin 1964):

D$max
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2pA1pA2; 2

�
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D#min
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�
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We let Gij denote the true genotype for individual i at locus j,
and Gi ¼ ðGij;GikÞT denote the true joint genotype for indi-
vidual i between locus j and k, where j 6¼ k; i ¼ 1; . . . ; n and T
denotes the transpose. We let AAj; ABj; and BBj denote the
reference homozygous genotype, heterozygous genotype,
and alternate homozygous genotype at locus j, respec-
tively. For two biallelic loci, the nine joint genotypes are
ðAA1;AA2ÞT; ðAA1;AB2ÞT; ðAA1;BB2ÞT; ðAB1;AA2ÞT; ðAB1;AB2ÞT;
ðAB1;BB2ÞT ;ðBB1;AA2ÞT ; ðBB1;AB2ÞT ; and ðBB1;BB2ÞT ;which
we denote by 1–9, respectively.

In sequencing data, the true genotypes are latent while the
observeddata consists of thenumberof reads for the reference
and alternate alleles. We denote the number of reads for the
reference allele for individual i at locus j by Yij;where Yij is an
integer value between 0 and the sequencing depth dij; which
is the sum of reference and alternate allele counts at locus j in
individual i. By the law of total probability,

PðY iÞ ¼
X9
g¼1

PðY ijGi ¼ gÞPðGi ¼ gÞ; (3)

where Y i ¼ ðYi1; Yi2ÞT : If the number of observed reads for the
reference allele given the true genotype are independent be-
tween loci, Equation (3) simplifies to
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PðY iÞ ¼
X9
g¼1
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�
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��Gij ¼ gj

��
PðGi ¼ gÞ: (4)

where gj is either AAj, ABj or BBj. The expected true joint
genotype probabilities, Pig=PðGi ¼ gÞ; correspond to those
given in Table 1 when the population is in Hardy-Weinberg
equilibrium (Hill 1974).

The number of reads for the reference allele, Yij; can be
considered as arising from a binomial sample of the two al-
leles found in the true genotype Gij: Suppose that the alleles
are read at random, and that sequencing errors for a given
read are independent between loci, the conditional probabil-
ities of the number of reference alleles given the true geno-
type are:
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(5)

where e is the sequencing error rate (Bilton et al. 2018).
Assuming that individuals are independent (e.g., unrelated),
then the log-likelihood for the number of reference alleles is,

ℓ
�
pA1; pA2;D; e

�
¼
Xn
i¼1

ln PðY iÞ: (6)

The maximum likelihood estimate of the disequilibrium co-
efficient, D̂; using sequencing data are obtained by maximiz-
ing the likelihood in Equation (6) subject to the constraint of
Equation (2). As no analytical solution exists, maximization
of the likelihood is performed using numerical methods. The
expectation of the maximum likelihood estimate is (Weir
1996),

EðD̂Þ ¼ 2n2 1
2n

D; (7)

resulting in a small bias,which is removed bymultiplying D̂ by
2n=ð2n2 1Þ subject to constraint (2), where n is taken as the
number of individuals with a nonzero read depth at both loci.

Since the range of D depends on the allele frequencies,
comparing levels of LD between markers can be difficult using
the disequilibrium coefficient. Consequently, many alternative
measures of LD have been proposed in the literature; see
Hedrick (1987) and Devlin and Risch (1995) for a summary
and comparison of thesemeasures. In this article, we shall only
consider two commonly used measures, D9 (Lewontin 1964;
Hedrick 1987) and r2 (Hill and Robertson 1968). Although
both D9 and r2 are measures of LD, they have different prop-
erties and are useful for different applications (see Mueller
(2004)). The maximum likelihood estimates for both of these

measures are computed using the functions D̂9 ¼ D̂=D̂max and
r̂2 ¼ D̂

2
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and p̂A1
and p̂A2

are the maximum likelihood estimates of the
reference allele frequencies at locus 1 and 2, respectively. We
refer to the proposedmethodology as genotyping uncertainty
with sequencing data-linkage disequilibrium (GUS-LD, pro-
nounced guzzled).

Simulation

To examine the performance of GUS-LD, a simulation study
was undertaken. Generation of simulated sequencing data
proceeded as follows. For each individual, two haplotypes
were sampled from the four possible haplotypes for preset
values of pA1; pA2; and D, and were then converted to geno-
type calls. Simulation of sequencing data proceeded by first
generating a read depth for each individual at each locus
by simulating realizations from a Poisson distribution with
mean mkj; where a range of read depths were used
(mkj ¼ 1; 2; 3; 4; 5; 7:5; 10; 15). At each locus within each in-
dividual, alleles were sampled from the genotype call with
equal probability and replacement until a sample size corre-
sponding to the read depth was obtained, with a sequencing
error (e.g., Aj being called as Bj and vice versa) simulated to
occur with probability e. In some cases, the simulated read
depth was zero resulting in a missing genotype. The simula-
tions were performed under various combinations of pA1; pA2;

andD (see Table 2 for a list of combinations used) and a fixed
sequencing error rate of 1% (e ¼ 0:01).

Two sets of simulations were performed. The first com-
pares estimation of LD using simulated sequencing data be-
tween GUS-LD and the standard likelihood procedure of Hill
(1974) that assumes accurate genotype calls. For each com-
bination of parameters, 10,000 simulated datasets of 100 in-
dividuals were generated, where estimates of the bias and
standard error (SE) of D̂; D̂9; and r̂2 were computed for both
methods. In the second set, the optimal sequencing depth for
a given sequencing effort, defined as the number of reads

Table 1 Joint genotype probabilities for two biallelic loci under the
assumption of Hardy-Weinberg equilibrium

g Locus 1 Locus 2 Pig

1 AA1 AA2 ðpA1pA2 þ DÞ2
2 AB2 2ðpA1pA2 þ DÞðpA1pB2 2DÞ
3 BB2 ðpA1pB22DÞ2
4 AB1 AA2 2ðpA1pB2 þ DÞðpB1pA2 2DÞ
5 AB2 2ðpA1pA2 þ DÞðpB1pB2 þ DÞ

þ2ðpA1pB2 þ DÞðpB1pA2 2DÞ
6 BB2 2ðpA1pB2 þ DÞðpB1pB2 þ DÞ
7 BB1 AA2 ðpB1pA2 þ DÞ2
8 AB2 2ðpB1pA2 þ DÞðpB1pB2 2DÞ
9 BB2 ðpB1pB22DÞ2
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which is the product of the number of individuals, the num-
ber of loci, and the mean read depth, is examined. For each
combination of parameters, 10,000 datasets were simulated,
where the number of individuals in the datasets were set such
that an average sequencing effort of 600 reads was main-
tained. Estimates of the LD measures were obtained using
GUS-LD and the standard approach where the mean square
errors of D̂; D̂9; and r̂2 were computed.

Deer dataset

GUS-LD was also compared to the standard likelihood ap-
proach using a dataset consisting of 666 farmed deer and
38 of their sires. The dams were unrecorded red deer (Cervus
elaphus) while the sires were predominantly Wapiti (also
known as Elk; Cervus canadensis), but included some red
deer. The animals were managed in accordance with the
provisions of the New Zealand Animal Welfare Act 1999,
and the Codes of Welfare developed under sections 68279
of the Act. Tissue samples were collected in the form of ear
tissue punches and DNA extracted according to Clarke et al.
(2014). Genotyping was performed using the genotyping-by-
sequencing method (Elshire et al. 2011) using the restriction
enzyme PstI and variations of the standard laboratory meth-
odology as outlined in Dodds et al. (2015). The individuals
were sequenced across eight lanes at AgResearch, Invermay,
Animal Genomics laboratory on an Illumina HiSeq 2500 v4
chemistry yielding�1.34B reads (read length of 13 100 bp)
in total. SNP variants were called using UNEAK (Lu et al.
2013) as outlined in Dodds et al. (2015). For the LD analysis,
a set of 38 SNPs that were determined to be close to the
microsatellite TGLA94 (Marshall et al. 1998), had a minor
allele frequency .0.05, and had ,25% missing genotype
calls were retained for analysis.

Data availability

Scripts for generating the simulated sequencing data are
provided in Supplemental Material, File S1. The deer dataset
and an implementation of GUS-LD can be found at https://
github.com/AgResearch/GUS-LD. Figures S1 and S2 in File
S1 gives bias and SE of LD estimates for the second and third
simulation scenarios. Figure S3 in File S1 gives the SE of the
allele frequency estimates for all the simulations. Figures S4
and S5 in File S1 gives the mean square errors of LD esti-
mates for the second and third simulation scenarios. Figure
S6 in File S1 gives the mean read depth distribution for the
SNPs used in the deer dataset and Figure S7 in File S1 gives
the distribution of the sequencing error estimates for the
deer analysis. Supplemental material available at Figshare:
https://doi.org/10.25386/genetics.6007730.

Results

Simulation

For the first set of simulations, the bias of the LD estimates
for the various LD measures are given in Figure 1, for
pA1 ¼ 0:5; pA2 ¼ 0:5 and for a range of values of D. When
the average read depth was low, the estimates of D obtained
using the standard likelihood procedure were biased toward
zero, where the level of bias increased as the strength of LD
increased. In contrast, the estimates computed using GUS-LD
were relatively unbiased across the various read depths. Nev-
ertheless, for the cases when D was close to, or on, its upper
or lower bound [Equation (2)], D̂ was biased, although the
level of bias was much less for GUS-LD than for the standard
likelihood procedure. These conclusions, in general, also ap-
plied to estimation ofD9 and r2; although there was some bias
in the estimates of D9 even when the read depth was large
and the true value of D was not near the upper or lower
bound of its parameter space. This bias is due to poor sam-
pling properties of D9; and has been observed to occur in
simulation studies for small sample sizes (Teare et al. 2002;
Terwilliger et al. 2002). As the average read depth increased,
the number of undercalled heterozygous genotypes in the
datasets decreased, resulting in less bias for LD estimates
obtained from the standard likelihood method. For mean
depths .10, the estimates from the standard approach co-
incided with GUS-LD when the true LD was small or absent
but were still biased when the true LDwas large, which is due
to the presence of sequencing errors.

Figure 1 also shows the SE of the estimates for the three
LDmeasures computed using the two approaches. In general,
the SE of the LD estimates computed under GUS-LD were
larger compared with those obtained under the standard
likelihood approach, with the difference decreasing as the
average read depth increased. This increase in the SE for
GUS-LD was expected as there is extra sampling variation
introduced into the sequencing data, caused by not all alleles
being observed. On the other hand, when the true value of D
was close to, or on, the lower or upper bound of its parameter
space [Equation (2)], GUS-LD tended to yield smaller SE
than the standard approach.

The bias and SE of the LD estimates for alternative com-
binations of allele frequencies are given in Figure S1
(pA1 ¼ 0:5 and pA2 ¼ 0:75) and Figure S2 (pA1 ¼ pA2 ¼ 0:9)
in File S1. The results from these simulations were mostly in
agreement with those when pA1 ¼ 0:5 and pA2 ¼ 0:5: The
SE for the allele frequency estimates from GUS-LD and the
standard approach for all three sets of parameter values are
given in Figure S3 in File S1. Overall, the SE of the allele
frequency estimates were fairly similar between the two
methods.

The bias and SE of the sequencing error estimates from
GUS-LD for the first set of simulations is given in Figure 2. At
high mean depths, these estimates were unbiased across all
the different combinations of parameter values, whereas for
low mean read depths the estimates were generally biased

Table 2 Combinations of parameters used in the simulations

Simulation pA1 pA2 D

1 0.5 0.5 20:15; 0, 0.05, 0.15, 0.25
2 0.5 0.75 20:01; 0, 0.05, 0.1, 0.125
3 0.9 0.9 20:01; 0.03, 0.06, 0.09
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upwards, with the bias increasing as the mean depth de-
creased. The SE of the sequencing error estimates were also
smallest at higher mean depths, and increased as the mean
depth decreased.

For the second set of simulations, the mean square error
(MSE) of the LD estimates for the various pairwise LD mea-
sures are given in Figure 3, where the sequencing effort was
fixed at 600 reads, pA1 ¼ pA2 ¼ 0:5; e ¼ 0:01 and a range of

values of D were used. The MSE for GUS-LD was lower than
the standard approach when the true LD was large or near its
maximum value. Compared to GUS-LD, the standard ap-
proach gave lower MSE at low depths when the true LD
was small, which was due to the LD estimates having a small
bias and smaller SE compared to GUS-LD. On the other hand,
the presence of sequencing errors results in the standard
approach having higher MSE at high depths compared to

Figure 1 Bias of the LD estimates for D (A), D9 (C), and r2 (E), and SE of the LD estimates for D (B), D9 (D), and r2 (F) when pA1 ¼ 0:5; pA2 ¼ 0:5;
e ¼ 0:01, and the true values of D were 20:05; 0, 0.05, 0.15, and 0.25. The dashed lines represents the estimates obtained using GUS-LD whereas the
solid lines represents the estimates obtained using the standard likelihood approach. The upper and lower bounds for D are 20:25 and 0.25,
respectively.
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GUS-LD. The MSE for GUS-LD was smallest between mean
depths of 2 and 5, where the actual depth at which the min-
imum occurred depended on the true value of D and the LD
measure. The MSE is larger at higher read depths for GUS-LD
as the increase in variability from having fewer individuals in
the data sets was larger than the decrease in variability from
having high read depths. There was one exception to this
trend that occurred when the true value of D was equal to
its upper bound (D ¼ 0:25) for all the LD measures. In this

case, the MSE was largest at smaller mean read depths and
decreased as the mean read depth increased. This is due to
the fact that there is no variation or bias when the genotypes
are accurate for values of D that are on their upper or lower
bound, but there is variation when there is uncertainty in the
genotype calls associated with low read depths.

The MSE of the LD estimates for alternative combinations
of allele frequencies when the sequencing effort was fixed are
given in Figure S4 (pA1 ¼ 0:5 and pA2 ¼ 0:75) and Figure S5

Figure 2 Bias of the sequencing error estimates, ê; from GUS-LD for simulation 1 (A), simulation 2 (C) and simulation 3 (E), and SE of the sequencing
error estimates, ê; from GUS-LD for simulation 1 (B), simulation 2 (D), and simulation 3 (F), where the parameters used for each simulation are given in
Table 2.
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(pA1 ¼ pA2 ¼ 0:9)in File S1. The results from these simula-
tions were very similar to the case when pA1 ¼ pA2 ¼ 0:5;
although there were some differences. For example, the
MSE across all the mean depths for D was larger as the true
value of D increased when pA1 ¼ pA2 ¼ 0:9; whereas the re-
verse was true when pA1 ¼ pA2 ¼ 0:5; and when pA1 ¼ 0:5
and pA2 ¼ 0:75: Also, for pA1 ¼ 0:5 and pA2 ¼ 0:75; the MSE
for the LD measure r2 did not decrease as the read depth
increasedwhen the true value ofDwas on its upper boundary
(D ¼ 0:125), as for the other parameter combinations. This
was due to unequal allele frequencies meaning that the esti-
mates of r2 were not near its upper bound of 1. These differ-
ences were due to the complex sampling properties of the
various LD measures. Nevertheless, the optimal sequencing
depth was mostly between 2 and 5 across all scenarios and
LD measures.

Deer dataset

The LD estimates between all pairs among a set of 38 SNPs are
given in Figure 4 for the absolute value of D9 and Figure 5 for
r2: For the former LD measure, a number of pairwise esti-
mates computed using GUS-LD were larger compared to
the estimates obtained from the standard likelihood ap-
proach, which is seen by the greater intensity of red across
the heatmap in Figure 4B compared to Figure 4A. Similarly,
there were some pairwise estimates of r2 that were larger
under GUS-LD (Figure 5B) compared to the standard likeli-
hood approach (Figure 5A), which is seen by the fact that
some of the yellow squares in Figure 5A appear more orange
in Figure 5B. The average value of all the pairwise estimates
for the two LD measures was larger under GUS-LD than the
standard likelihood approach (Table 3). Compared to the
simulation results, the difference in the LD estimates between
the two approaches was not particularly large. This was due
to a number of SNPs having high mean read depths (Figure
S6 in File S1). Nevertheless, the P-values from a Wilcoxon
signed-rank test comparing the mean LD estimated from
GUS-LD and the standard approach were very small (Table
3), giving strong evidence that the mean estimated level of
LD from GUS-LD was significantly larger than from the stan-
dard approach. The distribution of the sequencing error esti-
mates obtained from GUS-LD for all SNP pairs is given in
Figure S7 in File S1, where the mean estimate was 0.14%.

Discussion

The introduction of high-throughput sequencing methods
thatmultiplex a largenumber of individuals is driving forward
research into many species, particularly nonmodel species,
and is increasingly being utilized by many researchers. How-
ever, analyzing sequencing data using existing analytical tools
and methods may, in some cases, be impractical or lead to
erroneous results due to the added complexity and nuances of
the data compared to other genetic data types. Consequently,
the development of new methodological tools for analyzing
sequencing data are needed, although the progress of such

Figure 3 MSE of the LD estimates for D (A), D9 (B), and r2 (C) for a fixed
average sequencing effort of 600 reads when pA1 ¼ 0:5;pA2 ¼ 0:5;
e ¼ 0:01; and the true values of D were 20:05; 0, 0.05, 0.15, and 0.25.
The upper and lower bound for D are 20:25 and 0.25, respectively. The
dashed lines represents MSE for GUS-LD, whereas the solid lines represents
MSE for the standard likelihood approach. The number of individuals in the
simulated data sets were 300, 150, 100, 75, 60, 40, 30, and 20 at mean
read depths of 1, 2, 3, 4, 5, 7.5, 10, and 15, respectively.
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tools has been slow compared to the sequencing technology
(Gardner et al. 2014).

Our simulation results have demonstrated that genotyping
errors associated with undercalled heterozygotes (e.g., allelic
dropout), andmiscalled bases leads to underestimation of LD
when these errors are not taken into account. This is impor-
tant, as biased estimates of LD can have a profound effect on
downstream analyses. For example, in case-control associa-
tion studies, it has been shown using simulations that the
presence of genotyping errors leads to reduced power in
detecting an association between a locus and phenotype
(Gordon and Ott 2001; Gordon et al. 2002). Russell and Few-
ster (2009) have also shown via simulations that allelic
dropout results in positively biased estimates of effective
population size when calculated using LD information. This
problem is exacerbated for low coverage data as the rate of
genotyping errors is much higher than those used in these
simulations studies. We have developed a new method,
called GUS-LD, that accounts for errors associated with
undercalled heterozygotes and miscalled bases in the estima-
tion of LD. Our results show that GUS-LD was able to greatly
reduce bias in LD estimates at low sequencing depth, al-
though the variability of these estimates were larger com-
pared to the standard approach at low depths, which
reflects the additional variation introduced into the data by

uncertainty over whether both alleles or only one allele were
seen. This additional variationwill affect downstream analyses
such that there will be less power to detect causal variates in
association studies, more variable estimates of effective pop-
ulation size and less precision in assessing genome quality.
However, this can be counteracted by sampling more individ-
uals, since this can be more efficient than sampling fewer
individuals at high depth as suggested by our simulations re-
sults and by Maruki and Lynch (2014). The simulations also
show that GUS-LD was able to reduce bias in LD estimates
caused by sequencing errors, especially at high depths when
the true LD was moderate to large.

The sequencing error parameter, e, in GUS-LD is specified
in terms of a miscalled base for a given read, which differs
from the tradition specification that is in terms of a miscalled
allele in a genotype call. As a consequence, GUS-LD estimates
the sequencing error rate from information provided by the
allele counts for the reference and alternate alleles. In addi-
tion, a smaller sequencing error rate under the alternative
specification can affect more genotypes calls than under the
traditional specification for the same value of e, especially if
there aremany reads associatedwith each genotype call. This
means that the estimate of e from GUS-LD is likely to differ
from sequencing errors rates generally quoted in the litera-
ture. For the deer data set, themean sequencing error rate for

Figure 4 Heatmaps of the absolute value of the
pairwise estimates for D9 between all 38 SNPs in
the deer dataset using (A) the standard likelihood
approach, which does not account for undercalled
heterozygous genotypes or sequencing errors, and
(B) GUS-LD.

Figure 5 Heatmaps of the pairwise estimates for r2

between all 38 SNPs in the deer dataset using (A)
the standard likelihood approach, which does not
account for undercalled heterozygous genotypes or
sequencing errors, and (B) GUS-LD.
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a given read was estimated at �0.14%, which is of similar
magnitude to the rate estimated by Bilton et al. (2018) in a
linkage context for genotyping-by-sequencing data. Simula-
tion results suggest that GUS-LD accurately estimates the
sequencing error rate at high depths, but the estimates be-
come biased as the mean depth decreases. This bias is likely
due to the inability to distinguish between sequencing errors
and true reads at very low depths. Nevertheless, GUS-LD still
provided accurate LD estimates, even when the sequencing
error estimates themselves were biased.

With low coverage sequencing data, there are issues with
estimating LD when the true parameter value lies near or on
the upper or lower bound of its parameter space [Equation
(2)]. Specifically, the bias in the LD estimates increases as D
approaches its upper or lower bound. This is even the case for
GUS-LD, which adjusts for genotyping errors associated with
low read depths, although the bias is significantly less than
the standard likelihood approach. This bias is caused by sam-
pling variation resulting in the maximum of the likelihood in
Equation (6) lying outside the parameter space of D, whereas
maximization is performed with respect to the constraint of
Equation (2). When genotype calls are accurate and without
error, this bias, in estimating D when its true value is near its
upper or lower bound, is absent.

There are many potential applications of using pairwise
LD estimates from GUS-LD. For example, they could be used
for quantifying the extent of LD decay in populations relative
to physical distance from an assembly or genetic distance
computed from a linkage analysis. This should prove a
popular application since there arenumerous studies already
using sequencing data for this purpose in a number of species
(e.g., Huang et al. 2014; Nimmakayala et al. 2014; Fè et al.
2015; Gur et al. 2017; Sieber et al. 2017), including one by
Faville et al. (2018), which utilized GUS-LD. LD estimates
from GUS-LD can also be used in conjunction with the
method of Sved (1971) to estimate historic effective popu-
lation size, or the method of Waples (2006) to estimate
contemporary effective population size. Another application
is assessing the quality of an assembly (e.g., Pernaci et al.
2014) or ordering scaffolds, such as in the Locus Ordering
by Dis-Equilibrium procedure (Khatkar et al. 2010). This
application of LD is perhaps lesswell knownbut is particularly
useful for sequencing data, since assemblies are often frag-
mented or not existent, and has already been used in a study
by Tennessen et al. (2017). One powerful application is com-
bining LD estimates from GUS-LD with the software package

LDna (Kemppainen et al. 2015) to explore genome-wide LD
and investigate the evolutionary forces acting on a popula-
tion. The advantage of combining these two approaches is
that no reference genome is required, meaning that it is ap-
plicable to any species and so will prove valuable for non-
model species.

For the methodology developed in this paper, a number of
assumptionshavebeenmade.First, genotypecalls observed in
the sequencing data are assumed to be conditionally inde-
pendent between loci given the true genotype call. This
assumption is reasonable provided that loci are not located
on the same sequencing read across individuals. Estimation of
LD isunaffectedby thepresenceof genotyping errors resulting
from low read depth when the loci are located on the same
read as the true underlying haplotypes in the individuals are
preserved. Depending on their settings, many variant callers
allow for multiple SNPs to be called on the same sequencing
read. However, it is more practical to only retain a single SNP
from a given read as the loss of information is minimal and is
outweighed by the reduced computational time. Other as-
sumptions include thatmissing genotypes resulting from read
depths of zero occur randomly, and that the alleles of the true
genotypes are sampled randomly in the sequencing process. If
the latter assumptiondoes not hold, one allelewill be sampled
more frequently than the other (e.g., preferential sampling).
In this case, the proportion of heterozygotes seen as homo-
zygotes will be larger than expected under the model, which
would result in some bias in the LD estimates at low sequenc-
ing depth. If additional information is available, then the
probabilities in Equation (5) can be adjusted to reflect alter-
native sampling models. Lastly, it is assumed that sequencing
errors occur independently between reads. In reality, this
assumption may not hold, although it has been found to be
reasonable in some scenarios (Bilton et al. 2018).

The main contributions of this paper are twofold. First, we
have demonstrated that there can be significant bias in LD
estimates from sequencing data when the read depth is low
and the associated errors are not taken into account. This
highlights the need for practitioners to either remove these
errors by filtering or adjust their methodology to account for
these errors. This is particularly important as some LD anal-
yses give no explicit mention of a minimum cut-off with
respect to read depth being used. Second, we have proposed
GUS-LD as a new method to estimate LD using low-coverage
sequencing data. GUS-LD will prove valuable to researchers
seeking toundertakepopulation studieswhencost constraints
prohibit the production of high-coverage sequencing data or
other types of genetic data. In fact, our simulation results
suggest that it is more cost-efficient to use low coverage data,
as it allowsmore individuals to be sequenced for the same cost
and results in smallermean square errors for the LDestimates.
From our results, the optimal sequencing depth was between
2 and 5,whichwas similar to the optimal read depth observed
by Dodds et al. (2015) in the context of relatedness estima-
tion. GUS-LD also allows LD estimation using loci with a
mixture of high and low mean read depths, which is

Table 3 Average LD estimate across all pairs of SNPs for the deer
dataset

LD Measure Standard GUS-LD P-valuea��D9�� 0.48 0.62 ,1026

r2 0.028 0.040 ,1026

a P-value from a Wilcoxon signed-rank test comparing the mean level of LD esti-
mated from the standard approach and GUS-LD. The test was performed in the
programming language R (R Core Team 2017) using the wilcox.test function
(paired = TRUE).
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particularly useful as the sequencing depth typically varies
substantially between SNPs.
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