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Pathway enrichment and protein interaction network analysis for 
milk yield, fat yield and age at first calving in a Thai multibreed 
dairy population
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Thanathip Suwanasopee1, and Danai Jattawa1

Objective: This research aimed to determine biological pathways and protein-protein inter
action (PPI) networks for 305-d milk yield (MY), 305-d fat yield (FY), and age at first calving 
(AFC) in the Thai multibreed dairy population. 
Methods: Genotypic information contained 75,776 imputed and actual single nucleotide 
polymorphisms (SNP) from 2,661 animals. Single-step genomic best linear unbiased predic
tions were utilized to estimate SNP genetic variances for MY, FY, and AFC. Fixed effects included 
herd-year-season, breed regression and heterosis regression effects. Random effects were animal 
additive genetic and residual. Individual SNP explaining at least 0.001% of the genetic variance 
for each trait were used to identify nearby genes in the National Center for Biotechnology 
Information database. Pathway enrichment analysis was performed. The PPI of genes were 
identified and visualized of the PPI network. 
Results: Identified genes were involved in 16 enriched pathways related to MY, FY, and AFC. 
Most genes had two or more connections with other genes in the PPI network. Genes asso
ciated with MY, FY, and AFC based on the biological pathways and PPI were primarily involved 
in cellular processes. The percent of the genetic variance explained by genes in enriched path
ways (303) was 2.63% for MY, 2.59% for FY, and 2.49% for AFC. Genes in the PPI network 
(265) explained 2.28% of the genetic variance for MY, 2.26% for FY, and 2.12% for AFC. 
Conclusion: These sets of SNP associated with genes in the set enriched pathways and the 
PPI network could be used as genomic selection targets in the Thai multibreed dairy popul
ation. This study should be continued both in this and other populations subject to a variety 
of environmental conditions because predicted SNP values will likely differ across populations 
subject to different environmental conditions and changes over time. 
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INTRODUCTION

The Thai multibreed dairy population is primarily composed of crossbred animals with over 
75% Holstein (91%) and the remainder comes from various Bos indicus (Red Sindhi, Sahiwal, 
Brahman, and Thai Native) and Bos taurus (Brown Swiss, Red Danish, and Jersey) breeds 
[1]. Recent genome-wide association studies (GWAS) in Thailand found sets of significant 
single nucleotide polymorphism (SNP) markers from GeneSeek 9K chip associated with 
genes affecting lactation characteristics, milk yield (MY), fat yield (FY), and age at first calving 
(AFC) that were mostly different from those found in Bos taurus breeds in temperate regions 
[2,3]. Use of low-density in the Thai studies (9K) and high density in the studies in temperate 
regions (50K to 770K) may have been largely responsible for these differences. Unfortunately, 
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budgetary restrictions have allowed only a small fraction of the 
animals in the Thai multibreed dairy population to be geno-
typed with GeneSeek 80K. An efficient alternative to increase 
the numbers of SNP per animal without increasing the cost of 
genotyping SNP is genomic imputation. Jattawa et al [4] found 
that program FImpute was more accurate than Findhap and 
Beagle software when imputing from GeneSeek 9K, 20K, and 
26K to 80K in the Thai multibreed dairy population. Thus, 
imputation with FImpute of all genotyped animals with low-
density chips could help increase the accuracy of estimation 
of SNP marker effects and the likelihood of identifying SNP 
markers associated with genes affecting dairy traits in this 
population. Further, because only a fraction of animals with 
phenotypes have genotypes, computation of SNP marker effects 
and explained genomic variation could be accomplished by 
utilizing the single-step genomic best linear unbiased pre-
diction (ssGBLUP) developed at the University of Georgia [5]. 
  The GWAS for milk production and reproductive traits in 
Holstein in temperate regions identified regions associated 
with MY, FY, and AFC in all autosomes [6-8]. Similarly, GWAS 
in Thailand found a largely different set of significant SNP 
distributed across all 29 autosomes and the X chromosome 
associated with milk production and reproductive traits in the 
Holstein upgraded Thai multibreed dairy population [2,3]. 
However, GWAS provide limited information on relationships 
among genes affecting quantitative traits. Analysis of gene 
networks and biological pathways would provide a more com-
prehensive understanding of the sets of genes affecting multiple 
milk production and reproduction traits in dairy cattle. Bio-
logical pathway research in Holstein indicated that most sets 
of genes associated with milk production in these studies were 
involved in metabolic pathways, fat digestion and absorption, 
arginine and proline metabolism and tight junctions [7]. How-
ever, sets of genes involved in biological pathways related to 
milk production may be influenced by population structure 
and selection [8]. As with differences in sets of SNP associated 
with milk production and reproduction traits between the 
multibreed cattle in Thailand and Holstein cattle in temperate 
zones [2,3], biological pathways and gene networks associated 
with these traits may also differ in Thai multibreed and pure-
bred Holstein dairy populations. Thus, the objectives of this 
study were to determine biological pathways and protein-
protein interaction (PPI) gene networks associated with MY, 
FY, and AFC in the Thai multibreed dairy population under 
tropical environmental conditions.

MATERIALS AND METHODS

Animals, management and traits 
This research utilized 8,361 first-lactation cows from 810 farms 
located in the Northern, Northeastern, Central, Western, and 
Southern regions of Thailand. These cows were the progeny 

of 1,210 sires and 6,992 dams. Eighty-eight percent of animals 
in the database were Holstein (H) crossbreds (75% H and 
above); the remaining 25% belonged to other breeds (O) in-
cluding Jersey, Brown Swiss, Red Danish, Sahiwal, Red Sindhi, 
Brahman, and Thai Native. 
  Cows were housed in open barns where they had access to 
roughage, concentrate and a mineral supplement. Green rough-
age consisted of freshly cut grasses (cut and carry) including 
Napier grass (Pennisetum purpureum), Guinea grass (Panicum 
maximum), Ruzi grass (Brachiaria ruziziensis), and Para grass 
(Brachiaria mutica). Cows were fed approximately 30 to 40 kg/d 
of roughage and 5 to 10 kg/d of concentrate, or equivalently, 
1 kg of concentrate per 2 kg/milk produced. The concentrate 
(14% to 22% of crude protein and 63% to 83% of nitrogen-free 
extract) was provided twice per day during milking (morning: 
4:30 to 7:00 am and afternoon: 2:30 to 4:30 pm). Agricultural 
byproducts (rice straw, pineapple waste and sweet corn cob or 
husk), hay, and (or) silage were used as supplements as green 
roughage decreased in winter and summer [1]. 
  Traits in this research were 305-d MY, 305-d FY, and AFC. 
Test-day MY and fat percentage were collected monthly from 
individual first-lactation cows between 1989 and 2014. Test-
day FY was computed as the product of fat percentage and 
MY. Subsequently, monthly test-day MY and FY were used to 
compute MY and FY using the test-interval procedure [9,10].

Genomic DNA and genotypic data
Blood and semen samples were collected from 2,661 animals 
(89 sires and 2,572 dams) of the Thai multibreed dairy pop-
ulation. Genomic DNA was extracted from blood using a 
MasterPure DNA Purification kit for blood version II (EPI-
CENTRE Biotechnologies, Madison, WI, USA) and from 
semen using a GenElute Mammalian Genomic DNA Miniprep 
Kit (Sigma, Ronkonkoma, NY, USA). The DNA quality was 
assessed with a NanoDrop 2000 spectrophotometer (Thermo 
Fisher Scientific Inc., Wilmington, DE, USA). DNA samples 
from all animals (n = 2,661) were ensured to contain sufficient 
DNA for genotyping (absorbance ratio of approximately 1.8 
at 260/280 nm and DNA concentration higher than 15 ng/μL). 
DNA samples were genotyped with GeneSeek Genomic Pro-
filer (GGP) 9K, 20K, 26K, and 80K chips (GeneSeek Inc., 
Lincoln, NE, USA).
  Animals genotyped with GGP9K, GGP20K, and GGP26K 
were imputed to GGP80K using program FImpute version 2.2 
[4,11]. The imputed markers were subjected to quality control 
prior to further analysis. Quality control consisted of remov-
ing imputed markers with call rates lower than 90% and minor 
allele frequencies lower than 0.01. The resulting edited file 
contained 75,776 SNP markers per genotyped animal.

Genome-wide association analysis
A GWAS for MY, FY, and AFC was performed using ssGBLUP 
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[5]. Animals with phenotypes and genotypes as well as ani-
mals with only phenotypes were included in this analysis. 
A 3-trait genomic-polygenic model was used to obtain ge-
netic variances for and covariances between MY, FY, and AFC. 
Fixed effects included contemporary group (herd-year-season), 
breed regression effect (as a linear function of expected O 
fraction in each animal, where O = other breeds, including 
Brown Swiss, Red Danish, Jersey, Red Sindhi, Sahiwal, Brah-
man, and Thai Native), and heterosis regression effect as a 
linear function of heterozygosity (expected H fraction in the 
sire times expected O fraction in the dam plus expected O 
fraction in the sire times expected H fraction in the dam). 
Random effects were animal additive genetic and residual. 
The mean for random animal additive genetic and residual 
effects was assumed to be zero. The variance-covariance matrix 
among animal additive genetic effects for MY, FY, and AFC 
was equal to 
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was the frequency of the second allele in locus j and Z was the incidence matrix of SNP effects whose elements 137 

were defined as zij = (0 – 2pj) if the genotype for locus j was homozygous 11, zij = (1 – 2pj) if the genotype for 138 

, where pj was 
the frequency of the second allele in locus j and Z was the in-
cidence matrix of SNP effects whose elements were defined 
as zij = (0 – 2pj) if the genotype for locus j was homozygous 
11, zij = (1 – 2pj) if the genotype for locus j was heterozygous 
12 or 21 and zij = (2 – 2pj) if the genotype for locus j was homo-
zygous 22. Matrix G22 was scaled using the default parameters 
of the BLUPF90 Family of Programs [13], i.e., the default scal-
ing of matrix required the mean of the diagonal elements of 
G22 to be equal to the mean of the diagonal elements of A22 
and the mean of the off-diagonal elements of G22 to be equal 
to the mean of the off-diagonal elements of A22. 
  Variance and covariance components for MY, FY, and AFC 
were estimated using restricted maximum likelihood proce-
dures and computed via program AIREMLF90 [14] using an 
average information algorithm. Program POSTGSF90 was 
used to calculate the proportion of genetic variance explained 
by each SNP, additive SNP marker effect and construct Man-
hattan plots of percentages of the genetic variance explained 
by individual SNP. The percentage of the genetic variance ex-
plained by each SNP was calculated as the ratio of the variance 
explained by that SNP divided by the total genetic variance 
[15]. The predicted value of SNP associated with genes was 

calculated as sum of the additive SNP markers effect for each 
gene.

Identification of genes associated with milk yield, fat 
yield, and age at first calving 
Individual SNP that explained at least 0.001% of the genetic 
variance for MY, FY, and AFC were selected to determine po-
tential genes associated with these traits. The position of these 
SNP markers in base pairs was used to locate genes or nearby 
genes in the UMD Bos taurus 3.1 assembly of the bovine ge-
nome at the National Center for Biotechnology Information 
(NCBI) using R package Map2NCBI [16]. Only SNP inside or 
within 2,500 bp of genes in the NCBI database were utilized 
for the pathway enrichment and (PPI) network analyses.

Pathway enrichment analysis
Genes associated with MY, FY, and AFC were used to iden-
tify biological pathways in Bos taurus at the Kyoto encyclopedia 
of genes and genomes database using the ClueGo plugin of 
Cytoscape [17]. The statistical test used for the pathway en-
richment analysis by ClueGo was a right-sided test based on 
the hypergeometric distribution corrected for multiple testing 
with the Bonferroni step-down method. Significantly enriched 
pathways for these traits were defined to be those with p<0.05. 

Protein-protein interaction network analysis
The name of genes for MY, FY, and AFC was used to identify 
PPI from neighborhood, co-occurrence, gene fusions, co-
expression, experiments, databases, and text mining using 
program STRING [18]. The STRING defined PPI as a probabi-
listic confidence score. A high confidence score implied that 
interactions between proteins from the database could be con-
sidered as valid edges in a network. Thus, only PPI with a high 
confidence score (>0.7) were used to construct the PPI net-
work. The PPI network was visualized using Cytoscape [19]. 
The CytoNCA plugin for Cytoscape was used to analyze the 
number connections between genes in the PPI network [20].

RESULTS AND DISCUSSION

Genetic variance explained by individual single 
nucleotide polymorphism and chromosomes 
The percentage of genetic variance explained by each SNP are 
shown in Figure 1. Most SNP markers (65%) explained less 
than 0.001% of the genetic variance each and together they 
accounted for 13% of the genetic variance. Conversely, 35% 
of SNP markers that explained 0.001% or more of the genetic 
variance and accounted for the largest fraction (87%) of the 
total genetic variance for MY, FY, and AFC. SNP markers 
were located inside genes, within 2,500 bp, between 2,500 and 
5,000 bp, between 5,000 and 25,000 bp and beyond 25,000 
bp of genes in the NCBI database (Supplementary Table S1). 
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The percent of SNP inside genes or within 2,500 bp of genes 
explaining at least 0.001% of the genetic variance was 44% for 
MY, and FY, 43% for AFC, and accounted for 38% of the ge-
netic variance for these traits. 
  Numbers of SNP per gene ranged from 1 to 37 for MY, 1 to 
25 for FY, and 1 to 29 for AFC (Figure 2). Seventy one percent 
of SNP associated with these traits had a one to one correspon-
dence with genes in the NCBI database indicating that the 
vast majority of SNP markers in this population pointed to a 

single gene within the genome. 
  Numbers of genes and total genetic variance per chromo-
some for MY, FY, and AFC identified by SNP genotypes inside 
or within 2,500 bp of genes in the NCBI database are shown 
in Supplementary Table S2. The genetic variance explained 
by each chromosome ranged from 0.66% (chromosome 27) 
to 2.02% (chromosome 5) for MY, 0.58% (chromosome 27) 
to 2.09% (chromosome 11) for FY, and 0.58% (chromosome 
27) to 2.01% (chromosome 4) for AFC. These low percentages 

Figure 1. Manhattan plot of the percent of the genetic variance for milk yield, fat yield, and age at first calving explained by each SNP. The black line is the threshold for 
SNP accounting for more than 0.001% of the genetic variance for these traits. SNP, single nucleotide polymorphism.
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of explained genetic variance indicated that MY, FY, and AFC 
were influenced by large numbers of genes accounting for 
small amounts of genetic variation scattered throughout the 
genome. 
  Figure 3 shows numbers of genes associated with only one 
trait (dark gray), two traits (bright gray), and all three traits 
(white) based on Map2NCBI allocations. Numbers of single-
trait gene associations (861 for MY, 774 for FY and, 1806 for 
AFC) were lower than two-trait gene associations (1,851 for 
MY and FY, 782 for MY and AFC, and 898 for FY and AFC) 
and three-trait gene associations (3,436 for MY, FY, and AFC). 
This indicated that genes were likely to be involved in multiple-
trait associations than single-trait associations. These associations 
offer a biological rationale for the existence of genetic corre-
lations among these traits. All genes associated with all three 
traits were located in the 29 autosomes and the X chromosome. 
The percentage of the genetic variance explained by these 
genes across all chromosomes was 26.2% for MY, 26.3% for 
FY, and 24.7% for AFC (Supplementary Table S3). These re-
sults provide additional evidence for these three quantitative 
traits (MY, FY, and AFC) to be determined by sets of genes 
spread across the genome in the Thai multibreed [2,3] and 
Holstein populations [7].

Pathway enrichment analysis
Enriched pathways were classified into four categories: cellular 
processes, nervous system, digestive system, and environ-
ment adaptation are shown in Table 1. The genetic variance 
explained by the genes involved in these 16 significantly en-
riched pathways was 2.63% for MY, 2.59% for FY, and 2.49% 
for AFC (Table 1). The total predicted value of the SNP asso-
ciated with these genes (as deviations from the second allele 
at each locus) were second allele at each locus had a larger effect 
than the first allele at most loci for MY and FY, and that the 
opposite occurred for AFC.
  Cellular processes: Cellular process pathways related to cell 

proliferation, differentiation, migration, survival and apop-
tosis are essential for physiological changes in the ovarian 
follicle and mammary gland [21]. Therefore, cellular processes 
pathways contained the largest number of genes (266) and 
accounted for the largest percentage of the genetic variance 
for MY (2.24%), FY (2.29%), and AFC (2.12%) of all categories 
of significantly enriched pathways (Table 1). The sum of the 
predicted values of the SNP associated genes in enriched cel-
lular pathways were –3.7513 for MY, –0.1524 for MY, and 
0.0128 for AFC (Table 2), indicating that allele 2 at each locus 
had a larger effect than allele 1 for MY and FY, but a smaller 
effect than allele 1 for AFC. 
  Ovarian follicle and mammary gland development are in-
fluenced by the calcium-signaling pathway, which in turn is 
regulated by growth factors through changes in the concen-
tration of free calcium ions (Ca2+). Specifically, Ca2+ acts as an 
activator in the mitogen-activated protein kinase (MAPK) 
signaling pathway in ovarian follicle and mammary gland cells 
[22]. The MAPK links extracellular signals to the machinery 
that controls many fundamental cellular processes such as cell 
inflammation, proliferation, metabolism, motility, and apop-
tosis [23]. Extracellular signal-regulated kinase 5, a member 
of the MAPK family, mediates the production of prolactin [24], 
a regulator in the development of the mammary gland. The 
MAPK signaling pathway was found to be essential for the 
development of ovarian follicles in heifers [21] and the mam-
mary gland during lactation in Holstein [6,24] and Jersey [6]. 
The MAPK pathway is regulated by proteins from three asso-
ciated pathways: Ras-related protein 1 from the Rap1 signaling 
pathway (http://www.genome.jp/dbgetbin/www_bget?pathway: 
bta04015), Ras proteins from the Ras signaling pathway (http://
www.genome.jp/dbget-bin/www_bget?pathway:bta04014), 

Figure 2. Distribution of genes associated with milk yield, fat yield and age at 
first calving by number of SNP per gene. SNP, single nucleotide polymorphism. 

Figure 3. Number genes associated with one (dark gray), two (light gray) and 
three (white) traits in the Thai multibreed population. MY, milk yield; FY, fat yield; 
AFC, age at first calving.
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Table 1. Percent of genetic variance for milk yield (MY), fat yield (FY), and age at first calving (AFC) explained by single nucleotide polymorphism located inside or within 
2,500 bp of genes present in significantly enriched pathways

Category Pathway p-value Number of  
genes (n)

Genetic variance (%)

MY FY AFC

Cellular processes 266 2.2408 2.2867 2.1220
Rap1 signaling 8.9 × 10–8 63 0.5113 0.6292 0.6437
Calcium signaling 1.3 × 10–7 58 0.5018 0.5157 0.5381
Phospholipase D signaling 2.8 × 10–6 47 0.4691 0.4361 0.4657
Focal adhesion 1.6 × 10–5 55 0.4087 0.3868 0.4621
MAPK signaling 0.0002 62 0.4847 0.523 0.4807
Ras signaling 0.0075 55 0.3982 0.4333 0.4639
Wnt signaling 0.0077 38 0.3062 0.3016 0.2848
cGMP-PKG signaling 0.0085 41 0.4702 0.483 0.4668
Sphingolipid signaling 0.014 32 0.2295 0.2561 0.3181
Oxytocin signaling 0.016 38 0.3528 0.3538 0.376
Gap junction 0.021 26 0.3223 0.2973 0.3667

Nervous system 70 0.7829 0.6567 0.7825
Glutamatergic synapse 1.9 × 10–8 42 0.4857 0.4409 0.4886
Dopaminergic synapse 0.0036 36 0.4004 0.3415 0.4037
GABAergic synapse 0.011 26 0.3182 0.2633 0.2692

Digestive system 27 0.2748 0.2902 0.3216
Pancreatic secretion 0.03 27 0.2748 0.2902 0.3216

Environmental adaptation 30 0.3818 0.3593 0.3672
Circadian entrainment 0.0018 30 0.3818 0.3593 0.3672

Total 303 2.6282 2.5916 2.4893

Table 2. Predicted value of SNP located inside or within 2,500 bp of genes associated with milk yield (MY), fat yield (FY), and age at first calving (AFC) present in 
significantly enriched pathways

Category Pathway p-value Number of  
genes (n)

Predicted SNP value

MY FY AFC

Cellular processes  266 –3.7513 –0.1524 0.0128
Rap1 signaling 8.9 × 10–8 63 –0.9683 –0.0715 0.0036
Calcium signaling 1.3 × 10–7 58 –2.5956 –0.0520 0.0005
Phospholipase D signaling 2.8 × 10–6 47 –2.7299 –0.0919 0.0072
Focal adhesion 1.6 × 10–5 55 –3.5352 –0.0795 –0.0027
MAPK signaling 0.0002 62 –0.0853 –0.0382 0.0033
Ras signaling 0.0075 55 –1.1262 –0.0448 0.0025
Wnt signaling 0.0077 38 –0.2874 –0.0133 0.0017
cGMP-PKG signaling 0.0085 41 –0.5336 –0.0534 0.0037
Sphingolipid signaling 0.014 32 0.5767 0.0287 0.0056
Oxytocin signaling 0.016 38 –0.9332 –0.0438 –0.0022
Gap junction 0.021 26 –1.0156 –0.0477 0.0017

Nervous system  70 –4.1918 –0.0938 0.0039
Glutamatergic synapse 1.9 × 10–8 42 –2.0444 –0.0804 –0.0032
Dopaminergic synapse 0.0036 36 –1.2675 –0.0328 0.0002
GABAergic synapse 0.011 26 –2.5585 –0.0434 0.0041

Digestive system  27 –0.9985 –0.0260 –0.0006
Pancreatic secretion 0.03 27 –0.9985 –0.0260 –0.0006

Environmental adaptation  30 –1.0546 –0.0425 –0.0020
Circadian entrainment 0.0018 30 –1.0546 –0.0425 –0.0020

Total   303 –5.0430 –0.1573 0.0077

SNP, single nucleotide polymorphism.
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and Wnt proteins from the Wnt signaling pathway (http://
www.genome.jp/dbget-bin/www_bget?pathway:bta04310). 
  Phospholipase D from the phospholipase D signaling path-
way is an essential enzyme for the production of phosphatidic 
acid (http://www.genome.jp/dbget-bin/www_bget?pathway: 
bta04310), a key intermediate in milk fat synthesis during lac-
tation [25]. The Focal adhesion and Gap junction pathways 
receive and send signals that affect the motility, proliferation, 
differentiation, metabolic transport, apoptosis, and tissue ho-
meostasis of ovarian follicle and mammary gland cells [21]. 
The cyclic guanosine monophosphate from the cGMP-PKG 
signaling pathway involved in the activation and regulation 
of protein kinase G in smooth muscle cells to promote their 
relaxation (http://www.genome.jp/dbget-bin/www_bget?path 
way:bta04022). The ceramide and sphingosine-1-phosphate 
from the sphingolipid signaling pathway acts an as a regula-
tor of cell responses to stress (http://www.genome.jp/dbget-bin/
www_bget?pathway:bta04071). The oxytocin hormone (oxy-
tocin signaling pathway), produced by the hypothalamus, 
stimulates the contraction of mammary gland myoepithelial 
cells, causing milk to be ejected into the ducts, and cisterns 
during milking (http://www.genome.jp/dbget-bin/www_bget? 
pathway:bta04921).
  Cellular processes influenced MY, FY, and AFC through a 
large number of genes located in multiple pathways, each having 
a small effect and explaining a small percentage of genetic 
variation for these traits. However, the combined effect of all 
genes in all enriched cellular pathways explained a noticeable 
amount of genetic variation. Therefore, the combined effect of 
all cellular processes for MY, FY, and AFC could potentially 
be considered as a functional genomic selection target within 
each trait in this population.
  Nervous system: The nervous system pathways include glu-
tamatergic synapse, GABAergic synapse, and dopaminergic 
synapse pathways involved in brain remodeling. There were 
70 genes in these three pathways, and they together explained 
0.78% of the genetic variance for MY, 0.66% for FY, and 0.78% 
for AFC (Table 1), and their associated SNP had a total pre-
dicted value of –4.1918 for MY, –0.0938 for FY, and 0.0039 for 
AFC (Table 2). These three pathways are involved in the onset 
of puberty, which in turn determines AFC. Changes in the 
concentration of gonadotropin-releasing hormone (GnRH) 
trigger of the onset of puberty. Glutamate from the glutama-
tergic synapse pathway and gamma-aminobutiyric acid from 
the GABAergic synapse pathway stimulate the production of 
GnRH whereas dopamine from the dopaminergic synapse 
inhibits it [26,27]. The GnRH stimulates the secretion of go-
nadotropins from the pituitary gland (luteinizing and follicle-
stimulating hormones) involved in the development of follicles, 
ovulation and the production of estrogen and progesterone. 
Fortes et al [28] provided evidence for the involvement of genes 
from the glutamatergic synapse and GABAergic synapse path-

ways in the attainment of puberty in beef cattle.
  Digestive system: The only significant pathway in the di-
gestive system category was the pancreatic secretion pathway. 
This pathway was 27 genes and they together explained 0.27% 
of the genetic variance for MY, 0.29% for FY, and 0.32% for 
AFC (Table 1), and the total predicted value of the associated 
SNP were –0.9985 for MY, –0.0260 for FY, and –0.0006 for 
AFC (Table 2). The digestive system pathway was also found 
to be associated with milk production traits in Holstein [7]. 
Pancreatic enzymes (lipases, amylases, proteases) from the 
pancreatic secretion pathway are important for the digestion 
and absorption of nutrients (carbohydrates, proteins, fats, 
vitamins) in the small intestine. Thus, genes involved in the 
pancreatic pathway likely influenced differences in MY, FY, 
and AFC among animals in the Thai multibreed dairy pop-
ulation. Heifers that digested and absorbed nutrients more 
efficiently would be expected to have faster growth rates, 
achieve puberty earlier, have higher conception rates and 
produce more milk than less efficient heifers. Thus, heifers in 
the Thai multibreed dairy population that digested and absorbed 
nutrients from local roughages, concentrate and byproducts 
of agricultural efficiently likely had lower AFC than less effi-
cient heifers.
  Environmental adaptation: The circadian entrainment path-
way was the only significant pathway in the environmental 
adaptation category. This pathway contained 30 genes that 
explained 0.38% of the genetic variance for MY, 0.36% for FY, 
and 0.37% for AFC (Table 1), and the sum of the predicted 
values of the SNP associated with these genes was –1.0546 for 
MY, –0.0425 for FY, and –0.0020 for AFC (Table 2). The circa-
dian entrainment pathway is important for animal adaptation 
to number of daylight hours, temperature and humidity [29]. 
The cyclic adenosine monophosphate (cAMP) response ele-
ment-binding protein from the circadian entrainment pathway 
regulates the circadian clock (http://www.genome.jp/dbget-
bin/www_bget?pathway:bta04713). The circadian clock is 
influenced by the length of photoperiod [30], which in turn 
influences the activity of multiple hormones (estrogen, pro-
gesterone, placental lactogen, prolactin, leptin, cortisol) that 
affect metabolites (glucose, amino acids, free fatty acids, tri-
glycerides) received by cells of the mammary gland [31]. Dairy 
cows in Thailand are exposed directly to day-length changes 
because farmers house cows in open barns. Thus, it is not sur-
prising that genes involved in the circadian entrainment pathway 
explained a significant portion of the genetic variation for MY 
and FY in the Thai multibreed dairy population.

Protein-protein interaction network analysis
The PPI network for MY, FY, and AFC contained 265 nodes 
(i.e., genes) connected via 1,158 edges (Figure 4). Approxi-
mately 90% of the genes had two or more connections (Figure 
5). The preponderance of multiple interactions among genes 
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in the PPI network indicated that this was a highly intercon-
nected network where most genes affected the expression of 
other genes relevant to MY, FY, and AFC. The number of con-
nections per node ranged from 1 to 44 and the number of 

pathways fluctuated between 1 and 15 (Supplementary File 
S1). The PPI network for MY, FY, and AFC showed a dense 
center with highly interconnected genes (Figure 4). Genes in 
the PPI network explained 2.28% of the genetic variance for 
MY, 2.26% for FY, and 2.12% for AFC (Supplementary File 
S1). Thus, genes in the PPI network explained an average of 
86.3% of the genetic variation as genes present in significantly 
enriched pathways (86.7% for MY, 87.2% for FY, and 85.2% 
for AFC). The sum of the predicted SNP values of the 265 genes 
in the PPI network was –5.6150 for MY, –0.1404 for FY, and 
0.0067 for AFC (Supplementary File S2). As with explained 
genetic variances, these sums of predicted values for PPI genes 
were similar to those obtained for the 303 genes in the sig-
nificantly enriched pathways (Table 2). All genes in the PPI 
network were also involved in one or more enriched pathways 
in Table 1. Thus, the 265 genes in the PPI network were a sub-
set of the 303 genes in the set of enriched pathways, meaning 
that 87.5 of enriched pathway genes were represented in the 
PPI network. Thus, the 14% lower amount of genetic variation 
explained by PPI genes was due to a 12.5% lower number of 

Figure 4. Protein-protein interaction (PPI) network of genes involved in significant pathways. Gray nodes represent genes with large numbers of connections with other 
genes in the PPI network.

Figure 5. Distribution of genes associated with milk yield, fat yield, and age at 
first calving by number of connections in the protein-protein interaction network.
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genes than those present in the enriched pathways in Table 1. 
  Figure 6 show a subset of the most represented genes in 
the PPI network for MY, FY, and AFC (16 genes with a mini-
mum of 22 connections and 1 pathway). The protein kinase 
C beta (PRKCB) gene had the largest number of significantly 
enriched pathways for MY, FY, and AFC (14) and accounted 
for 0.012% of the genetic variance for MY, 0.009% for FY and 
0.016% for AFC (Supplementary File S1). This gene partici
pated in 9 biological process pathways, 3 nervous system 
pathways, digestive system pathway and environmental adap-
tation pathway. PRKCB codes for protein kinase C beta that 
is involved in diverse cellular signaling pathways (http://www.
genecards.org/cgi-bin/carddisp.pl?gene=PRKCB&keywords 
=PRKCB). Further, PRKCB is also involved in the circadian 
entrainment pathway. This pathway contributes to the adapta-
tion of organisms to their environment [29]. A positive influence 
of PRKCB on body temperature regulation during climate 
stress was reported in Angus and Simmental cattle [32]. Higher 
MY and fat percentages were observed in Holstein that were 
better adapted to climatic heat stress [33]. The predicted value 
of the set of SNP associated with PRKCB was 0.226 for MY, 
0.005 for FY, and –0.002 for AFC (Supplementary File S2). 
These predicted SNP values indicate that the second PRKCB 
allele would result in higher MY and FY as well as shorter AFC 
in cows from the Thai multibreed dairy population, whereas 
the first PRKCB allele would have the opposite effect.
  The phospholipase C beta 1 (PLCB1), PLCB4, adenylate 
cyclase 2 (ADCY2), ADCY8, calcium/calmodulin dependent 
protein kinase II beta (CAMK2B), CAMK2D, mitogen-ac-
tivated protein kinase 11 (MAPK11), MAPK14, epidermal 
growth factor receptor (EGFR), growth factor receptor bound 
protein 2 (GRB2), Fyn proto-oncogene, Src family tyrosine 
kinase (FYN), and integrin subunit beta 5 (ITGB5) genes were 

involved in 12 significantly enriched pathways and accounted 
for 0.126% of the genetic variance for MY, 0.109% for FY, and 
0.197% for AFC (Supplementary File S1). The predicted values 
of the set of SNP associated with these genes was –0.739 for 
MY, –0.026 for FY, and 0.001 for AFC. These predicted SNP 
values indicated that the subset of 16 PPI second alleles would 
decrease MY, FY, and increase AFC, whereas the subset of 16 
PPI first alleles would increase MY and FY, but decrease AFC. 
These genes participated in 8 cellular process pathways (such 
as MAPK signaling, Ras signaling, Wnt signaling) related to 
the development of ovarian follicles and cells from the mam-
mary gland [6,21]. PLCB1 and PLCB4 code for phospholipase 
C beta 1 to 4 that function as signal transducers for the trans-
mission of extracellular signals to multiple intracellular targets 
(http://www.genecards.org/cgi-bin/carddisp.pl?gene=PLCB1 
&keywords=PLCB1; http://www.genecards.org/cgi-bin/card-
disp.pl?gene=PLCB4&keywords=PLCB4). ADCY2 and ADCY8 
code for adenylyl cyclase type 2 and 8 that act as catalysts for 
the formation of cAMP which is involved in many cellular 
processes (http://www.genecards.org/cgi-bin/carddisp.pl?gene 
=ADCY2&keywords=ADCY2; http://www.genecards.org/cgi-
bin/carddisp.pl?gene=ADCY8&keywords=ADCY8). CAMK2B 
and CAMK2D code for calcium/calmodulin-dependent pro-
tein kinases that function as mediators of calcium signaling in 
cells (http://www.genecards.org/cgi-bin/carddisp.pl?gene= 
CAMK2B&keywords=CAMK2B; http://www.genecards.org/
cgi-bin/carddisp.pl?gene=CAMK2D&keywords=CAMK2D). 
MAPK11 and MAPK14 code for p38 mitogen-activated pro-
tein kinases 11 to 14 that function as mediators of the cellular 
response to external signals [34]. EGFR codes for epidermal 
growth factor receptor that act as a receptor for the growth 
factor (http://www.genecards.org/cgi-bin/carddisp.pl?gene= 
EGFR&keywords=EGFR). GRB2 codes for a growth factor 
receptor-bound protein that functions as a signal transducer 
(http://www.genecards.org/cgi-bin/carddisp.pl?gene=GRB2& 
keywords=GRB2). FYN codes for protein-tyrosine kinase that 
acts as an activator of molecular signals (http://www.genecards.
org/cgi-bin/carddisp.pl?gene=FYN&keywords=FYN). ITGB5 
codes for integrin beta type 5 that functions as a receptor for 
fibronectin (http://www.genecards.org/cgi-bin/carddisp.pl? 
gene=ITGB5&keywords=ITGB5), which regulates cell prolifer-
ation and differentiation during the development of ovarian 
follicles and mammary gland cells.
  The G protein subunit gamma 2 (GNG2), G protein sub-
unit gamma transducin 1 (GNGT1), and G protein subunit 
alpha O1 (GNAO1) genes were involved in 6 significantly en-
riched pathways and accounted for 0.040% of the genetic 
variance for MY, 0.027% for FY, and 0.020% for AFC (Sup-
plementary File S1). The predicted values of the set of SNP 
associated with these genes were –0.177 for MY, 0.001 for FY, 
and –0.002 for AFC (Supplementary File S2). Thus, the com-
bined effect of the three second alleles from these genes would 

Figure 6. Genes with large numbers of connections in the protein-protein 
interaction network of the Thai multibreed population.
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decrease MY, increase FY, and decrease AFC, and the set of 
first alleles of these genes would have the opposite effect. These 
three genes involved in the glutamatergic, GABAergic and 
dopaminergic synapse pathways. These three pathways are 
involved in the onset of puberty [28]. Lastly, GNAO1 partici-
pates in the development of ovarian follicles [21]. 
  Pathway enrichment and PPI network analyses indicated 
that MY, FY, and AFC of animals in the Thai multibreed dairy 
population were influenced by sets of genes that were impor-
tant for cellular processes, nervous and digestive systems and 
environmental adaptation. Cellular processes were involved 
with the largest number of biological pathways and PPI among 
genes associated with MY, FY, and AFC. This likely occurred 
because cellular processes are important for fundamental cell 
activities related to the development of cells from the mam-
mary gland and the development of ovarian follicles. Although 
individual genes or biological pathways explained a small frac-
tion of the genetic variance for MY, FY, and AFC, the combined 
effect of all genes in all enriched biological pathways and the 
PPI network explained a substantially larger amount of the 
genetic variance for these traits. Thus, the set of SNP associated 
with the enriched pathways and the PPI network in this study 
could be considered as specific genomic selection targets to 
help increase MY, FY, and decrease AFC in the Thai multibreed 
dairy population. However, because the amount of explained 
genetic variation for each trait was a minor fraction of their 
total, these studies need to continue with the ultimate goal of 
accounting for most of the genetic variation due to biological 
processes in the Thai multibreed dairy population. It should 
be kept in mind that size and direction of the predicted SNP 
values here will likely differ in other dairy populations due to 
breed composition and environmental conditions (climate, 
management, nutrition, and health care) and will also likely 
differ over time as population characteristics and environ-
mental conditions change.
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